A Human Study of Fault Localization Accuracy

Zachary P. Fry
University of Virginia
Email: zpf5a@virginia.edu

Abstract—Localizing and repairing defects are critical software
engineering activities. Not all programs and not all bugs are
equally easy to debug, however. We present formal models,
backed by a human study involving 65 participants (from both
academia and industry) and 1830 total judgments, relating
various software- and defect-related features to human accuracy
at locating errors. Our study involves example code from Java
textbooks, helping us to control for both readability and com-
plexity. We find that certain types of defects are much harder
for humans to locate accurately. For example, humans are over
five times more accurate at locating ‘‘extra statements” than
“missing statements’ based on experimental observation. We also
find that, independent of the type of defect involved, certain
code contexts are harder to debug than others. For example,
humans are over three times more accurate at finding defects
in code that provides an array abstraction than in code that
provides a tree abstraction. We identify and analyze code features
that are predictive of human fault localization accuracy. Finally,
we present a formal model of debugging accuracy based on
those source code features that have a statistically significant
correlation with human performance.

I. INTRODUCTION

Maintenance typically dominates the life cycle costs of
modern software projects by as much as 70% [4]. A key
task in software maintenance is the process of reading and
understanding code for the purposes of debugging or evolving
it [22], [23]. Software is read and corrected more than it is
freshly written, but some factors that influence the difficulty
of code inspection tasks remain poorly understood.

Broadly speaking, fault localization is the task of determin-
ing if a program or code fragment contains a defect,! and
if so, locating exactly where that defect resides. Typically,
after a defect has been reported, triaged, and assigned to a
developer, that developer will attempt to localize the defect
and then repair it. A number of automated approaches have
been proposed for fault localization — for generic defects [14],
bugs found by tools [2], and harmful program evolutions [29]
— but much fault localization in practice remains manual.

Bugs are plentiful, and the number of outstanding software
defects typically exceeds the resources available to address
them [1]. Bug repair is time-consuming, with half of all
fixed defects in Mozilla requiring over 29 days from start
to finish [12]. Since fault localization is a key component
of debugging, we investigate which features of defects and
programs correlate with human performance at this task.

IWe use the terms bug, defect, and fault interchangeably in this paper to
describe semantic errors in programs.

Westley Weimer
University of Virginia
Email: weimer@virginia.edu

We hypothesize that four broad classes of features can help
to explain human performance at fault localization tasks. First,
the form of the bug itself is directly relevant: defects related
to uninitialized variables may be hard to locate, for example.
However, context features related to the software surrounding
the bug, independent of the type of the bug, are also important.
Our second class of features relates to syntax and surface
presentation. For example, comments may make defects easier
to locate. A third class of features relates to control flow.
For example, three sequential loops may be easier to debug
than three nested loops. Finally, our fourth class of features
relates to program abstraction and other properties that may
be difficult to discover automatically. For example, the use of
trees instead of arrays may hinder human debugging efforts.
This inclusive set of features is in contrast to previous work,
which tends to focus on one sort of context at the expense of
others (e.g., complexity metrics often use only control flow
information, readability metrics use surface features, etc.).

To test this hypothesis, we conducted a human study of 65
participants. The base programs used in the study were taken
from five popular Java textbooks to control for general code
quality and readability. Faults were manually injected into the
Java code following a frequency distribution obtained from
actual bug reports and fixes in the Mozilla project.

A firmer understanding of the manual fault localization
process could help inform software design for maintainability,
guide code reviews to difficult-to-debug spots, focus code
understanding tools on areas where humans are inaccurate,
and potentially influence training and pedagogy. The four main
contributions of this paper are:

e A human study of 65 participants on a concrete fault
localization task. To the best of our knowledge, this is the
first published human study of experienced programmer
performance at source-level fault localization.

¢ A quantitative analysis relating the type of defect to
human fault localization accuracy.

o A quantitative and qualitative analysis relating surface,
control flow, and abstraction features to human fault
localization accuracy.

o A formal model of fault localization difficulty that cor-
relates with human accuracy in a statistically significant
manner. Our model correlates at least four times more
strongly than do common baselines (e.g., readability,
Cyclomatic complexity, textbook positioning).

26th IEEE International Conference on Software Maintenance in Timisoara, Romania

978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george

/*%x Move a single disk from src to dest. %/
2 public static void hanoil (int src, int dest) {
3 System.out.println(src + " => " + dest);

/** Move two disks from src to dest,

6 making use of a spare peg. */
/' public static void hanoi2 (int src,
8 int dest, int spare) {

9 hanoil (src, dest);
10 System.out.println(src + " => " + dest);
11 hanoil (spare, dest);

2}

13 /%% Move three disks from src to dest,

14 making use of a spare peg. */
15 public static void hanoi3 (int src,
16 int dest, int spare) {

hanoi2 (src, spare, dest);
18 System.out.println(src + " => " + dest);
19 hanoi2 (spare, dest, src);

20}

Fig. 1. Towers of Hanoi explanation code (Drake [9]) with seeded fault. The
bug is that dest on line 9 should be spare. Only 33% of participants were
able to locate the line containing the bug.

II. MOTIVATING EXAMPLE

The difficulty of localizing a fault may depend on many
factors: the type of the fault, surface features, control-flow fea-
tures, and deeper abstract features of the surrounding code. In
this section we motivate this reasoning with two conceptually-
similar algorithms implemented in different ways. Figure 1 and
Figure 2 present two syntactically-different but semantically-
similar explanations of the ‘“Towers of Hanoi” problem taken
from Java textbooks. Each listing contains a single bug.

The two excerpts complete the same task. For example,
hanoil in Figure 1 loosely corresponds to moveOneDisk in
Figure 2 (i.e., printing out a move), while hanoi2 and hanoi3
in Figure 1 loosely correspond to moveTower in Figure 2 (i.e.,
moving some number of disks from one place to another).

In this example, the faults injected into the programs were
slightly different. In Figure 1, line 9 incorrectly references
dest instead of spare which would be semantically correct.
In Figure 2, line 20 should read moveOneDisk (start, end): the
entire method call, including all of its arguments, is incorrect.

The two listings also differ in a number of contextual
ways. At the surface level, Figure 1 is shorter, contains fewer
comments, and has shorter identifier names. At the control-
flow level, Figure 2 is more complex, containing both a
conditional branch as well as a recursive call but also is better
documented and contains descriptive identifiers. In terms of
design and abstraction, Figure 2 presents a general solution
for n > 1 disks while Figure 1 only handles 1 < n < 3 by
explicit enumeration.

This paper presents a study of human fault localization
accuracy. The details are elaborated in subsequent sections,
but at a high level, only 33% of participants were able to
indicate that the bug in Figure 1 is on line 10, while 53% were
able to indicate that the bug in Figure 2 is on line 22. While
the difference is significant, its causes and correlates may not
be well understood. The topical similarity of the examples

/**********'k********************************
Performs the initial call to moveTower

3 to solve the puzzle. Moves the disks

4 from tower 1 to tower 3 using tower 2.

o) **/

6 public void solve () {

moveTower (totalDisks, 1, 3, 2);
8 '}
10 /-k************-k*****************************
11 Moves the specified number of disks
12 from one tower to another by moving a
13 subtower of n-1 disks out of the way,
14 moving one disk, then moving the
15 subtower back. Base case of 1 disk.

16 **/
17 private void moveTower (int numDisks,
18 int start, int end, int temp) {
19 if (numDisks == 1)
20 moveTower (numDisks-1,
else {
moveTower (numDisks-1, start, temp,
moveOneDisk (start, end);
moveTower (numDisks-1, temp,
}
}
/***
Prints instructions to move one disk
from the specified start tower to the
specified end tower.
***/
private void moveOneDisk (int start, int end) {
System.out.println ("Move one disk from "
+ start + " to " + end);

temp, end, start);

A}
S e

end) ;

NN
NS

end, start);

DN N
© 0 ~J oUW

w N

) W
s W N O

oW W

N}
——

Fig. 2. Towers of Hanoi explanation code (Lewis and Chase [19]) with seeded
fault. The bug is that line 20 should read moveOneDisk (start, end).
Over 53% of participants were able to locate the line containing the bug.

suggests that the type of the defect and features related to
the code context contributed to the disparity in debugging
accuracy. We thus desire to study the interplay of such features
more formally.

III. A MODEL OF FAULT LOCALIZATION ACCURACY

In this paper we define fault localization to be the task of
indicating the source code line that contains the defect (or
correctly indicating “none” if no defect exists) given a source
code file and a range of lines in which at most one defect is
present. A single fault localization task might be to determine
where the fault exists in lines 400-500 of Queue. java (or to
determine that no fault exists in lines 400-500). The line range
allows the task to incorporate external debugging information.
For example, coverage information or test cases may indicate
that the bug could only be within the insertElement () method
on lines 400-500 of Queue.java. If Y separate human fault
localization judgments are made and X of them give the
correct answer (i.e., the exact line if a bug is present, or “none”
otherwise), then the corresponding fault localization accuracy
is X/Y. Note that in this definition of accuracy, the fault
localization must be exact (i.e., cannot be off by even one
line). One minor exception is related to faults of omission: if
the bug is that an entire line has been removed between lines
L and L+1, then either L or L+1 is deemed a correct answer.

Not all faults are equally easy to localize. Since software
maintenance, fault localization and debugging remain critical
tasks, an understanding of the factors that relate to the success
of manual fault localization would be of general use in
software engineering (e.g., to help design for maintainability,
guide code reviews, focus understanding tools, and direct
training). We thus desire an accurate, formal model that relates
basic, understandable features of defects and programs to
human programmer accuracy at locating said defects.

We believe that understanding code is a critical aspect of
localizing faults in it: ultimately a defect is an instance where a
program’s implementation does not adhere to its specification.
Localizing such a disagreement requires understanding both
the implementation and the specification. The specification is
not always made explicit by the code: in practice, desired
behavior is often understood in terms of implicit universal
specifications (i.e., do not crash or loop forever), common
background knowledge (i.e., what does it mean to be a
“balanced tree”?), and comments and identifier names. The
implementation is the code itself, and in a language such as
Java its behavior is understood in terms of imperative state
manipulations and object-oriented method invocations and
class structures. We hypothesize that four classes of features
are relevant to programmer understanding and thus to fault
localization: the type of defect, surface and syntactic code
features, control-flow code features, and features related to
abstraction and deeper reasoning.

We propose to model fault localization accuracy using a
combination of these features. In particular, we aim to model
the correlation between defect type and accuracy, as well as
to separately model the correlation between all other types of
code-related features and accuracy. The former model helps to
answer the research question:

(Q1) Ignoring code context, which types of defects
are harder for humans to localize?

while the later model helps to answer the research question:

(Q2) Ignoring the type of fault, which pieces of code
are harder for humans to localize faults in and why?

A. Model Features

We now describe the four feature categories in detail,
enumerating the particular features they contain.

Defect category. While the exact type of defect typically
cannot be known in advance and is thus not suitable for a
predictive model, we are still interested in the correlation
between defect types and programmer accuracy. For example,
while Knight and Ammann [16] have shown that “it is possible
to seed errors using only simple syntactic techniques that are
arbitrarily difficult to locate” using test suites, it is generally
unknown which categories of defects are more difficult for
humans to localize. For the purposes of this paper we have
adapted the fault taxonomy of the above authors, which
loosely classifies certain defects in terms of surface features.
We have expanded this classification to include all faults
we observed in a real system in keeping with the original

granularity. Defect categories include notions such as “missing
conditional clause”, “extraneous statement”, “wrong parameter
passed”, and over a dozen others. We claim no new results
in fault classification, instead empirically correlating existing

understanding of defect categories with localization accuracy.

Surface and Syntax. We hypothesize that surface features,
such as identifier lengths, and syntactic features, such as counts
of variable declarations and methods calls, influence human
ability to understand a program and thus to locate defects in
it. Intuitively, this category of features includes elements most
naturally determined with a lexer, parser or tool such as grep.
Features measured include raw counts, averages, minima and
maxima of elements such as identifiers, comments, whitespace,
loops, if statements, declarations, mathematical operators, as-
signments, and method calls. For example, frequent comments
are predicted to make fault localization easier.

Control Flow. We hypothesize that control-flow features,
such as looping or branching structures, influence human
ability to understand whether a program is correct along all of
its paths. Previous work has shown that programmers are more
likely to make mistakes in the presence of multiple control-
flow paths, especially near “hidden” control-flow paths related
to exceptions [27]. Intuitively, this includes elements most
naturally determined with a control flow graph or program
dependence graph. Features measured include the number of
nodes and cycles in the control flow graph, the in- and out-
degree of nodes, the maximal nesting depth, the presence
of recursion, the number of leaf nodes, and the number of
calls to methods in the same class. For example, the average
number of CFG out edges relates code to its inherent degree
of conditional divergence, which may make it harder to debug.

Abstraction. We hypothesize that design choices related
to algorithm implementation and abstraction influence human
ability to manage implementation complexity and understand
what a program actually does, and thus whether or not it
has a bug. Features in this category are typically not easily
measured automatically; they often rely on high-level human
classifications. For example, consider code to maintain a sorted
sequence of records using an array data structure, and similar
code that uses a B+ tree. While the tree data structure may be
more efficient overall, its associated code may involve more
complex invariants and its implicit correctness argument is
thus more complicated. Features in this category include the
presence of specific data structures (e.g., hashmaps, linked
lists, arrays, queues, etc.) and specific algorithms (e.g., list
sorting, list traversal, tree merging, etc.).

B. Feature Weights and Formal Model

As the motivating example in Section II suggests, it is not
clear a priori whether a feature is a strong or weak predictor
of accuracy, and whether a feature is a positive or negative pre-
dictor of accuracy. We thus empirically learn relative weights
for these features from human fault localization judgments.
In particular, we use linear regression to learn a coefficient

corresponding to each feature. Our final formal model is thus:

predicted_accuracy(f) = ¢o + Z cifi

Where f = fi...f, are the feature values associated with
a fault localization instance and cg...c, are the constants
learned by linear regression. More complicated machine learn-
ing algorithms are available, but our primary goal is ex-
planatory power rather than automated predictive performance,
especially since many of our features cannot be obtained
automatically. Basic regression has the advantages of being
well-understood and of directly admitting analyses such as
ANOVAs, allowing for a clear description of feature power.
The next section describes training and evaluating this model.

IV. EXPERIMENTAL METHODOLOGY

We propose to relate defect categories to human fault
localization accuracy (Research Question Q1) as well as to
create a formal model that explains human fault localization
accuracy in terms of features of the surrounding code (Re-
search Question Q2). Both goals require knowledge of how
humans perform on fault localization tasks. We thus obtained
local IRB approval and conducted a human study (i.e., an
experiment involving human subjects).

The human study was constructed so as to recreate a
software engineering task in a manner close to reality, while
simultaneously scientifically controlling as many variables
as possible. There are four key issues of the experimental
design: the experimental protocol (i.e., the information shown
to participants and the responses gathered), the selection of
the code in which the faults were placed, the selection of the
faults themselves, and the selection of the human participants.
We detail each of those design decisions in turn.

A. Human Study Protocol

Each participant was presented with a random selection of
thirty separate fault localization tasks using a web interface.
In each task the human was shown a Java file with a range
of 20 consecutive lines visually marked off; participants were
told that the file either contained no error or contained exactly
one error within that 20 line window. This setup simulates a
scenario in which triage and other information have limited
possible defect locations to a particular region of the code
(e.g., a particular method) while also controlling the search
space size throughout the study. Participants were asked:

o Is there a bug in the outlined search space? (Yes/No)

o If yes, which line contains the bug? (Number)

« How difficult do you feel this code is to understand and
debug? (1-5 Likert scale)

Notably, the participants were not permitted to run the code
or use any external debugging or search tools as such aids
could account for further experimental bias based on the tools
chosen and respective user familiarity.

B. Code Selection

We chose to take subject code from textbooks indicative
of the first few years of computer science undergraduate
education. Using textbook code rather than commercial or
open source code has a number of experimental benefits. First,
it helps to control for readability: textbook code is presumably
crafted for pedagogical purposes, and all code in a single
textbook presumably adheres to the same style. Second, it
helps to control for complexity: two different implementations
of the same algorithm, such as quicksort, necessarily have the
same inherent complexity and differ only in their presentation.
Third, it helps to control for subject understanding of implicit
specifications: practitioners are likely to be familiar with the
correct operation of heaps, trees, arrays, sorting, and other
textbook topics. Fourth, it helps to control for the presence
of unknown or unintended faults: we require at most one
fault per localization task, and textbook code is less likely to
contain a latent error before we inject one. These textbook
properties are explicit assumptions of this paper. Despite
the potential drawbacks of using textbook code rather than
explicitly commercial code (discussed in Section V-D), we
chose it because the ability to control external quality factors is
of paramount importance in such a human study and textbook
code readily facilitates such standardization.

An initial set of 76 textbooks was selected by searching
publisher websites for Java textbooks in categories matching
“introduction to computer science”, “introduction to program-
ming”, “intermediate or advanced programming”, “data struc-
tures”, “programming languages”, or “algorithms”. Of those,
nineteen were found that claimed to include freely-available
on-line instructor materials for code or labs. Of those nineteen,
five contained code that was pure Java. For example, the
popular Algorithm Design by Kleinberg and Tardos could not
be included because it presents algorithms using a high level
Java-like pseudocode that includes symbols such as < and N
as punctuation. Table I details the final five subject textbooks.

TABLE I
SUBJECT TEXTBOOKS USED IN OUR HUMAN STUDY.

[Author

Carrano, Frank M.
Drake, Peter
Lafore, Robert
Lewis, John;
Chase, Joseph
Savitch, Walter

| Textbook Title and Edition |

Data Structures and Abstractions with Java, 2e [7]
Data Structures and Algorithms in Java, le [9]
Data Structures and Algorithms in Java, 2e [18]
Java Software Structures:

Designing and Using Data Structures, 2e [19]
Absolute Java, 3e [25]

We then selected 45 Java classes from the source code
included with those five textbooks. Thirty classes were ran-
domly selected so as to be evenly distributed with respect to
their normalized point of introduction (i.e., one-fourth were
chosen from the first 25% of their respective textbooks, one-
fourth from the next 25%, etc.). Fifteen classes were selected
that covered similar concepts from multiple textbooks (i.e.,
two different textbook versions of quicksort). In all cases we
attempted to control for length by beginning the search with

files up to 70 lines long and taking the closest match, in
keeping with the distribution, from there. In total we used
45 Java files totaling 3519 lines of code; most of the classes
fall between 50 and 80 lines of code (average of 78).

C. Fault Selection and Seeding

Given Java classes from textbook code, we now focus on
using them to construct fault localization task instances. Recall
that each task consists of a Java class containing at most one
bug, and a 20-line window that contains the bug if it is present.
We proceed by fault seeding: manual injection allows us to
control fault presence and location. The two key questions are
thus which faults to select and where to inject them.

1) Fault Selection: Previous work has inspected both the
classification of faults for the seeding purposes and the gen-
eralizability of seeded faults to actual defects (e.g., [11], [16],
[28]). Due to the small scale of the code used for this study, we
adapt this previous work to ensure not only the feasibility of a
fine-grained analysis but also that we are following a realistic
distribution of fault types and frequencies.

Faults can be logically classified using characteristics in-
cluding size, type, severity, and location. We vary the types of
the faults included in our study specifically in an attempt to
identify which errors are harder to find. For design simplicity
and to allow for reasonable ease of task completion, we restrict
attention to bugs that can be traced to a single line.

Existing fault taxonomies typically provide defect categories
but not defect frequencies. To obtain a frequency basis, we
manually examined one hundred consecutive bug fixes in
the Mozilla project bug report repository and version control
system, recording the basic classification of each one and its
best fit in an extended Knight and Amman taxonomy [16].
Examples of such classifications include “incorrect conditional
operator”, “incorrect variable used”, and “missing assignment
statement”. This produced relative frequency counts for all
eighteen different types of faults under consideration.

2) Fault Seeding: The fault seeding process was performed
manually based on random numbers. Given a piece of code,
we first randomly selected a type of fault based on the obtained
frequency distribution. In some cases the code did not admit
the given type of fault (e.g., a conditional “or to and” bug
cannot be seeded in code with no “or” operators). In such cases
another fault type was chosen at random from the distribution.
If the fault was applicable to the code, all possible places in
which the fault might be seeded were enumerated. One place
was then chosen at random and the fault was seeded there. To
further control for the length of code participants would have
to examine, we clearly marked a twenty line subspace of each
code excerpt containing the bug. The subspaces were chosen
by randomly choosing a value between 1 and 20 as the position
of the bug within the search space, thus explicitly defining
the boundaries. If at all possible, we attempted to model the
seeded faults on the corresponding actual bugs described in
the Mozilla project bug report repository and version control
system. For instance, when seeding a “wrong conditional” bug,
if the relevant Mozilla bug involved a less-than that should

have been a greater-than, we seeded the fault by replacing a
correct greater-than with a buggy less-than.

Automatic fault seeding and mutation operators are well-
established in practice (e.g., for measuring test suite efficacy),
but were not appropriate for this study. First, automatic fault
seeding approaches may not create faults from of the fault
categories considered in this study. Second, they may not
create faults with the desired frequency distribution. Third,
and importantly for a human study, automatically seeded faults
may not mimic the surrounding coding style. For example,
replacing one statement with another randomly chosen state-
ment might result in contextually or stylistically “glaring” code
that could be easily identified. This last concern is difficult
to formalize, but our direct experience is that automatic fault
seeding often produces code that was clearly not written by a
human, especially in pristine textbook code.

Using this approach, we seeded 35 of the 45 textbook files
with a single defect each. The 35 chosen included the fifteen
classes that showed the same topic in multiple textbooks, as
well as twenty of the thirty classes taken at random. Ten of
the classes were left with no faults to serve as a baseline and
experimental control. To define the twenty line search space
for the no-fault cases we again chose a random line in the
code and randomly positioned the search window around. Each
human was randomly assigned 30 of the 45 instances.

D. Participant Selection

We desire human participants who are relatively indicative
of industrial practice, and thus favor programmers who are
at least as competent as graduating seniors seeking CS jobs.
Notably, “CS100” students are not a good fit for this study,
as they may fail to localize faults for reasons that are not
reflective of industrial practice (i.e., not understanding what
a balanced tree is or otherwise lacking domain knowledge).
We initially recruited over 215 potential human subjects for
the study. All human subjects were required to have at least
some level of self-reported Java programming experience. The
subjects came from two broad groups: 14 undergraduates at
the University of Virginia, and 201 Internet users participating
via Amazon.com’s Mechanical Turk website. A complete run-
through took 103 minutes on average, or about three minutes
per fault localization task.

The Mechanical Turk “crowdsourcing” website allows users
to post jobs anonymously and workers to earn money com-
pleting them. Previous work has successfully employed this
method of gathering human study participants when large and
diverse sets of subjects were needed [15], [26]. While such
websites allow for many potential users, care must be taken
to safeguard participant quality: participants seeking to “game
the system” for money must be removed.

We thus removed a number of would-be participants who
did not meet various criteria. First, all participants who failed
to complete the entire study were removed. Second, all par-
ticipants with an overall accuracy less than that of random
guessing (about 5%) were removed. Third, all participants who
completed the study in under 52 minutes (i.e., under half the

average time) were removed. Ultimately, we collected usable
data from 65 participants attempting to localize bugs in 30
code segments each, a dataset of 1830 human judgments.

TABLE 11
PARTICIPANT SUBSETS AND AVERAGE ACCURACIES. THE COMPLETE
HUMAN STUDY INVOLVED n = 65 PARTICIPANTS.

Subset Average | Number of
Accuracy | Participants

[Al [46.3% | 65
[Accuracy > 40% [552%] 46
Experience > 4 years 51.5% 34
Experience > 4 years 49.9% 51
Experience = 4 years 46.7% 17
Experience < 4 years 33.4% 14
Baseline: Guess Longest Line 6.3% -
Baseline: Guess Randomly <5.0% -

Table II presents the average accuracies of several subsets in
addition to some relevant baselines. The “Experience” measure
is self-reported and includes college years. Given a search
space of 20 lines as described in Section IV, guessing a
random line for each code excerpt yields a baseline of at
most 5% accuracy. A naive approach of guessing the longest
line for each excerpt yields only slightly higher accuracy. The
“Experience = 4 years” row includes students from a 400-
level CS class at the University of Virginia, and represents
competent programmers entering the workforce within a year.

V. EXPERIMENTAL RESULTS

This section details the results of the human study in terms
of a number of statistical analyses and models. We have
identified several subsets of the overall participant pool for
the purpose of making distinctions based on experience and
quality of data. As Table II shows, the average accuracy
between participants with four years of experience and par-
ticipants with less than four years of experience is 40%. We
often restrict attention to those participants with at least 40%
accuracy; it is a natural cutoff that intuitively corresponds to
entry-level industrial expertise. By contrast, the fourth-year
average accuracy of 46.7% actually excludes about half of
the forth-year students. While we present results for several
subsets of the overall participant set, we focus mainly on this
“more accurate” subset in an attempt to generalize the results
to at least entry level industrial programmers and to discount
participants that did not put forth sufficient effort to mimic the
actual fault localization process.

A. Bug Type as Related to Fault Localization

We hypothesize that the type of the seeded fault contributes
to the ease with which a human can find it. Figure 3 presents
an empirical evaluation of fault localization accuracy as a
function of defect type for our human study data. The error
bars represent one standard deviation. For example, when
presented with textbook code seeded with a “wrong type” error
in a 20-line window, humans were able to identify the line
containing the error in only 40% of instances.

P S o .
& R . P e T g o
i il T T Pl o o e
5‘-‘0.\\-&, & 9 oT S & @ @’Fb & %@z ﬁcg& &
o Fe & F & F g r E.
o8 & & Fy S £ S TS

¥ ‘.;s‘z & & 0-3’ & 35}

d}b o FF \@0

x5 & = &

e &

Fig. 3. Human fault localization accuracy as a function of defect type.
Data set reflects 46 participants who achieved over 40% accuracy. Error
bars represent one standard deviation. A higher bar indicates that human
subjects were more accurate at localizing the given type of fault, ignoring
the surrounding code context.

The faults listed in Figure 3 represent our expanded in-
terpretation of Knight and Ammann’s basic taxonomy. Faults
can be characterized as omissions, erroneous inclusion, or
incorrect choice of constant, variable, conditional, or method
call. Additionally, “no error” served as a control.

We also wish to identify the differences between faults
that account for differences in localization accuracy. Figure 3
shows that certain faults were found easily while other faults
were more difficult, if not impossible, to find in our study. The
fault type that was hardest to localize involved the inclusion of
an extra conditional. We found that participants attempting to
find this type of bug failed to do so in all cases, but generally
reported a line within 3 lines of the actual fault site. In one
localization task, such a bug was seeded in an if-statement
that was followed immediately by a variable reassignment and
the increment of a counter. We hypothesize that participants
overlooked the conditional statement and assumed the bug
occurred in the imperative statements that explicitly changed
the program state. Thus it would appear that programmers
are less accurate at debugging strongly imperative code; we
return to this issue formally in Section V-C where a high ratio
of variable assignments to constants is shown to be a strong
predictor of low accuracy. Comparatively, bugs involving
an extraneous statement were found most often. We found
that even the less-experienced, less-accurate participants often
localized bugs of this type.

From these results we conclude that certain types of bugs
are intrinsically easier to localize based on their nature and
recognizability, even across varying levels of programmer
ability and varying code contexts.

B. Modeling Fault Localization Accuracy

Having established a strong relationship between the type of
defect and human fault localization accuracy, we now train and
evaluate a model of human fault localization accuracy using
only contextual features. For this model we include Surface
and Syntax, Control Flow, and Abstraction features, but not

Defect Category information. Each of the 1830 human judg-
ments can potentially serve as a testing or a training instance.
Once trained, a model can be used to predict human fault
localization accuracy for a given piece of code. We use the
Pearson product-moment correlation coefficient (i.e., Pearson’s
r) between the actual and predicted human performance on a
testing set to evaluate a model.

In addition to our full model, we also evaluate our model
when it is restricted to those features which can be obtained
automatically.” In particular, determining the values of Ab-
straction features such as “uses a tree” are the subject of
ongoing research and are not included in an automatic model.
Instead, only features that can be obtained from a lexer, parser,
control flow graph or type checker are included.

We also present three baseline software quality metrics and
evaluate their correlation with human accuracy. The first of
these is the automated software Readbility metric of Buse
and Weimer [6]. That metric, based on a human study of
120 participants, measures human readability independent of
code complexity. Low automated readability has been shown
to correlate with defect density (as reported by automated bug-
finding tools) and with code churn (as reported by version con-
trol systems). A more thorough discussion of this readability
metric is given in Section VI. In our terminology, it uses only
Surface and Syntax features. Intuitively, it should be harder to
localize faults in less readable code.

The second baseline is McCabe’s Cyclomatic complexity
metric [20]. The stated goal of Cyclomatic complexity is to
“provide a quantitative basis for modularization and allow [for
identification of] software modules that will be difficult to test
or maintain.” Identifying code that is difficult to maintain is
central to this paper and thus Cyclomatic complexity makes
an appropriate comparison. We discuss Cyclomatic complexity
in more detail in Section VI. In our terminology, Cyclomatic
complexity uses only Control Flow features. Intuitively, it
should be harder to localize faults in more complex code.

Our final baseline is a direct measure of the textbook pre-
sentation order of the underlying code excerpt, as determined
by the textbook author. In practice, much textbook code takes
the form of “projects” or “integrated running examples” that
span entire chapters. As a result, this value was computed
with chapter-level granularity: a Java class file associated with
chapter seven in a ten chapter textbook is given a value
of 0.7. This metric can be viewed as an admittedly-rough
approximation to our Abstraction features. Intuitively, it should
be harder to localize faults in code from the end of a course.

Figure 4 shows the results. Pearson’s correlation ranges
from 0.0 (no correlation) to 1.0 (maximal correlation). A
typical accepted interpretation is that 0.0 to 0.1 represents no
correlation, 0.1 to 0.3 represents low correlation, 0.3 to 0.5
represents medium correlation, and 0.5 to 1.0 represents large
correlation [8]. As an upper bound, previous work has shown
that 0.5 is “considered to have moderate to strong correlation

2See http://www.cs.virginia.edu/~zpfSa/textFaultLoc/model.html for fur-
ther details on both versions of the model

o
)

>
8 B Our Model(All features)
§ 0.5 2 Our Model (Automatic Features)
<é Readability
-% Cyclomatic complexity
N 0.4 O Textbook Difficulty
3
o
-
= 03
]
©
[T9
£ 0.2
c
2
o 0.1
[7]
5
© | [
0 L L
Accurate Experience>4yrs All Experience=4yrs

Fig. 4. Pearson correlation of human accuracy when debugging and various
software quality metrics. Results are split into different groups of human
participants (see Table II). A result at or below 0.1 indicates no correlation,
a result above 0.3 is medium, and above 0.5 is strong [8].

for a human study” [10, pp.281-282]. Of particular interest
are the “Accurate” and “Experienced” groups, which are
presumed most indicative of industrial practice. For example,
our model’s predictions correlate with the performance of
“Accurate” study participants with » = 0.48: a very high
“medium” correlation (“strong” or “large” requires r > 0.5).

Accuracy in fault localization is the primary variable of
interest in this study. Our model outperforms the baselines
by between 3x and 5x over all relevant subsets of partic-
ipants. While the existing metrics have been proven useful
in specific situations, our results show that they are not
particularly effective at predicting fault localization accuracy
in this concrete software engineering task. Software quality
metrics are ultimately used on production code which will
have to be debugged and maintained, and thus we feel that our
results are particularly compelling. The comparatively strong
performance of our tool suggests that it would be an effective
model if used in commercial or industrial practice to measure
one aspect of the future maintainability of a code base.

It is also notable that when we restricted our model of
software quality to only automatically extractable features,
it still performs significantly better than the other baselines.
This provides some evidence that our model could be readily
adapted into a useful automatic tool.

Figure 5 shows the correlations between human-perceived
difficulty and each metric. One of the commonly stated goals
of software quality metrics such as readability or Cyclomatic
complexity is that of accurately measuring the understand-
ability of code. In our human study we specifically asked
humans to rate how “difficult the given piece of code is to
understand and debug”. While fault localization accuracy is a
concrete measurement of a software engineering maintenance
task, human-perceived difficulty is what many software quality

o
o

B Our Model
Readability

e
n

Cyclomatic Complexity

O Textbook Difficulty

o
>

o
N

Correlation with Human Perceived Difficulty
(=) (=]
= w

Accurate Experience>4yrs All Experience=4yrs

Fig. 5. Correlation of human-perceived difficulty when debugging and
various software quality metrics. Results are split into different groups of
human participants (see Table II). A result at or below 0.1 indicates no
correlation, a result above 0.3 is medium, and above 0.5 is strong [8].

metrics are trying to measure and therefore provides a comple-
mentary comparison. As Figure 5 shows, our model correlates
with human-perceived difficulty and fault localization accuracy
in a similar fashion. Readability, Cyclomatic complexity and
textbook positioning (in particular) all correlate somewhat bet-
ter with perceived difficulty than they do with fault localization
accuracy, but all continue to fall below the 0.3 threshhold. We
do not include an automatic version of our model for perceived
difficulty because we view it as a strictly human judgment that
does not require automated tool support.

To detect and mitigate bias resulting from over-fitting by
testing and training on the same dataset, we performed 10-
fold cross validation [17] for all versions of our model. In
10-fold cross validation, the data is divided randomly into ten
subsets (folds) and the model is repeatedly trained on nine and
tested on the tenth. In this way the model is never tested and
trained on the same data. If the results of cross validation are
significantly different from the results of testing and training
on the same data, it indicates bias due to over-fitting. Our
experiments revealed little to no over-fitting (i.e., 7 = 0.482
without cross validation and r = 0.474 with it).

C. Code Features as Predictors of Localization Accuracy

Existing metrics make specific assumptions about which
code features are relevant to the notion of software quality.
For example, Cyclomatic complexity assumes that only con-
trol flow features matter, while Readability uses only textual
surface features. We perform an analysis of variance on our
formal model of fault localization accuracy to determine the
relative predictive power of features for this task.

Table IIT shows the results. The most powerful feature was
“uses abstraction: array”’, which applies to code that makes use
of an implementation of an array datatype (e.g., Java’s built-in

TABLE III
ANALYSIS OF VARIANCE OF OUR FEATURES WITH RESPECT TO HUMAN
FAULT LOCALIZATION ACCURACY. A HIGH F-VALUE INDICATES A
RELATIVELY PREDICTIVE FEATURE (1.0 MEANS “NOT PREDICTIVE”). THE
P VALUE ROUGHLY INDICATES THE STATISTICAL SIGNIFICANCE OF THAT
FEATURE’S PREDICTIVE POWER (1.E., p < 0.05 IS SIGNIFICANT). THE
FINAL COLUMN INDICATES WHETHER THE CORRELATION OF THE GIVEN
FEATURE IS POSITIVE OR NEGATIVE WITH RESPECT TO ACCURACY.
PREFIXES DENOTE THE CLASSIFICATION OF THE FEATURE: SYNTAX AND
SURFACE (SYN), CONTROL FLOW (CFG), ABSTRACTION (ABS).

[Feature [F Pr(F) Dir |
abs — uses abstraction: array 1309 < 0.001 -
abs — provides abstraction: queue 54.1 < 0.001 +
syn — max complex conditionals 46.5 < 0.001 +
syn — ratio const to var assignments 404 < 0.001 +
syn — avg block nesting level 389 < 0.001 -
abs — provides abstraction: heap 28.3 < 0.001 +
abs — provides abstraction: stack 27.0 < 0.001 +
syn — max global variables 256 < 0.001 +
abs — uses abstraction: linked list 256 < 0.001 -
syn — ratio simple to const cond 206 < 0.001 -
syn — max local varabiles 192 < 0.001 +
syn — ratio primitives to nonprims 10.5 0.001 +
abs — uses list-insert algorithm 10.0 0.002 -
cfg — max CFG out edges per node 10.0 0.002 -
abs — uses abstraction: queue 8.9 0.003 +
syn — max block nesting level 74 0.007 +
syn — max for loops 6.0 0.014 +
cfg — avg CFG in edges per node 5.8 0.016 +
syn — avg code line length 4.6 0.031 +

array type, or the Vector class). While minor uses of arrays
may not be difficult, the heavy use of arrays often correlated
with the implementation of a data structure such as a hash map
or B-tree. By contrast, “provides abstraction: X" is used when
a file implements and otherwise adheres to the interface for the
given datatype or abstraction. For example, code that provides
a priority queue of nodes merits “provides abstraction: queue”.
A number of features merit a detailed investigation or
explanation. Every feature detailing “provided abstraction”
signifies that the code in question is implementing a certain
data structure. Comparatively, “uses abstraction” means that
the code itself is utilizing a certain data structure. For example,
code providing a heap type abstraction might use an array
abstraction for ease of implementation. We also explain the
three additional potentially ambiguous features in detail.

e “max complex conditionals” — the maximum total num-
ber of conditional clauses with at least one method call

e ‘ratio const to var assignments” — the ratio of the
number of assignments made from constant values to
the number of assignments where one variable is being
assigned from another variable

¢ “ratio simple to const cond” — the ratio of the number
of conditional clauses involving variables to the number
of conditional clauses that involve only constant values

All syntax, surface and control flow features were measured
with parser- and lexer-style tools. All abstraction-based fea-
tures were measured from source code or program representa-
tions as objectively as possible. Otherwise-difficult judgments
such as the presence or absence of recursion or the presence
of absence of a heap were straightforward (recall that this is
code for which the corresponding textbook is available).

Supporting our hypothesis that a comprehensive model
would utilize a diverse set of features, we found that the
most predictive features included all three types of features.
More specifically, nine of the top twenty most predictive
features were from the abstract category. Previous metrics,
such as readability and Cyclomatic complexity, do not take
this category into account. This further reinforces the results
presented in Section V-B by showing that previous metrics
overlook crucial code characteristics entirely.

In conclusion, this analysis of variance not only shows that
a diverse, aggregate set of features most accurately models
concrete software quality but that many of the most important
features have not been explored by previous models.

D. Threats to Validity

Although our results are statistically significant and suggest
that we can model software quality more accurately than the
state of the art, they may not generalize to industrial practice.

Given our intuition that fault localization requires program-
mers to understand the code and its specification, there are
a number of threats related to failing to control for code
complexity, code readability, and participant understanding of
the specifications involved. We attempted to mitigate all of
these threats by selecting our baseline contextual code from
textbooks; see Section IV-B for details. While code taken from
textbooks may not be directly comparable to industrial code,
we assert that the examples used in this study illustrate many
of the basic principles of computer science and thus form the
building blocks for large real-life systems.

There are several threats to validity associated with the
manner in which we seeded the faults into the subject code.
Seeding faults manually in code for such a human study
inherently introduces bias based on fault type, location, and
the choice of which programmatic elements to modify. To
mitigate this bias we used a real-life fault type distribution
(based on the Mozilla project), used an extended version of a
well-established fault taxonomy [16], randomly generated line
numbers as potential locations, and changed the closest viable
Java constructs based on the associated fault template.

Another potential threat of the experimental results lies in
the selection of model features. In particular, bias may be
introduced if the features are selected based on the specific
subject code and types of faults used in our study. To cir-
cumvent this potential threat, we developed and permanently
fixed our model’s features independently and strictly prior to
the design and implementation of the human study — and
thus strictly prior to the fault seeding effort. This helps to
eliminate bias from a post hoc cherry-picking of features based
on how the faults were seeded or how the humans performed.
An additional safeguard against over-fitting is the use of cross-
validation, as described in Section V.

A common pitfall of human studies is a “training effect”
wherein the participants do significantly worse at the begin-
ning of the study due to unfamiliarity with the task. This can
potentially invalidate results drawn from the affected data. To
address this concern we measured the overall accuracy for

the first and second halves of all participants’ responses. On
average, participants were 46.8% accurate for the first half of
the code excerpts and 45.6% for the second. This suggests that
our results do not suffer from a training effect (or the converse
“fatigue effect”).

Participant selection can also provide bias in a human study.
Results from an exit survey suggest that this bias does not
affect our code. Besides the computer science undergraduate
students who volunteered, the Mechanical Turk participants
self-reported experience indicate that participants had from 1-
20 years of programming experience, 1-10 years of computer
science academic experience, and 1-20 years of industrial
experience. Additionally, the use of the Mechanical Turk in-
terface inherently randomizes the participant selection process
which further mitigates this particular threat. However, our
strongest guard against such bias is the analysis of subsets of
participants based on independent metrics, such as “all partic-
ipants with > 40% accuracy”. Using such subsets prevents us
from having to trust self-reported experience levels at all. See
Kittur et al. [15] and Snow et al. [26] for an analysis of the
qualities and biases associated with using such participants.

VI. RELATED WORK

Boehm et al. pioneered an initial study of several software
metrics, in essence defining the concept of software quality [5].
Their study can be viewed as a logical precursor for future
work, including ours, in that it laid that framework for the
modern notion of software quality. Our work builds upon it
by taking human actions and insights into account.

Prabhakararao and Ruthruff et al. performed two human
studies to gauge the effectiveness of an interactive fault
localization tool developed for end users with little to no
experience [21], [24]. The goal of their studies was to evaluate
the use of feedback when locating faults and to generally study
the process of fault localization, especially by users with no
expert domain knowledge of the source. By comparison, our
human study also examines the fault localization process but
for the purpose of evaluating software quality metrics. We
are less interested in the specific process and more concerned
with the resulting accuracy and the human intuitions about the
code in question. Additionally, our human study is of a much
broader scope and thus we hope it is more generalizable.

Barkmann et al. have presented preliminary work that
aims to validate and compare several software quality metrics
automatically over many open-source projects [3]. Our work
presents a human study that implicitly evaluates software
quality metrics, such as readability and complexity, based on
data gathered from human fault localization performance and
not static code measurements.

McCabe’s Cyclomatic complexity metric [20] is well known
in the field. The stated goal of Cyclomatic complexity is to
“provide a quantitative basis for modularization and allow [for
identification of] software modules that will be difficult to
test or maintain.” Intuitively, this metric identifies non-linear
code with high levels of control flow graph interconnectivity
as being “more complex”. The original authors assert that this

notion of complexity correctly adheres to the previously stated
goal. We explicitly compare to Cyclomatic complexity in our
experimental section, finding that it correlates at best weakly
with human fault localization accuracy. Additionally, in our
terminology, it uses only Control Flow features.

Buse and Weimer developed an automated metric of read-
ability, derived from a human study of 120 annotators evalu-
ating 100 pieces of code each [6]. Readability is defined as a
human judgment as to how understandable a piece of code is.
Thus, it is tied to the maintainability and ease of debugging
of code as well. It uses only syntactic properties as features
which allows for an overall lightweight and fast approach
as well as easy automation. This previous work has shown
that readability is positively correlated with several concrete
notions of software quality. Specifically, the work compared
the constructed metric with that of defects found using the
popular debugging tool FindBugs [13] and with future code
changes or “code churn”. Readability uses only Surface and
Syntax features. We explicitly compare against this automated
metric in our experimental section, and find that it does not
correlate with human fault localization accuracy.

VII. CONCLUSION

Fault localization is an important software engineering
activity. However, not all programs and not all bugs are equally
easy to debug. Intuitively, developers must understand a pro-
gram and its specification to locate defects. We hypothesize
that the type of defect, surface features (e.g., readability),
control flow features (e.g., the number of program paths), and
abstraction features (e.g., the presence of various datatypes)
can be used to model human fault localization accuracy.

Software metrics are important, but can be harmful if mis-
applied. Readability and complexity metrics are widely used,
but may not match up with user intuition if they are mistakenly
used as proxies for the difficulty of software engineering tasks.

We present formal models using those features, backed by
a human study involving 65 participants and 1830 total judg-
ments. To the best of our knowledge, this is the first published
human study of developer fault localization accuracy. Our
study involves example code from Java textbooks, helping
us to control for both readability and complexity. We find
that certain types of defects are much harder for humans to
locate accurately. For example, humans are over five times
more accurate at locating “extra statements” than at “missing
statements”. We also find that, independent of the type of
defect involved, certain code contexts are harder to debug
than others. For example, humans are over three times more
accurate at finding defects in code that uses array abstractions
than in code that uses tree abstractions. Using our features, our
formal model has a moderate to strong (r = 0.48) correlation
with actual human accuracy.

ACKNOWLEDGMENTS

The authors would like to thank Raymond P.L. Buse and Pieter
Hooimeijer for their help. This research was supported by, but does
not reflect the views of, National Science Foundation Grants CCF

0954024, CCF 0916872, CNS 0716478, CNS 0627523 and Air Force
Office grant FA9550-07-1-0532, as well as gifts from Microsoft.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug
repository. In OOPSLA workshop on Eclipse technology eXchange,
pages 35-39, 2005.

[2] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Local-
izing errors in counterexample traces. In In Principles of Programming
Languages, pages 97-105, 2003.

[3] H. Barkmann, R. Lincke, and W. Lowe. Quantitative evaluation of
software quality metrics in open-source projects. In International
Conference on Advanced Information Networking and Applications
Workshops, pages 1067-1072, 2009.

[4] B. Boehm and V. R. Basili. Software defect reduction top 10 list.
Computer, 34(1):135-137, 2001.

[5] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of
software quality. In International conference on Software engineering,
pages 592-605, 1976.

[6] R. P. L. Buse and W. Weimer. A metric for software readability. In
International Symposium on Software Testing and Analysis, 2008.

[7]1 F. M. Carrano. Data Structures and Abstractions with Java, 2nd edition.
Prentice Hall, 2006.

[8] J. Cohen. Statistical power analysis for the behavioral sciences, 2nd
edidtion. Routledge Academic, 1988.

[9] P. Drake. Data Structures and Algorithms in Java. Prentice Hall, 2005.
[10] L. L. Giventer. Statistical Analysis for Public Administration. 2007.
[11] M. J. Harrold, A. J. Offutt, and K. Tewary. An approach to fault

modeling and fault seeding using the program dependence graph.
Journal of Systems and Software, (3):273-296, March 1997.

[12] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
Automated software engineering, pages 34—43, 2007.
[13] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Object-oriented

programming systems, languages, and applications companion, 2004.
[14] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Automated Software Engineer-
ing, pages 273-282, 2005.
A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with
mechanical turk. In Conference on Human Factors in Computing
Systems, pages 453456, 2008.
[16] J. C. Knight and P. Ammann. An experimental evaluation of simple
methods for seeding program errors. In International Conference on
Software Engineering, pages 337-342, 1985.
R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. International Joint Conference on
Artificial Intelligence, 14(2):1137-1145, 1995.
[18] R. Lafore. Data Structures and Algorithms in Java, 2nd edition. 2002.
[19] J. Lewis and J. Case. Java Software Structures: Designing and Using
Data Structures, 2nd edition. Addison-Wesley, 2005.
T. J. McCabe. A complexity measure. [EEE Trans. Software Eng.,
2(4):308-320, 1976.
S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and behaviors of end-user
programmers with interactive fault localization. In Human Centric
Computing Languages and Environments, pages 15-22, 2003.
D. R. Raymond. Reading source code. In Conference of the Centre for
Advanced Studies on Collaborative Research, pages 3—16, 1991.
S. Rugaber. The use of domain knowledge in program understanding.
Ann. Softw. Eng., 9(1-4):143-192, 2000.
[24] J. R. Ruthruff, M. Burnett, and G. Rothermel. An empirical study of
fault localization for end-user programmers. In International conference
on Software engineering, pages 352-361, 2005.
W. Savitch. Absolute Java, 3rd edition. Addison-Wesley, 2007.
R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—but
is it good?: evaluating non-expert annotations for natural language tasks.
In Empirical Methods in Natural Language Processing, 2008.
[27] W. Weimer and G. C. Necula. Finding and preventing run-time error
handling mistakes. In Object-oriented programming, systems, languages,
and applications, pages 419—431, 2004.
S. Zeil. Perturbation techniques for detecting domain errors.
Transactions on Software Engineering, 15:737-746, 1989.
A. Zeller. Yesterday, my program worked. Today, it does not. Why? In
Foundations of Software Engineering, pages 253-267, 1999.

[15]

[17]

[20]

[21]

[22]

[23]

[25]
[26]

(28] IEEE

[29]

