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Abstract—Normalized cross-correlation template matching is
used as a detection method in many scientific domains. To be
practical, template matching must scale to large datasets while
handling ambiguity, uncertainty, and noisy data. We propose
a novel approach based on Dempster-Shafer (DS) Theory and
MapReduce parallelism. DS Theory addresses conflicts between
data sources, noisy data, and uncertainty, but is traditionally
serial. However, we use the commutative and associative nature of
Dempster’s Combination Rule to perform a parallel computation
of DS masses and a logarithmic hierarchical fusion of these
DS masses. This parallelism is particularly important because
additional data sources allow DS-based template matching to
maintain accuracy and refine uncertainty in the face of noisy
data. We validate the parallelism, accuracy, and uncertainty of
our implementation as a function of the size and noise of the input
dataset, finding that it scales linearly and can retain accuracy and
improve uncertainty in the face of noise for large datasets.

I. INTRODUCTION

Template Matching methods are ubiquitous in the scien-
tific community. Matching approaches have been implemented
across many scientific disciplines ranging from electrocardio-
gram analysis in medicine [17], [36], to gene expression in
biology [30], to signature detection in communications [3], to
analysis of seismic signals in geo-science [2], [4], and to image
tracking and recognition in computer vision [5], [18], [39].
Traditional template matching methods are popular because
they are effective, easily interpreted, and can be evaluated or
prototyped rapidly. The fundamental concept behind template
matching is to quantify similarity between two objects, which
are single- or multi-dimensional signals such as time series
information or images. There are several ways to quantify
similarity, including sum of absolute difference, histogram
matching, and selective correlation coefficients [18], [23], [39].
This paper focuses on the popular method of correlation to
quantify object similarity. This statistical approach measures
the linear relationship between two objects by providing a cor-
relation coefficient as a metric indicating evidence of similarity.

Prior Work. Traditional single-template cross-correlation
matching techniques establish the statistical linear relationship
between two objects’ unique features [26]. A template is
serially translated over a signal or image to search for the
strongest correlation coefficient [12], [15], [17], and if a thresh-
old criterion is exceeded a match is concluded. Contemporary
approaches also consider sets of templates. A template set
acts as a source of evidence for detecting various features

within a single signal of interest [36]. Each template in the
set represents a specific hypothesis; the template with the
highest coefficient is reported as the winner. This work raises
three interesting questions: 1) what can be done if this serial
algorithm does not scale to larger datasets, 2) what should
be returned if multiple templates report similar correlation
coefficients, and 3) what is the certainty that the reported
template is the true match?

Challenges. This issue of ambiguous winners creates an
uncertainty regarding which template is the true match [28].
The complexity of the decision is increased when addi-
tional sources of information are provided as sets of multiple
templates. Current approaches employ voting and weighting
strategies [13], [17], [24]. However, these approaches do not
appropriately capture the uncertainty associated with deciding
a winner [28]. This situation is further compounded when
working with high-volume datasets that require significant
computation time. Additionally, the veracity of real-world data
is frequently degraded by noise and measurement error. We
desire a scalable template matching approach that handles
multiple templates and a high volume of noisy source data
while still capturing ambiguity.

Insights. As relevant datasets become larger and more read-
ily available, there is evidence that increasing the size of the
dataset can increase detection specificity and sensitivity [40].
Such benefits are contingent on proper regularization and
treatment of noisy samples [40]. Dempster-Shafer (DS) theory
offers combination rules that can properly account for the
regularization of noise [6]. These combination paradigms allow
fusion of evidence sources into a single set of hypotheses.
Fusing sources allows contextual considerations to be captured,
such as conflicts between sources, corrupt information, uncer-
tainty, source reliability, and accuracy [31]. We propose to use
a DS theory-based approach for template matching to address
the issues of multiple templates and ambiguity; however, the
benefits of DS theory cannot be fully leveraged unless the
approach applies efficiently to many templates and sources.

The MapReduce distributed programming paradigm has be-
come increasingly well-supported by companies and comput-
ing clusters [10]. MapReduce takes advantage of insights from
functional and parallel programming to gain high performance,
but requires that computations be structured and data be staged
with Map and Reduce tasks operating over (key, value) pairs.
While MapReduce has been used successfully in research [21],
[25] and industrial practice [10], [32], to our knowledge it has



not been used to support DS theory. This may result from the
relative nascency of MapReduce and the variety and novelty
of DS theory frameworks to form evidence. We exploit the
associativity and commutativity of Dempster’s Combination
Rule to produce a parallel Map and a hierarchical logarithmic
Reduce over (key,value) pairs representing DS correlation
information, to scale template matching to large datasets.

Contributions. We design and implement a parallelized
and distributed framework based on the MapReduce paradigm
that carries out Dempster-Shafer theory calculations to perform
multiple-set template matching in a manner that handles large
datasets, ambiguity, and noisy data.

The contributions of this work are:

1)  We develop a MapReduce framework for an evidence
fusion methodology that can leverage large volumes
of templates and sources to improve uncertainty.

2)  We demonstrate that our framework scales to high
volumes of data.

3)  We demonstrate that our framework is robust against
noisy data.

II. BACKGROUND

In this section, we introduce the MapReduce framework
for distributed computation and the Dempster-Shafer Theory
approach evidence fusion.

A. MapReduce

MapReduce [10] is a programming paradigm intended for
distributing computations over large datasets on a cluster.
In principle, MapReduce consists of two phases: Map and
Reduce, named after the map and reduce (or fold) functions in
functional programming. MapReduce is powerful in situations
where a large amount of input can be processed independently
(e.g., embarrassingly parallel applications).

The Map phase transforms, filters or sorts data in parallel.
Map operates on each element of the input (represented as
a (key, value) pair) and produces zero or more (key, value)
pairs as output. Map should be stateless, operating only on
its input. Many instances of the Map function can execute
simultaneously (e.g., on different nodes) because there are no
dependencies between pairs.

After the Map phase, the output may be staged or ex-
changed between nodes, and (key, value) pairs are sorted and
assigned (or partitioned) to nodes for reduction. The Reduce
function is applied once for each key, accessing all of the
values associated with that key and producing zero or more
outputs.

MapReduce frameworks or implementations handle stag-
ing, marshaling, and data transfer aspects while the user
provides a few specified functions (e.g., reading the input
files, Map, Reduce, writing the output, etc.). In this paper,
we take advantage of the commutativity and associativity
of Dempster’s Combination Rule to realize a highly paral-
lelized framework for DS fusion. Traditionally, MapReduce
parallelism benefits come from the Map stage; hierarchical
reductions such as the one proposed in Section III-D are not
part of most MapReduce frameworks.

B. Dempster-Shafer Theory Background and Notation

Dempster-Shafer Theory is an evidence-based approach
which develops support for hypotheses. Evidence is
constructed around information regarding occurrences of
events [16]. A single piece of evidence may support multiple
hypotheses. To create the necessary evidence, information is
gather from sources, which can be sensors, organizations,
databases, people, or other entities [16].

DS Theory is a generalization of classical probability
theory [34], where the support of hypotheses can be considered
propositions. These propositions, referred to as the frame of
discernment (FOD), are mutually exclusive and exhaustive. We
take the FOD € to be a finite set (i.e., Q@ = {61,...,0n}).
Q is finite and composed of NN singleton propositions. The
basic probability assignment (BPA), otherwise referred to as
a basic belief assignment or mass function, is a function
m : 2 — [0, 1], where 2% is the power set of €2, such that all
probabilities sum to 1:
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While m(X) measures only the support that is directly
assigned to proposition X C €, the belief BI(X) repre-
sents the total support that can move into X from all other
propositions that contain X. Thus, BI(X) = > i m(Y).
Belief is the minimum amount of support that is given for a
specific proposition. For the singleton case, the DS mass of
the proposition is equal to the belief.

Capturing Uncertainty via DS Theory. Uncertainty has
many ways of entering a model. There are two classifications
of uncertainty: aleatory uncertainty and epistemic uncertainty.
Aleatory uncertainty represents unknowns that differ each time
the system is observed, and can be accounted for using historic
data. In this work, we focus on epistemic uncertainty, caused
by a lack of knowledge, which is reduced through increased
understanding [31], [34]. Hence, when more evidence is
provided a refinement of the uncertainty for the decision is
possible through increased knowledge.

DS Theory is a major tool for deciphering uncertainty.
It uses data fusion techniques to reduce uncertainty from
imperfect data (e.g., source information that is conflicting
or sources reporting similar information) [22], [31], [38].
Combining additional sources of evidence, referred to as
evidence fusion [27], reduces uncertainty and redistributes
masses to the propositions. Therefore, when one source of
evidence indicates a specific template and another source
conflicts with that prediction, the uncertainty in the model
increases. Likewise, if there is no conflict and both sources
report similar findings, the uncertainty decreases. The evidence
fusion approach implemented in this paper uses Dempster’s
Combination Rule (DCR):

Z ml(Xp) m2(Xq)
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where the evidence provided by the mass functions m and me
are combined to obtain the fused mass function m. We write



m = mj @ msy to denote that m is the fused mass function
produced by combining m; and meo.

Finally, we note that the DCR & has two important
mathematical properties: it is commutative (i.e., mj & mo =
mo @ my) and associative (i.e., (mi ® ms) ® mg = my &
(mg2 @ ms3)). While these properties of DCR are well-known
in the literature [16], [31], to our knowledge they have not
been previously used to support a distributed implementation
of DS Theory.

III. MAPREDUCE FRAMEWORK FOR TEMPLATE FUSION

To position our framework within a MapReduce environ-
ment, we describe two algorithms, Map and TreeReduce,
that compute a winning match. Typical implementations com-
pute a match serially. However, by noting the associativity
and commutativity of Dempster’s Combination Rule, we can
execute our Map and TreeReduce functions in parallel, gaining
significant speedups when a computing cluster is available. In
addition, the structure of our inputs is pivotal to the correct
execution of these algorithms.

A. Source Dataset

The input dataset is structured to properly combine MapRe-
duce with DS Theory. This dataset contains D different
sources, with an individual source denoted by S;. Each source
is considered to provide evidence for its own FOD, and all
sources contain the same number of templates, [V, in the same
order. A specific template ¢ associated with source d is denoted
as Ty ;.

Each template ¢ supports a specific hypothesis. As each
source contains a series of templates in the same order, each
source can thus be thought of a series of hypotheses. For
example, template 77 ; in source S; reflects the same propo-
sition/hypothesis generated by template 75 ;. Furthermore,
every template in every source is identical in size.! This is
a necessary precondition for the computation of correlation
coefficients. In practice, templates can be uniformly resized in
a preprocessing step.

Each set of templates is examined to create our support for
each proposition in the set. This structure allows each source
to be reconstructed into its own FOD (2), which is crucial
for MapReduce because a single FOD can be represented by
a single (key, value) pair.

B. Correlation to DS Framework: Map

The Map function’s task is to analyze a source’s informa-
tion and develop evidence using correlation. This set of cor-
relation coefficients is then placed into a DS Framework [28].
There are two inputs to the Map function. The first input is
an unknown 2-dimensional signal, A, with dimensions m by
n. The second input is a Source, S4, composed of a set of NV
templates, where each template’s dimension are m by n.

'In our evaluation, we investigate an example image processing task in
which we consider every image to have the same dimensions.
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Fig. 1. Visual representation of the structure of input sources. Each template
is an m X m signal, each source contains N different templates. There are D
sources in the dataset.

1) Forming Evidence Using Correlation: To develop evi-
dence, correlation between the unknown template and a known
template, Ty ;, produces a correlation coefficient. This correla-
tion coefficient is assigned to the template, providing evidence
of the match. A cross-correlation value of p = 1 denotes a
perfect match between the unknown and known templates.
When p = 0, there is no match, and when p = —1, the
two signals are out of phase or negatively correlated. Since
we are examining a set of correlation coefficients from a
source, this framework can be applied to multidimensional
template matching. In this paper, our work considers the
two dimensional case (e.g., images), where the correlation
coefficient can be expressed as
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where we denote the ‘sample’ means of images A and B as
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This process normalizes the correlation coefficient, p, where
p € [—1,1]. A set of normalized correlation coefficients is
generated from Sq4’s set of templates by using equation 3 and
the unknown template thus take the form

V=i V& - W], 4)

where V; € [0,1] to only denote the positive normalized
correlation coefficient. The negative correlation coefficients
are set to zero. Further discussion can be found in Napoli et
al. [28]. Each V; provides evidence on how similar Ty ; is to
the unknown template. This correlation calculation is carried
out for all sources in a parallelized manner.

C. Set of Correlations Coefficients to DS Masses

We follow the DS framework of Napoli et al. [27] for
correlation coefficients to capture the overall certainty of each



element in V by utilizing a weighting strategy as

ViAVir VoAV VNAVN1
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where o denotes the matrix Hadamard product, AV;; =
(Vi = V;) € [-1,41]. Jnym denotes the N x M matrix
with each entry being 1 and Dy = diag[Vi, Vo -+, V]
denotes the diagonal matrix with the diagonal entries being
{V1, Vo, --+, Vy}. The columns of AW are references for
each V; proposition being analyzed. The summation of these
column vectors informs us the strength of a proposition being
a winner relative to other propositions in V. The sum of all
the elements in a column vector is referred to as the column
weight. The column weights, C;, are calculated as

c=1[C, Cy cnl” = v AW)T, (6)

where C; € [-(N —1)/4, (N —1)].

We determine P different focal elements from the positive
values in the column weights vector, C. These focal elements
are assigned DS masses. We define a mass measure vector
H= [Hlv HQ;'“ ) HN] as

G+ |G

H;
2

(M

We first observe that each H; € [0,(N — 1)]. More
generally, H, is associated with source S;. Note that, Hy is
associated with source S;. The mass measure is adjusted to
DS masses via

1—(@), for A = ©;

M(A) = ®)
H, (1*#“))) . for A= Hj,

where © = {Vi,Va,---,Vy} and Y = SN H; is the
FOD consisting of the propositions H;, 2 € 1,..., N. Once the
correlation coefficients for a single source have been converted
to masses, those mass vectors can be fused.

D. DCR Fusion: TreeReduce

Our TreeReduce function takes any two FOD vectors V;
and V5 as input. The TreeReduce function fuses the two
vectors into a single DS mass vector of the same length. The
TreeReduce function can then be executed hierarchically to
fuse all D FOD vectors in log(D) steps until one fused vector
remains. This final output vector contains the fused DS masses
from all the processed sources. From this output, we account
for the belief and uncertainty of the winning template based
upon the maximal mass in the vector.

Algorithm 1 — Map: calculate DS mass from one source.

Input: A, and unknown input observation to match
Input: B, a single source containing /N templates
Input: corr, a subroutine implementing Equation 3
Output: correlation vector OUT of length NV + 1
count =0
1: fori=0to N —1do
2. Cli] = corr(4, Bli])
3: fori=0to N —1do
4 fork=0to N—1do
5: OUTY(i] = OUTYi] + (C[i] — C[k])*C]i]
6: if OUTY[i] < 0 then
7 OUT[i] =0
8: else
9: count = count + 1
10: sum = sum(OUT)
11: if sum > 0 then
12:  uncertainty = 1 — sum/count
13 fori=0to N —1do

14: OUTYi] = OUTYVi] * ((1 — uncertainty)/sum)
15 OUT|[N] = uncertainty
16: else

17 OUT[N]=1

Algorithm 2 — TreeReduce: Dempster’s Combination Rule

Input: V; and V5, mass vectors of length N + 1
Output: OUT, a fused vector of length N + 1
tmp = (N 4+ 1) x (N + 1) array
norm =0
cfori=0to N+ 1do
for k=0to N+ 1do
tmpli][k] = Vi[i] * Va[k]
cfori=0to N+ 1do
norm = norm + tmpli][i] + tmp[i][N] + tmp[N][i]
: for i =0to N do
OUTYi] = (tmpli][i] + tmp[i][N] + tmp[N][i]) /norm
: OUT|[N] = tmp[N][N]/norm

P ANNARIE R

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we describe the architecture and imple-
mentation of two prototypes for our parallel framework. The
first prototype for running our framework uses Hadoop [1],
which allows arbitrary scalability depending on the number
of nodes and cores available in a distributed compute cluster.
The second prototype is a flexible pthreads implementation in
Linux that uses the MapReduce paradigm akin to Phoenix [29].
This enables rapid debugging of our framework on a single
node in instances where a Hadoop cluster is not practical.

A. Testing Methodology

We examine changes in mass vectors as a function of
source count and compute core count. The system’s workflow
is illustrated in Figure 2 using a simple handwriting letter
classification task. Each source contains an array of template
images corresponding to alphanumeric characters. As illus-
trated in Figure 2, all templates across all sources maintain
the same order (described in Section III-A). The parallel Map
operation produces an mass vector using the unknown input
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Fig. 2. Architecture of the proposed framework on a handwriting identification task using template matching. D refers to the number of sources present in the
system, N refers to the total number of templates each source provides. The Map operation correlates the input image with the ith template image of the dth
source (T ;), producing a vector of masses. Pairs of masses are provided to each TreeReduce operation, which fuses the two vectors together. In particular, the
fused vector has an increased mass for templates that already had higher masses in the input vector. unc represents the uncertainty.

image and a particular source. The TreeReduce operation then
applies DCR in parallel, fusing pairs of mass vectors together
and outputting a single updated mass vector. The TreeReduce
operation is repeated log(D) times until a single fused mass
vector remains.

B. MapReduce Implementation

Our framework takes advantage of popular open source
tools for massively parallel computation. We use Apache
Hadoop [1], Hadoop FS [33], and Apache YARN [37] for
cluster and computational resource management. These tools
apply our framework to any general Hadoop cluster with
minimal human effort. In addition, we take advantage of
MapReduce4C (MR4C [14]), a C wrapper to run jobs on
a Hadoop cluster. MR4C allows executing an arbitrary C
function in a Hadoop task managed by YARN. Our overall
framework enables the use of all the cores in a cluster
to efficiently execute our implementation while reaping the
benefits of temporal parallelism.

The first part of the implementation described in Algo-
rithm 1 serves as the Map function. The (key, value) pair
identifies the source and the array of mass values, respectively.
In MRA4C, the key would be the name of a source file and the
value would be its contents. The output of Map is then a single
(key, value) pair: the key is unchanged, but the output value
is a vector of DS masses produced by the data values from that
source and the unknown input sample. Because the inputs are
independent, many instances of the Map function can execute
simultaneously.

The second part of the implementation described in Algo-
rithm 2 serves as the Reduce function. This function takes two
(key, value) pairs and applies Dempster’s Combination Rule
(@), producing a single (key, value) pair. To further leverage
the associative and commutative properties of DCR, a logarith-
mic TreeReduce is implemented rather than a traditional serial
reduction. Ultimately, this improves the total Reduce latency
from D to log(D).

C. Pthreads Implementation

To demonstrate the generality of our framework, we also
implement it using pthreads as the underlying parallelism
framework. While pthreads cannot directly apply to a dis-
tributed environment, it can be used in rapid prototyping
situations to take advantage of all of the cores on a machine.

In a parent process, we load the input sample and the
sources into global memory (e.g., via mmap ()). We then
create a new thread for each source (and thus each instance of
the Map function). Each thread j can independently read from
global memory to compute its own mass vector (relating source
J to the input sample). We synchronize all threads with a bar-
rier before, we hierarchically execute our TreeReduce function
in multiple threads to fuse the mass vectors produced in the
Map step. Each level of the TreeReduce hierarchy is similarly
synchronized with a barrier before continuing. While threading
is limited to shared memory machines, our approach can take
advantage of thread pools (e.g., with BoostThreads [9]) in
situations where the source count is extremely large.”

2Linux often soft-caps thread count to about 32,000; having more sources
would be inappropriate for pthreads alone.



V. EVALUATION AND DISCUSSION

In this section, we validate our claims that our distributed
MapReduce implementation of template matching using DS
theory. This Framework combines the handling of uncertainty
using DS Theory with the efficiency and scalability of MapRe-
duce. We seek to answer the following research questions:

RQ1 Does our framework scale as the number of
sources increases and as the number of compu-
tational resources increases?

RQ2  Is our framework robust against noise that cor-
rupts the data sources?

RQ3 Does increasing the number of sources reduce the

amount of ambiguity and uncertainty in our final
winning template?

For evaluation purposes, we consider the task of two-
dimensional letter classification. In practice, there are many
other domain-specific approaches for handwriting recognition
(e.g., [8], [11], [19]). We consider this application because it
simplifies the generation of additional sources as well as the
introduction and interpretation of noise and uncertainty in a
way we can control. However, our approach can be applied to
other domains as well. So long as the input dataset meets the
structure criteria described in Section III-A, DS mass values
can be computed for propositions related to that dataset.

We consider two datasets: the Chars74K [35] dataset of
computer fonts, and the MNIST [20] handwriting dataset.
Chars74K contains images of numbers and characters us-
ing about 1000 different fonts—we consider each font to
be a different source of information for our purposes. The
MNIST handwriting dataset contains handwritten numbers
from unique writers—here, each writer is a different source.
Varying amounts of salt-and-pepper noise [7] were added to
the data source images. The noise is characterized by a noise
density (). An € of 0.5 equates to 50% of pixels randomly
assigned either black or white. Figure 5 illustrates how this
noise affects the template images. The prediction accuracy
is measured as the fraction of trials that yielded a correct
prediction over the number of total trials. A correct prediction
is a True Positive (TP); an incorrect one is a False Positive
(FP).

We discuss and present experimental results that address
each of the research questions below. In each experiment, we
also verified the results of our parallel or distributed algorithm
against a previous independent serial implementation: in each
trial our algorithm and the reference provided the same answer.

A. RQI — Scalability

We address the scalability question by measuring total
latency as a function of both the number of sources and the
number of compute nodes available. We vary the number of
sources D used when executing our framework, noting the
starting and completion times to determine the total amount of
time elapsed (with n = 50 repeated trials per measurement).
We also repeat this experiment by varying the number of
compute cores available to the framework. We normalize
the results according to the longest time taken during serial
operation.
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Fig. 3. Total execution latency as a function of source count. The line slopes
indicate linear scalability with additional computational resources.

Figure 3 shows the results of this timing experiment for our
pthreads implementation. The Hadoop results are similar. Each
line corresponds to a different number of cores available to the
framework during execution. The lower the slope of the line,
the faster it completes the matching task. We note a linear
relationship in the number of sources—the total latency is
directly related to the number of sources, indicating scalability.
Additionally, by taking ratios of the slopes of the lines, we
can compute the amount of speedup obtained by doubling
the number of available cores. We find that doubling the
number of available cores approximately yields a 1.9x speedup.
We suspect that switching, staging, and networking overhead
contribute to performance degradation at a high number of
sources.

B. RQ2 — Robustness against noise

We hypothesize that having many sources, even in the
presence of noise, benefits our DS framework by allowing
refinement of the uncertainty and DS masses. We executed
our framework, over n = 1000 trials, with varying numbers of
sources and measured the accuracy of our predictions. Once the
trail is complete, we select highest mass to predict in the input
image. Figure 6 shows that when we consider a high number of
sources (the top two lines), increasing noise does not degrade
the accuracy of our framework. These results indicate that our
highly-parallel MapReduce framework allows us to leverage
a high number of sources to make robust decisions in the
presence of large, corrupted information sources.

C. RQ3 — Reducing uncertainty with more sources

One key advantage of DS Theory for matching is that
each classification answer comes equipped with an uncertainty
value for your decision. Scientists can make use of quantified
uncertainty to help interpret results: high belief and lower
uncertainty in a prediction is valued. We demonstrate that
increasing the number of sources results in higher belief and
lower uncertainty for predictions from our framework, even in
the presence of noise.

Fig. 5. A template image shown with varying noise densities ¢ which
represents the fraction of pixels that are impacted by noise.
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Fig. 4. Belief vs. number of sources at different noise densities. 4(a) shows results for the Chars74K dataset, while 4(b) shows the MNIST results.
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Fig. 6. Prediction accuracy as a function of noise density and source count.
The horizontal lines at the top demonstrate that many sources allow for high
accuracy even in the presence of noisy data.
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Fig. 7. Uncertainty vs. number of sources at different noise densities in the
Chars74K dataset.

Figure 4(a) shows belief as a function of sources and
noise in the Chars74K dataset, broken down by FP vs. TP
predictions. Consider the lines corresponding to 0% noise: at
200 sources, correct answers come with a belief of about 0.25
while incorrect answers come with a belief of about 0.15: a
small margin. By contrast, at 1000 sources, the margin has
spread to about 0.8 vs. 0.4. The trends for data with reasonable
amounts of noise (e.g., 30%) are similar. Figure 4(b) shows the
same results using the MNIST handwriting dataset. Again, at
1000 sources, the margin for noiseless predictions 0.9 vs. 0.45.

Additionally, the data suggest that adding many sources in
the presence of noise helps the system gain more confidence in

its predictions. In other words, our MapReduce framework is
capable of lowering uncertainty in the presence of noisy data
by leveraging high amounts of noisy sources. In particular,
Figure 7 shows the uncertainty for correct and incorrect
predictions at varying levels of noise. These results show
how increasing the number of sources leads to a more robust
prediction.

We note that our current framework considers only single-
ton cases—that is, single hypotheses. Restricting attention to
singletons admits a lower complexity class for the TreeReduce
function (O(n?)a for Algorithm 2). Addressing non-singletons
increases the complexity of the TreeReduce function as it
requires computing matrix cross-products (O(n?)). We leave
the non-singleton case for future work, but note that it creates
further potential for exploiting the massive parallelism we
achieved to reduce uncertainty and resolve ambiguities in a
practical runtime with a large number of sources.

VI. CONCLUSION

In this paper, we present a novel MapReduce framework for
improving uncertainty in DS template matching. By taking ad-
vantage of the associativity and commutativity of Dempster’s
Combination Rule, we construct a highly scalable framework
for fusing evidence in the form of DS mass vectors from many
sources of information.

We implement two prototypes of our framework using
open source software—one using Hadoop, and the other using
pthreads. The pthreads implementation allows rapid develop-
ment and debugging cycle where testing is required before full-
scale deployment. The Hadoop implementation allows rapid
deployment since there is very little effort required to deploy
a MapReduce algorithm on a Hadoop cluster once written.

We demonstrate the scalability of our system by comparing
total execution latency as a function of both source count and
the computational elements available. Our system yields about
a 1.9x speedup every time the number of cores is doubled.
This linear scalability allows practitioners to consider more
sources,yielding benefits for accuracy, belief, and uncertainty
in the face of noise. We show that providing many sources to
our framework allows it to maintain a high level of accuracy
even when source data is affected by noise, while maintaining



practicality. Finally, we show that our system improves belief
and uncertainty when considering many sources.
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