
Evolutionary Computation for Improving Malware Analysis

Kevin Leach
University of Michigan

kjleach@umich.edu

Ryan Dougherty
Arizona State University

redoughe@asu.edu

Chad Spensky
UC Santa Barbara

cspensky@cs.ucsb.edu

Stephanie Forrest
Arizona State University

stephanie.forrest@asu.edu

Westley Weimer
University of Michigan

weimerw@umich.edu

ABSTRACT

Research in genetic improvement (GI) conventionally focuses on the

improvement of software, including the automated repair of bugs

and vulnerabilities as well as the refinement of software to increase

performance. Eliminating or reducing vulnerabilities using GI has

improved the security of benign software, but the growing volume

and complexity of malicious software necessitates better analysis

techniques that may benefit from a GI-based approach. Rather than

focus on the use of GI to improve individual software artifacts, we

believe GI can be applied to the tools used to analyze malicious code

for its behavior. First, malware analysis is critical to understanding

the damage caused by an attacker, which GI-based bug repair does

not currently address. Second, modern malware samples leverage

complex vectors for infection that cannot currently be addressed by

GI. In this paper, we discuss an application of genetic improvement

to the realm of automated malware analysis through the use of

variable-strength covering arrays.

1 INTRODUCTION

Malicious software (malware) has proliferated in the past few years,

significantly eroding user and corporate privacy and trust in com-

puter systems [6, 11]. A combination of manual and automated anal-

yses are required for understanding new malware samples [4, 12].

Unfortunately, a growing number of new malware samples em-

ploy evasive or stealthy techniques to avoid or subvert automated

analysis [2, 9, 10]. These stealthy samples operate by detecting

features or artifacts of the analysis environment in which it ex-

ecutes (e.g., virtual machines may expose virtual devices named

“VMWare Hard Disk” or may not fully implement all CPU instruc-

tions [13, Table V]; malware may check for mouse movement or

keystrokes during execution [9]). When a sample detects an artifact,

the malware can decide not to execute, thus hiding its behavior

from a well-intentioned analyst or automated analysis tool. These

stealthy samples require additional steps, effort, and computational

resources to mitigate the presence of artifacts so that stealthy sam-

ples cannot determine whether they are under analysis. As millions

of new samples are created each year [6], and manual analysis effort

is burdensome, higher-throughput automated analysis solutions

are needed. Given the cost (e.g., runtime overhead, implementation

time, etc.) associated with artifact mitigation, there is an opportu-

nity to improve analysis efficiency by determining which artifacts

GI’19, May 26, 2019, Montreal, Canada

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Covering array GI algorithm

Cost model Artifacts

Server Cluster

Stealthy
Malware

1©

2©

3©

Figure 1: Proposed workflow for automated malware analy-

sis. Given a cluster of analysis servers, a corpus of stealthy

malware, a cost model of analysis configurations, and a set

of artifacts used to achieve stealthy behavior, we propose

using genetic improvement to find a low-cost (e.g., high ef-

ficiency) set of configurations for each analysis server that

covers all artifacts used by malware in the corpus.

should be mitigated in which combinations to maximize success

against a large corpus of such stealthy malware.

We propose extending state-of-the-art automated malware anal-

ysis techniques with a consideration of the cost and coverage of

artifact mitigation strategies. With the increasing prevalence of

stealthy malware and corresponding anti-stealth techniques, we

must considerwhich set of artifacts should be mitigated during anal-

ysis. Deciding which mitigation strategy to take during analysis

is not simple as many artifacts exist [9, 13] and are used to evade

detection [10]. While all samples could be defeated with a high-cost

analysis technique, we observe that each sample could individually

be defeated by at least one low-cost (and efficient) analysis tool: we

seek to identify a small, efficient set of covering mitigation strate-

gies. Alternatively, we can control which artifacts to expose to each

sample, and accept that we risk analysis failure for some samples

in exchange for gaining overall analysis throughput. Our insight is

that this problem formulation is related to a theoretical application

of covering array algorithms from the domain of software testing,

where each row in the array represents a test, and each column

represents a software component [5]. By constructing arrays that

denote which artifacts are mitigated as well as a model of the cost

associated with each mitigation, we can use GI to explore the trade-

off space between cost and mitigation coverage. This approach can

allow us to improve the efficiency of automated malware analysis

while retaining analysis fidelity.

18

2019 IEEE/ACM International Workshop on Genetic Improvement (GI)

978-1-7281-2268-7/19/$31.00 ©2019 IEEE
DOI 10.1109/GI.2019.00013

Table 1: Example of configurations of a 2-server analysis

cluster with 2 artifacts and associated (approximate) costs.

Config Server Screen Debugger Cost

1 1 � � 0

2 � � 0

2 1 � � 2

2 � � 2

3 1 � � 1

2 � � 1

2 MOTIVATING EXAMPLE

We seek to lower the cost of the automated analysis of stealthy mal-

ware samples by using GI to explore automated malware analysis

systems configurations. Consider a scenario in which an enterprise

seeks to analyze a large corpus of stealthy malware samples with

a fixed set of analysis servers. Each server can be configured to

automatically analyze samples using tools with various levels of per-

formance overhead (cost) and mitigated artifacts (coverage). Each

server’s configuration can be represented using an array of binary

values that correspond to which artifact is mitigated by which tool.

Table 1 illustrates an example of our proposed approach in which

we configure a 2-server automated analysis cluster over two arti-

facts, screen resolution and debugger presence. First, a stealthy mal-

ware sample could detect an analysis environment that is ‘headless’

by measuring screen resolution or monitor connectivity. Second, a

sample could detect the presence of an attached debugger seeking

to trace malware execution. Both artifacts can be mitigated, but for

a cost. In the Table, we show three potential configurations of two

servers. First (row 1), we could mitigate neither artifact on either

server, incurring the lowest cost analysis (i.e., 0), but would not

cover samples using those two artifacts (they would detect the anal-

ysis, avoid malicious behavior, and appear benign). Second (row 2),

we could configure both servers to mitigate both artifacts. Doing

so would cover all samples, but also incurs high cost. Finally (row

3), we could find a balanced configuration in which each server

mitigates one artifact. Collectively, both servers incur lower cost

while retaining coverage of both artifacts.We propose to use genetic

improvement algorithms to explore this tradeoff space. Figure 1

illustrates a proposed workflow incorporating this concept.

3 VARIABLE-STRENGTH COVERING
ARRAYS

A covering array (CA) is an array of integers where each column is

a factor of the system being tested, and the rows represent individ-

ual tests performed on the system [3]. Each CA has an associated

strength, which is the maximum size of any interaction of compo-

nents being tested. For example, if we want to test any combination

of three factors possibly interacting, then the strength is also three.

The CA guarantees that no matter which set of factors are tested,

then all possible ways of setting values to those factors are tested in

some row. However, suppose that this is not always needed, in that

not all combinations of factors need to be tested, or that different

combinations of different sizes need to be tested. For example, if

we have five factors a,b, c,d, e , we may only need to guarantee cov-
erage for {a,b}, {b, c,d }, {a,d, e}, {b, c, e}, instead of all three-way

interactions as would be in the general model. This is known as

a variable-strength CA, written VSCA [7]. In contrast to the tradi-

tional use of VSCAs for software testing, we instead construct a

VSCA to mitigate artifacts to increase the efficiency of automated

stealthy malware analysis. Each artifact corresponds to a column

of the VSCA, and each entry in the VSCA is a 0 or 1, to indicate

whether or not the artifact is to be mitigated. The VSCA guarantees

that for any choice of artifacts according to the model, then some

row mitigates against all (or a subset) of them. We have a set of

mitigation strategies, in which each has an associated coverage. For

each row in the VSCA, we seek to find a minimum-cost choice of

mitigation strategies such that the row is covered by the strategy.

We propose to use genetic algorithms both for generation of the

VSCA and for finding the minimum-cost set of mitigation strate-

gies. Genetic algorithms have been used for CAs [8], as well as for

weighted set cover [1], but (1) they have not been used for VSCAs,

and (2) since some mitigation strategies cannot (or should not) be

paired together, we desire to find a conflict-free minimum-cost set

cover. The cost here is thus a more general function that depends

on (1) the individual costs of the tools themselves, (2) the number

of tools chosen, and (3) which tools were chosen. Given such a

function, we propose the use of genetic algorithms to search the

space of mitigation strategies for a low-cost solution.

4 CONCLUSION

Stealthy malware is a growing concern. Lightweight automated

malware analysis techniques must be balanced with heavier-duty

analysis tools to fully analyze and understand larger corpora of

stealthy malware. We suggest a collaboration between the GI and

security communities to investigate approaches to explore tradeoffs

between analysis cost and stealthy malware coverage.

REFERENCES
[1] J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem.

European journal of operational research, 94(2):392–404, 1996.
[2] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario. Towards an under-

standing of anti-virtualization and anti-debugging behavior in modern malware.
In Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (DSN ’08), 2008.

[3] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche
(Catania), 58(121-167):0–10, 2004.

[4] D. Farmer and W. Venema. Forensic Discover. Addison-Wesley, 2005.
[5] A. Hartman and L. Raskin. Problems and algorithms for covering arrays. Discrete

Mathematics, 284:149–156, 2004.
[6] Kaspersky Lab. Kaspersky Security Bulletin 2017. https://media.kaspersky.com/

jp/pdf/pr/Kaspersky_KSB2017_Statistics-PR-1045.pdf.
[7] S. Raaphorst, L. Moura, and B. Stevens. Variable strength covering arrays. Journal

of Combinatorial Designs, page to appear, 2018.
[8] S. Sabharwal, P. Bansal, and N. Mittal. Construction of t-way covering arrays

using genetic algorithm. International Journal of System Assurance Engineering
and Management, 8(2):264–274, 2017.

[9] C. Spensky, H. Hu, and K. Leach. LO-PHI: Low observable physical host instru-
mentation. In Networks and Distributed Systems Security Symposium 2016 (NDSS
2016), San Diego, CA, February 2016.

[10] S. Stefnisson. Evasive malware now a commodity. https://www.securityweek.
com/evasive-malware-now-commodity, 2018.

[11] Symantec. Internet security threat report. https://www.symantec.com/content/
dam/symantec/docs/reports/istr-22-2017-en.pdf, 2017.

[12] L. Zelster. Mastering 4 stages of malware analysis. https://zeltser.com/
mastering-4-stages-of-malware-analysis/, February 2015.

[13] F. Zhang, K. Leach, H. Wang, A. Stavrou, and K. Sun. Using Hardware Features
to Increase Debugging Transparency. In Proceedings of the 36th IEEE Symposium
on Security and Privacy, 2015.

19

