
Connecting Program Synthesis and Reachability:

Automatic Program Repair using Test-Input Generation

ThanhVu Nguyen1, Westley Weimer2, Deepak Kapur3, and Stephanie Forrest3

1 University of Nebraska, Lincoln NE, USA, tnguyen@cse.unl.edu
2 University of Virginia, Charlottesville VA, USA, weimer@virginia.edu

3 University of New Mexico, Albuquerque NM, USA, {kapur,forrest}@cs.unm.edu

Abstract. We prove that certain formulations of program synthesis and
reachability are equivalent. Specifically, our constructive proof shows the
reductions between the template-based synthesis problem, which gener-
ates a program in a pre-specified form, and the reachability problem,
which decides the reachability of a program location. This establishes a
link between the two research fields and allows for the transfer of tech-
niques and results between them.
To demonstrate the equivalence, we develop a program repair prototype
using reachability tools. We transform a buggy program and its required
specification into a specific program containing a location reachable only
when the original program can be repaired, and then apply an o↵-the-
shelf test-input generation tool on the transformed program to find test
values to reach the desired location. Those test values correspond to
repairs for the original program. Preliminary results suggest that our
approach compares favorably to other repair methods.

Keywords: program synthesis; program verification; program reacha-
bility; reduction proof; automated program repair; test-input generation;

1 Introduction

Synthesis is the task of generating a program that meets a required specification.
Verification is the task of validating program correctness with respect to a given
specification. Both are long-standing problems in computer science, although
there has been extensive work on program verification and comparatively less on
program synthesis until recently. Over the past several years, certain verification
techniques have been adopted to create programs, e.g., applying symbolic execu-
tion to synthesize program repairs [25, 26, 29, 32], suggesting the possibility that
these two problems may be “two sides of the same coin”. Finding and formalizing
this equivalence is valuable in both theory and practice: it allows comparisons
between the complexities and underlying structures of the two problems, and
it raises the possibility of additional cross-fertilization between two fields that
are usually treated separately (e.g., it might enable approximations designed to
solve one problem to be applied directly to the other).

This paper establishes a formal connection between certain formulations of
program synthesis and verification. We focus on the template-based synthesis

2

problem, which generates missing code for partially completed programs, and
we view verification as a reachability problem, which checks if a program can
reach an undesirable state. We then constructively prove that template-based
synthesis and reachability are equivalent. We reduce a template-based synthesis
problem, which consists of a program with parameterized templates to be synthe-
sized and a test suite specification, to a program consisting of a specific location
that is reachable only when those templates can be instantiated such that the
program meets the given specification. To reduce reachability to synthesis, we
transform a reachability instance consisting of a program and a given location
into a synthesis instance that can be solved only when the location in the origi-
nal problem is reachable. Thus, reachability solvers can be applied to synthesize
code, and conversely, synthesis tools can be used to determine reachability.

To demonstrate the equivalence, we use the reduction to develop a new au-
tomatic program repair technique using an existing test-input generation tool.
We view program repair as a special case of template-based synthesis in which
“patch” code is generated so that it behaves correctly. We present a prototype
tool called CETI that automatically repairs C programs that violate test-suite
specifications. Given a test suite and a program failing at least one test in that
suite, CETI first applies fault localization to obtain a list of ranked suspicious
statements from the buggy program. For each suspicious statement, CETI trans-
forms the buggy program and the information from its test suite into a program
reachability instance. The reachability instance is a new program containing a
special if branch, whose then branch is reachable only when the original pro-
gram can be repaired by modifying the considered statement. By construction,
any input value that allows the special location to be reached can map directly
to a repair template instantiation that fixes the bug. To find a repair, CETI
invokes an o↵-the-shelf automatic test-input generation tool on the transformed
code to find test values that can reach the special branch location. These values
correspond to changes that, when applied to the original program, cause it to
pass the given test suite. This procedure is guaranteed to be sound, but it is not
necessarily complete. That is, there may be bugs that the procedure cannot find
repairs for, but all proposed repairs are guaranteed to be correct with respect to
the given test suite. We evaluated CETI on the Tcas program [13], which has 41
seeded defects, and found that it repaired over 60%, which compares favorably
with other state-of-the-art automated bug repair approaches.

To summarize, the main contributions of the paper include:

– Equivalence Theorem: We constructively prove that the problems of template-
based program synthesis and reachability in program verification are equiva-
lent. Even though these two problems are shown to be undecidable in general,
the constructions allow heuristics solving one problem to be applied to the
other.

– Automatic Program Repair : We present a new automatic program repair
technique, which leverages the construction. The technique reduces the task
of synthesizing program repairs to a reachability problem, where the results

3

1 i n t is upward (i n t in , i n t up , i n t down){
2 i n t bias , r ;
3 i f (in)
4 b ia s = down ; // f i x : b i a s = up + 100
5 e l s e
6 b ia s = up ;
7 i f (b i a s > down)
8 r = 1 ;
9 e l s e

10 r = 0 ;
11 return r ;
12 }

Inputs Output
Test in up down expected observed Passed?

1 1 0 100 0 0
2 1 11 110 1 0 7
3 0 100 50 1 1
4 1 -20 60 1 0 7
5 0 0 10 0 0
6 0 0 -10 1 1

Fig. 1. Example buggy program and test suite. CETI suggests replacing line 4 with
the statement bias = up + 100; to repair the bug.

produced by a test-input generation tool correspond to a patch that repairs
the original program.

– Implementation and Evaluation: We implement the repair algorithm in a
prototype tool that automatically repairs C programs, and we evaluate it on
a benchmark that has been targeted by multiple program repair algorithms.

2 Motivating Example

We give a concrete example of how the reduction from template-based synthesis
to reachability can be used to repair a buggy program. Consider the buggy
code shown in Figure 1, a function excerpted from a tra�c collision avoidance
system [13]. The intended behavior of the function can be precisely described as:
is upward(in,up,down) = in*100 + up > down. The table in Figure 1 gives
a test suite describing the intended behavior. The buggy program fails two of
the tests, which we propose to repair by synthesizing a patch.

We solve this synthesis problem by restricting ourselves to generating patches
under predefined templates, e.g., synthesizing expressions involving program
variables and unknown parameters, and then transforming this template-based
synthesis problem into a reachability problem instance. In this approach, a tem-
plate such as

c0 + c1 v1 + c2 v2

is a linear combination4 of program variables v
i

and unknown template param-
eters c

i

. For clarity, we often denote template parameters with a box to distin-
guish them from normal program elements. This template can be instantiated
to yield concrete expressions such as 200+3v1+4v2 via c0 = 200, c1 = 3, c2 = 4.
To repair Line 4 of Figure 1, (bias = down;) with a linear template, we would
replace Line 4 with:

bias = c0 + c1 *bias + c2 *in + c3 *up + c4 *down;

4 More general templates (e.g., nonlinear polynomials) are also possible as shown in
Section 3.4.

4

i n t c0 , c1 , c2 , c3 , c4 ; // g l oba l inputs

i n t is upward
P

(i n t in , i n t up , i n t
down){

i n t bias , r ;
i f (in)

b i a s =
c0+c1⇤ b ia s+c2⇤ in+c3⇤up+c4⇤down ;

e l s e
b i a s = up ;

i f (b i a s > down)
r = 1 ;

e l s e
r = 0 ;

re turn r ;
}

i n t main () {
i f (i s upward

P

(1 ,0 ,100) == 0 &&
is upward

P

(1 ,11 ,110) == 1 &&
is upward

P

(0 ,100 ,50) == 1 &&
is upward

P

(1 ,�20 ,60) == 1 &&
is upward

P

(0 , 0 , 10) == 0 &&
is upward

P

(0 ,0 ,�10) == 1){
[L]

}
re turn 0 ;

}

Fig. 2. The reachability problem instance derived from the buggy program and test
suite in Figure 1. Location L is reachable with values such as c0 = 100, c1 = 0, c2 =
0, c3 = 1, c4 = 0. These values suggest using the statement bias = 100 + up; at Line
4 in the buggy program.

where bias, in, up, and down are the variables in scope at Line 4 and the value
of each c

i

must be found. We propose to find them by constructing a special
program reachability instance and then solving that instance.

The construction transforms the program, its test suite (Figure 1), and the
template statement into a reachability instance consisting of a program and
target location. The first key idea is to derive a new program containing the
template code with the template parameters c

i

represented explicitly as pro-
gram variables c

i

. This program defines the reachability instance, which must
assign values to each c

i

. The second key idea is that each test case is explicitly
represented as a conditional expression. Recall that we seek a single synthesis
solution (one set of values for c

i

) that respects all tests. Each test is encoded as a
conditional expression (a reachability constraint), and we take their conjunction,
being careful to refer to the same c

i

variables in each expression. In the example,
we must find one repair that satisfies all six tests, not six separate repairs that
each satisfy only one test.

The new program, shown in Figure 2, contains a function is upward

P

that
resembles the function is upward in the original code but with Line 4 replaced
by the template statement with each reference to a template parameter replaced
by a reference to the corresponding new externally-defined program variable.
The program also contains a starting function main, which encodes the inputs
and expected outputs from the given test suite as the guards to the conditional
statement leading to the target location L. Intuitively, the reachability problem
instance asks if we can find values for each c

i

that allow control flow to reach
location L, which is only reachable i↵ all tests are satisfied.

This reachability instance can be given as input to any o↵-the-self test-input
generation tool. Here, we use KLEE [8] to find value for each c

i

. KLEE deter-
mines that the values c0 = 100, c1 = 0, c2 = 0, c3 = 1, c4 = 0 allow control flow
to reach location L. Finally, we map this solution back to the original program
repair problem by applying the c

i

values to the template

5

bias = c0 + c1 *bias + c2 *in + c3 *up + c4 *down;

generating the statement:
bias = 100 + 0*bias + 0*in + 1*up + 0*down;

which reduces to bias = 100 + up. Replacing the statement bias = down in
the original program with the new statement bias = 100 + up produces a pro-
gram that passes all of the test cases.

To summarize, a specific question (i.e., can the bug be repaired by applying
template X to line Y of program P while satisfying test suite T?) is reduced to a
single reachability instance, solvable using a reachability tool such as a test-input
generator. This reduction is formally established in the next section.

3 Connecting Program Synthesis and Reachability

We establish the connection between the template-based formulation of program
synthesis and the reachability problem in program verification. We first review
these problems and then show their equivalence.

3.1 Preliminaries

We consider standard imperative programs in a language like C. The base
language includes usual program constructs such as assignments, conditionals,
loops, and functions. A function takes as input a (potentially empty) tuple of
values and returns an output value. A function can call other functions, including
itself. For simplicity, we equate a program P with its finite set of functions, in-
cluding a special starting function main

P

. For brevity, we write P (c
i

, . . . , c

n

) = y

to denote that evaluating the function main
P

2 P on the input tuple (c
i

, . . . , c

n

)
results in the value y. Program or function semantics are specified by a test
suite consisting of a finite set of input/output pairs. When possible, we use c

i

for concrete input values and v

i

for formal parameters or variable names.
To simplify the presentation, we assume that the language also supports

exceptions, admitting non-local control flow by raising and catching exceptions
as in modern programming languages such as C++ and Java. We discuss how
to remove this assumption in Section 3.3.

Template-based Program Synthesis. Program synthesis aims to automat-
ically generate program code to meet a required specification. The problem of
synthesizing a complete program is generally undecidable [42], so many practi-
cal synthesis techniques operate on partially-complete programs, filling in well-
structured gaps [41, 43, 39, 36, 1, 44]. These techniques synthesize programs from
specific grammars, forms, or templates and do not generate arbitrary code. A
synthesis template expresses the shape of program constructs, but includes holes
(sometimes called template parameters), as illustrated in the previous section.
We refer to a program containing such templates as a template program and
extend the base language to include a finite, fixed set of template parameters
c

i

as shown earlier. Using the notation of contextual operational semantics, we

6

write P [c0, . . . , cn] to denote the result of instantiating the template program P

with template parameter values c0 . . . cn. To find values for the parameters in
a template program, many techniques (e.g., [41, 43, 1, 44]) encode the program
and its specification as a logical formula (e.g., using axiomatic semantics) and
use a constraint solver such as SAT or SMT to find values for the parameters c

i

that satisfy the formula. Instantiating the templates with those values produces
a complete program that adheres to the required specification.

Definition 1. Template-based Program Synthesis Problem. Given a tem-
plate program Q with a finite set of template parameters S = { c1 , . . . , c

n

} and

a finite test suite of input/output pairs T = {(i1, o1), . . . , (im, o

m

)}, do there exist
parameter values c

i

such that 8(i, o) 2 T . (Q[c1, . . . , cn])(i) = o?

For example, the program in Figure 1 with Line 4 replaced by bias = c0

+ c1 *bias + c2 *in + c3 *up + c4 *down is an instance of template-based syn-
thesis. This program passes its test suite given in Figure 1 using the solution
{c0 = 100, c1 = 1, c2 = 0, c3 = 1, c4 = 0}. The decision formulation of the prob-
lem asks if satisfying values c1 . . . cn exist; in this presentation we require that
witnesses be produced.

Program Reachability. Program reachability is a classic problem which asks
if a particular program state or location can be observed at run-time. It is not
decidable in general, because it can encode the halting problem (cf. Rice’s Theo-
rem [35]). However, reachability remains a popular and well-studied verification
problem in practice. In model checking [10], for example, reachability is used
to determine whether program states representing undesirable behaviors could
occur in practice. Another application area is test-input generation [9], which
aims to produce test values to explore all reachable program locations.

Definition 2. Program Reachability Problem. Given a program P , set of
program variables {x1, . . . , xn

} and target location L, do there exist input values
c

i

such that the execution of P with x

i

initialized to c

i

reaches L in a finite
number of steps?

For example, the program in Figure 3 has a reachable location L using the
solution {x = �20, y = �40}. Similar to the synthesis problem, the decision
problem formulation of reachability merely asks if the input values c1, . . . , cn

exist; in this presentation we require witnesses be produced.

3.2 Reducing Synthesis to Reachability

We present the constructive reduction from synthesis to reachability. The key to
the reduction is a particular “gadget”, which constructs a reachability instance
that can be satisfied i↵ the synthesis problem can be solved.

7

// g l oba l inputs
i n t x , y ;

i n t P() {
i f (2 ⇤ x == y)

i f (x > y + 10)
[L]

r e turn 0 ;
}

Fig. 3. An instance of program
reachability. Program P reaches
location L using the solution
{x = �20, y = �40}.

i n t P
Q

() {
i f (2⇤ x == y)

i f (x > y +10)

// l o c L in P
r a i s e

REACHED;

return 0 ;
}

i n t main
Q

() {
// syn th e s i z e x , y
i n t x = c

x

;
i n t y = c

y

;
try

P
Q

() ;
catch (REACHED)

return 1 ;

re turn 0 ;
}

Fig. 4. Reducing the reachability example in Fig-
ure 3 to a template-based synthesis program (i.e.,
synthesize assignments to c

x

and c

y

). The test
suite of the reduced synthesis program is Q() = 1.

Reduction: Let Q be a template program with a set of template parameters
S = { c1 , . . . , c

n

} and a set of finite tests T = {(i1, o1), . . . }. We construct

GadgetS2R(Q,S, T), which returns a new program P (the constructed reacha-
bility instance) with a special location L, as follows:

1. For every template parameter c

i

, add a fresh global variable v

i

. A solution
to this reachability instance is an assignment of concrete values c

i

to the
variables v

i

.
2. For every function q 2 Q, define a similar function q

P

2 P . The body of
q

P

is the same as q, but with every reference to a template parameter c

i

replaced with a reference to the corresponding new variable v

i

.
3. P also contains a starting function main

P

that encodes the specification
information from the test suite T as a conjunctive expression e:

e =
^

(i,o)2T

main
QP

(i) = o

where main
QP

is a function in P corresponding to the starting function
main

Q

in Q. In addition, the body of main
P

is one conditional statement
leading to a fresh target location L if and only if e is true. Thus, main

P

has
the form

i n t main
P

() {
i f (e)

[L]
}

4. The derived program P consists of the declaration of the new variables (Step
1), the functions q

P

’s (Step 2), and the starting function main
P

(Step 3).

Example: Figure 2 illustrates the reduction using the example from Figure 1.
The resulting reachability program can arrive at location L using the input
{c0 = 100, c1 = 0, c2 = 0, c3 = 1, c4 = 0}, which corresponds to a solution.

8

Reduction Correctness and Complexity: The correctness of GadgetS2R, which
transforms synthesis to reachability, relies on two key invariants5. First, function
calls in the derived program P have the same behavior as template functions in
the original program Q. Second, location L is reachable if and only if values c

i

can be assigned to variables v
i

such that Q passes all of the tests.
The complexity of GadgetS2R is linear in both the program size and number

of test cases of the input instance Q,S, T . The constructed program P consists
of all functions in Q (with |S| extra variables) and a starting function main

P

with an expression encoding the test suite T .
This reduction directly leads to the main result for this direction of the

equivalence:

Theorem 1. The template-based synthesis problem in Definition 1 is reducible
to the reachability problem in Definition 2.

3.3 Reducing Reachability to Synthesis

Here, we present the reduction from reachability to synthesis. The reduction also
uses a particular gadget to construct a synthesis instance that can be solved i↵
the reachability instance can be determined.

Reduction: Let P be a program, L be a location in P , and V = {v1, . . . , vn} be
global variables never directly assigned in P . We construct GadgetR2S(P,L, V),
which returns a template program Q with template parameters S and a test
suite T , as follows:

1. For every variable v

i

, define a fresh template variable c

i

. Let the set of

template parameters S be the set containing each c

i

.
2. For every function p 2 P , define a derived function p

Q

2 Q. Replace each
function call to p with the corresponding call to p

Q

. Replace each use of
a variable v

i

with a read from the corresponding template parameter c

i

;
remove all declarations of variables v

i

.
3. Raise a unique exception REACHED, at the location in Q corresponding to the

location L in P . As usual, when an exception is raised, control immediately
jumps to the most recently-executed try-catch block matching that excep-
tion. The exception REACHED will be caught i↵ the location in Q corresponding
to L 2 P would be reached.

4. Define a starting function main
Q

that has no inputs and returns an inte-
ger value. Let main

PQ

be the function in Q corresponding to the starting
function main

P

in P .
– Insert try-catch construct that calls p

Q

and returns the value 1 if the
exception REACHED is caught.

– At the end of main
Q

, return the value 0.
– Thus, main

Q

has the form

5 The full proof is given in the Appendix of [34].

9

i n t main
Q

() {
try {

main
P Q

() ;
} catch (REACHED) {

re turn 1 ;
}
re turn 0 ;

}

5. The derived program Q consists of the finite set of template parameters
S = { c1), . . . , c

n

} (Step 1), functions p

Q

’s (Step 2), and the starting

function main
Q

(Step 4).
6. The test suite T for Q consists of exactly one test case Q() = 1, indicating

the case when the exception REACHED is raised and caught.

Example: Figure 4 illustrates the reduction using the example from Figure 3.
The synthesized program can be satisfied by c0 = �20, c1 = �40, corresponding
to the input (x = �20, y = �40) which reaches L in Figure 3.

The exception REACHED represents a unique signal to main
Q

that the location
L has been reached. Many modern languages support exceptions for handling
special events, but they are not strictly necessary for the reduction to succeed.
Other (potentially language-dependent) implementation techniques could also
be employed. Or, we could use a tuple to represent the signal, e.g., returning
(v, false) from a function that normally returns v if the location corresponding
L has not been reached and (1, true) as soon as it has. BLAST [6], a model
checker for C programs (which do not support exceptions), uses goto and labels
to indicate when a desired location has been reached.

Reduction Correctness and Complexity: The correctness of the GadgetS2R, which
transforms reachability to synthesis, depends on two key invariants6. First, for
any c

i

, execution in the derived template program Q with c

i

7! c

i

mirrors

execution in P with v

i

7! c

i

up to the point when L is reached (if ever). Second,
the exception REACHED is raised in Q i↵ location L is reachable in P .

The complexity of GadgetR2S is linear in the input instance P,L, v

i

. The
constructed program Q consists of all functions in P and a starting function
mainQ having n template variables, where n = |{v

i

}|.
This reduction directly leads to the main result for this direction of the

equivalence:

Theorem 2. The reachability problem in Definition 2 is reducible to the template-
based synthesis problem in Definition 1.

3.4 Synthesis ⌘ Reachability

Together, the above two theorems establish the equivalence between the reacha-
bility problem in program verification and the template-based program synthesis.

6 The full proof is given in the Appendix of [34].

10

Corollary 1. The reachability problem in Definition 2 and the template-based
synthesis problem in Definition 1 are linear-time reducible to each other.

This equivalence is perhaps unsurprising as researchers have long assumed
certain relations between program synthesis and verification (e.g., see Section 5).
However, we believe that a proof of the equivalence is valuable. First, our proof,
although straightforward, formally shows that both problems inhabit the same
complexity class (e.g., the restricted formulation of synthesis in Definition 1 is as
hard as the reachability problem in Definition 2). Second, although both prob-
lems are undecidable in the general case, the linear-time transformations allow
existing approximations and ideas developed for one problem to apply to the
other one. Third, in term of practicality, the equivalence allows for direct appli-
cation of o↵-the-shelf reachability and verification tools to synthesize and repair
programs. Our approach is not so di↵erent from verification works that trans-
form the interested problems into SAT/SMT formulas to be solved by existing
e�cient solvers. Finally, this work can be extended to more complex classes of
synthesis and repair problems. While we demonstrate the approach using linear
templates, more general templates can be handled. For example, combinations
of nonlinear polynomials can be considered using a priority subset of terms (e.g.,
t1 = x

2
, t2 = xy, as demonstrated in nonlinear invariant generation [33]).

We hope that these results help raise fruitful cross-fertilization among pro-
gram verification and synthesis fields that are usually treated separately. Because
our reductions produce reachability problem instances that are rarely encoun-
tered by current verification techniques (e.g., with large guards), they may help
refine existing tools or motivate optimizations in new directions. As an example,
our bug repair prototype CETI (discussed in the next Section) has produced
reachability instances that hit a crashing bug in KLEE that was confirmed to
be important by the developers7. These hard instances might be used to evalu-
ate and improve verification and synthesis tools (similar to benchmarks used in
annual SAT8 and SMT9 competitions).

4 Program Repair using Test-Input Generation

We use the equivalence to develop CETI (Correcting Errors using Test Inputs),
a tool for automated program repair (a synthesis problem) using test-input gen-
eration techniques (which solves reachability problems). We define problem of
program repair in terms of template-based program synthesis:

Definition 3. Program Repair Problem. Given a program Q that fails at
least one test in a finite test suite T and a finite set of parameterized templates
S, does there exist a set of statements {s

i

} ✓ Q and parameter values c1, . . . , cn
for the templates in S such that s

i

can be replaced with S[c1, . . . , cn] and the
resulting program passes all tests in T?

7 http://mailman.ic.ac.uk/pipermail/klee-dev/2016-February/001278.html
8 SAT Competitions: http://www.satcompetition.org
9 SMT competitions: http://smtcomp.sourceforge.net/2016

11

This repair problem thus allows edits to multiple program statements (e.g.,
we can replace both lines 4 and 10 in Figure 1 with parameterized templates).
The single-edit repair problem restricts the edits to one statement.

CETI implements the key ideas from Theorem 1 in Section 3.2 to transform
this repair problem into a reachability task solvable by existing verification tools.
Given a test suite and a buggy program that fails some test in the suite, CETI
employs the statistical fault localization technique Tarantula [23] to identify par-
ticular code regions for synthesis, i.e., program statements likely related to the
defect. Next, for each suspicious statement and synthesis template, CETI trans-
forms the buggy program, the test suite, the statement and the template into
a new program containing a location reachable only when the original program
can be repaired. Thus, by default CETI considers single-edit repairs, but it can
be modified to repair multiple lines by using k top-ranked suspicious statements
(cf. Angelix [29]). Such an approach increases the search space and thus the
computational burden placed on the reachability solver.

Our current implementation employs CIL [31] to parse and modify C pro-
grams using repair templates similar to those given in [25, 32]. These templates
allow modifying constants, expressions (such as the linear template shown in
Section 2), and logical, comparisons, and arithmetic operators (such as changing
|| to &&,  to <, or + to �). Finally, we send the transformed program to the
test-input generation tool KLEE, which produces test values that can reach the
designated location. Such test input values, when combined with the synthesis
template and the suspicious statement, correspond exactly to a patch that re-
pairs the bug. CETI synthesizes correct-by-construction repairs, i.e., the repair,
if found, is guaranteed to pass the test suite.

4.1 Evaluation

To evaluate CETI, we use the Tcas program from the SIR benchmark [13]. The
program, which implements an aircraft tra�c collision avoidance system, has
180 lines of code and 12 integer inputs. The program comes with a test suite
of about 1608 tests and 41 faulty functions, consisting of seeded defects such as
changed operators, incorrect constant values, missing code, and incorrect control
flow. Among the programs in SIR, Tcas has the most introduced defects (41),
and it has been used to benchmark modern bug repair techniques [12, 26, 32].

We manually modify Tcas, which normally prints its result on the screen, to
instead return its output to its caller, e.g., printf("output is %d\n",v) becomes
return v. For e�ciency, many repair techniques initially consider a smaller num-
ber of tests in the suite and then verify candidate repairs on the entire suite [32].
In contrast, we use all available tests at all times to guarantee that any repair
found by CETI is correct with respect to the test suite. We find that mod-
ern tools such as KLEE can handle the complex conditionals that encode such
information e�ciently and generate the desired solutions within seconds.

The behavior of CETI is controlled by customizable parameters. For the ex-
periments described here, we consider the top n = 80 from the ranked list of

12

Table 1. Repair Results for 41 Tcas Defects

Bug Type R-Progs T(s) Repair? Bug Type R-Progs T(s) Repair?

v1 incorrect op 6143 21 v22 missing code 5553 175 –
v2 missing code 6993 27 v23 missing code 5824 164 –
v3 incorrect op 8006 18 v24 missing code 6050 231 –
v4 incorrect op 5900 27 v25 incorrect op 5983 19
v5 missing code 8440 394 – v26 missing code 8004 195 –
v6 incorrect op 5872 19 v27 missing code 8440 270 –
v7 incorrect const 7302 18 v28 incorrect op 9072 11
v8 incorrect const 6013 19 v29 missing code 6914 195 –
v9 incorrect op 5938 24 v30 missing code 6533 170 –

v10 incorrect op 7154 18 v31 multiple 4302 16
v11 multiple 6308 123 – v32 multiple 4493 17
v12 incorrect op 8442 25 v33 multiple 9070 224 –
v13 incorrect const 7845 21 v34 incorrect op 8442 75
v14 incorrect const 1252 22 v35 multiple 9070 184 –
v15 multiple 7760 258 – v36 incorrect const 6334 10
v16 incorrect const 5470 19 v37 missing code 7523 174 –
v17 incorrect const 7302 12 v38 missing code 7685 209 –
v18 incorrect const 7383 18 v39 incorrect op 5983 20
v19 incorrect const 6920 19 v40 missing code 7364 136 –
v20 incorrect op 5938 19 v41 missing code 5899 29
v21 missing code 5939 31

suspicious statements and, then apply the predefined templates to these state-
ments. For e�ciency, we restrict synthesis parameters to be within certain value
ranges: constant coe�cients are confined to the integral range [�100000, 100000]
while the variable coe�cients are drawn from the set {�1, 0, 1}.

Results. Table 1 shows the results with 41 buggy Tcas versions. These experi-
ments were performed on a 32-core 2.60GHz Intel Linux system with 128 GB of
RAM. Column Bug Type describes the type of defect. Incorrect Const denotes
a defect involving the use of the wrong constant, e.g., 700 instead of 600. Incorrect
Op denotes a defect that uses the wrong operator for arithmetic, comparison, or
logical calculations, e.g., � instead of >. Missing code denotes defects that en-
tirely lack an expression or statement, e.g., a&&b instead of a&&b||c or return
a instead of return a+b. Multiple denotes defects caused by several actions such
as missing code at a location and using an incorrect operator at another loca-
tion. Column T(s) shows the time taken in seconds. Column R-Prog lists the
number of reachability program instances that were generated and processed by
KLEE. Column Repair? indicates whether a repair was found.

We were able to correct 26 of 41 defects, including multiple defects of dif-
ferent types. On average, CETI takes 22 seconds for each successful repair. The
tool found 100% of repairs for which the required changes are single edits ac-
cording to one of our predefined templates (e.g., generating arbitrary integer

13

constants or changing operators at one location). In several cases, defects could
be repaired in several ways. For example, defect v28 can be repaired by swapping
the results of both branches of a conditional statement or by inverting the con-
ditional guard. CETI also obtained unexpected repairs. For example, the bug in
v13 is a comparison against an incorrect constant; the buggy code reads < 700

while the human-written patch reads < 600. Our generated repair of < 596 also
passes all tests.

We were not able to repair 15 of 41 defects, each of which requires edits
at multiple locations or the addition of code that is beyond the scope of the
current set of templates. As expected, CETI takes longer for these programs
because it tries all generated template programs before giving up. One common
pattern among these programs is that the bug occurs in a macro definition,
e.g., #define C = 100 instead of #define C = 200. Since the CIL front end
automatically expands such macros, CETI would need to individually fix each
use of the macro in order to succeed. This is an artifact of CIL, rather than a
weakness inherent in our algorithm.

CETI, which repairs 26 of 41 Tcas defects, performs well compared to other
reported results from repair tools on this benchmark program. GenProg, which
finds edits by recombining existing code, can repair 11 of these defects [32,
Tab. 5]. The technique of Debroy and Wong, which uses random mutation, can
repair 9 defects [12, Tab. 2]. FoREnSiC, which uses the concolic execution in
CREST, repairs 23 defects [26, Tab. 1]. SemFix out-performs CETI, repairing
34 defects [32, Tab. 5], but also uses fifty test cases instead of the entire suite
of thousands10. Other repair techniques, including equivalence checking [26] and
counterexample guided refinement [26], repair 15 and 16 defects, respectively.

Although CETI uses similar repair templates as both SemFix and FoREn-
SiC, the repair processes are di↵erent. SemFix directly uses and customizes the
KLEE symbolic execution engine, and FoRenSiC integrates concolic execution
to analyze programs and SMT solving to generate repairs. In contrast, CETI
eschews heavyweight analyses, and it simply generates a reachability instance.
Indeed, our work is inspired by, and generalizes, these works, observing that the
whole synthesis task can be o✏oaded with strong success in practice.

However, there is a trade-o↵: customizing a reachability solver to the task of
program repair may increase the performance or the number of repairs found,
but may also reduce the generality or ease-of-adoption of the overall technique.
We note that our unoptimized tool CETI already outperforms published re-
sults for GenProg, Debroy and Wong, and FoREnSiC on this benchmark, and is
competitive with SemFix.

Limitations. We require that the program behaves deterministically on the
test cases and that the defect be reproducible. This limitation can be mitigated
by running the test cases multiple times, but ultimately our technique is not

10 Thus CETI’s repairs, which pass the entire suite instead of just 50 selected tests,
meet a higher standard. We were unable to obtain SemFix details, e.g., which 50
tests, online or from the authors.

14

applicable if the program is non-deterministic. We assume that the test cases
encode all relevant program requirements. If adequate test cases are not avail-
able then the repair may not retain required functionality. Our formulation also
encodes the test cases as inputs to a starting function (e.g., main) with a single
expected output. This might not be feasible for certain types of specifications,
such as liveness properties (“eventually” and “always”) in temporal logic. The
e�ciency of CETI depends on fault localization to reduce the search space. The
reachability or test-input generation tool used a↵ects both the e�ciency and the
e�cacy of CETI. For example, if the reachability tool uses a constraint solver
that does not support data types such as string or arrays then we will not be
able to repair program defects involving those types. Finally, we assume that the
repair can be constructed from the provided repair templates.

The reduction in Section 3.2 can transform a finite space (buggy) program
into an infinite space reachability problem (e.g., we hypothesize that a bounded
loop guard i  10 is buggy and try to synthesize a new guard using an unknown
parameter i  c). However, this does not invalidate the theoretical or empirical
results and the reduction is e�cient in the program size and the number of tests.
The reduction also might not be optimal if we use complex repair templates (e.g.,
involving many unknown parameters). In practice we do not need to synthesize
many complex values for most defects and thus modern verification tools such
as KLEE can solve these problems e�ciently, as shown in our evaluation.

This paper concretely demonstrates the applicability of program reachability
(test-input generation) to program synthesis (defect repair) but not the reverse
direction of using program synthesis to solve reachability. Applying advances
in automatic program repair to find test-inputs to reach nontrivial program
locations remains future work.

5 Related Work

Program Synthesis and Verification. Researchers have long hypothesized
about the relation between program synthesis and verification and proposed
synthesis approaches using techniques or tools often used to verify programs
such as constraint solving or model checking [1, 43]. For example, Bodik and
Solar-Lezama et. al.’s work [40, 39] on sketching defines the synthesis task as:
9c . 8(i, o) . 2 T . (P [c])(i) = o (similar to our template-based synthesis formula-
tion in Definition 1) and solves the problem using a SAT solver. Other synthesis
and program repair researches, e.g., [4, 29, 32, 43, 44], also use similar formulation
to integrate verification tools, e.g., test-input generation, to synthesize desired
programs. In general, such integrations are common in many ongoing synthe-
sis works including the multi-disciplinary ExCAPE project [14] and the SyGuS
competition [45], and have produced many practical and useful tools such as
Sketch that generates low-level bit-stream programs [39], Autograder that pro-
vides feedback on programming homework [38], and FlashFill that constructs
Excel macros [19, 20].

15

The work presented in this paper is inspired by these works, and generalizes
them by establishing a formal connection between synthesis and verification us-
ing the template-based synthesis and reachability formulations. We show that
it is not just a coincident that the aforementioned synthesis works can exploit
verification techniques, but that every template-based synthesis problem can
be reduced to the reachability formulation in verification. Dually, we show the
other direction that reduces reachability to template-based synthesis, so that
every reachability problem can be solved using synthesis. Furthermore, our con-
structive proofs describe e�cient algorithms to do such reductions.

Program Repair and Test-Input Generation. Due to the pressing demand
for reliable software, automatic program repair has steadily gained research in-
terests and produced many novel repair techniques. Constraint-based repair ap-
proaches, e.g., AFix [21], Angelix [29], SemFix [32], FoRenSiC [7], Gopinath et
al. [18], Jobstmann et al. [22], generate constraints and solve them for patches
that are correct by construction (i.e., guaranteed to adhere to a specification
or pass a test suite). In contrast, generate-and-validate repair approaches, e.g.,
GenProg [46], Pachika [11], PAR [24], Debroy and Wong [12], Prophet [28], find
multiple repair candidates (e.g., using stochastic search or invariant inferences)
and verify them against given specifications.

The field of test-input generation has produced many practical techniques
and tools to generate high coverage test data for complex software, e.g., fuzz
testing [30, 15], symbolic execution [8, 9], concolic (combination of static and
dynamic analyses) execution [16, 37], and software model checking [6, 5]. Com-
panies and industrial research labs such as Microsoft, NASA, IBM, and Fujitsu
have also developed test-input generation tools to test their own products [2, 3,
17, 27]. Our work allows program repair and synthesis approaches directly apply
these techniques and tools.

6 Conclusion

We constructively prove that the template-based program synthesis problem and
the reachability problem in program verification are equivalent. This equivalence
connects the two problems and enables the application of ideas, optimizations,
and tools developed for one problem to the other. To demonstrate this, we de-
velop CETI, a tool for automated program repair using test-input generation
techniques that solve reachability problems. CETI transforms the task of syn-
thesizing program repairs to a reachability problem, where the results produced
by a test-input generation tool correspond to a patch that repairs the original
program. Experimental case studies suggest that CETI has higher success rates
than many other standard repair approaches.

Acknowledgments. This research was partially supported by NSF awards
CCF 1248069, CNS 1619098, CNS 1619123, as well as AFOSR grant FA8750-
11-2-0039 and DARPA grant FA8650-10-C-7089.

16

References

1. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
Dependable Software Systems Engineering, 40:1–25, 2015.

2. S. Anand, C. S. Păsăreanu, and W. Visser. JPF–SE: A symbolic execution exten-
sion to Java Pathfinder. In TACAS, pages 134–138. Springer, 2007.

3. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.
Finding bugs in dynamic web applications. In ISSTA, pages 261–272. ACM, 2008.

4. P. Attie, A. Cherri, K. D. Al Bab, M. Sakr, and J. Saklawi. Model and program
repair via sat solving. In MEMOCODE, pages 148–157. IEEE, 2015.

5. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL, pages 1–3. ACM, 2002.

6. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker BLAST. Soft. Tools for Technol. Transfer, 9(5-6):505–525, 2007.

7. R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Ho↵erek, R. Könighofer, J. Raik,
U. Repinski, and A. Sülflow. FoREnSiC–an automatic debugging environment for
C programs. In HVC, pages 260–265. Springer, 2013.

8. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In OSDI, volume 8,
pages 209–224. USENIX Association, 2008.

9. C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.
Commun. ACM, 56(2):82–90, 2013.

10. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
11. V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes from object behavior

anomalies. In ASE, pages 550–554. IEEE, 2009.
12. V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for

faulty programs. In Software Testing, Verification and Validation, pages 65–74.
IEEE, 2010.

13. H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

14. ExCAPE: Expeditions in computer augmented program engineering.
http://excape.cis.upenn.edu, 2016-10-19.

15. J. E. Forrester and B. P. Miller. An empirical study of the robustness of Windows
NT applications using random testing. In USENIX Windows System Symposium,
pages 59–68, 2000.

16. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
PLDI, 40(6):213–223, 2005.

17. P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing.
In Network and Distributed System Security Symposium, pages 151–166, 2008.

18. D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program repair
using SAT. In TACAS, pages 173–188. Springer, 2011.

19. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In POPL, pages 317–330. ACM, 2011.

20. S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8):97–105, Aug. 2012.

21. G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-violation
fixing. In PLDI, pages 389–400. ACM, 2011.

17

22. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV,
pages 226–238. Springer, 2005.

23. J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula automatic
fault-localization technique. In ICSE, pages 273–282. IEEE, 2005.

24. D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In ICSE, pages 802–811. ACM, 2013.

25. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD. IEEE, 2011.

26. R. Könighofer and R. Bloem. Repair with on-the-fly program analysis. In HVC,
pages 56–71. Springer, 2013.

27. G. Li, I. Ghosh, and S. P. Rajan. KLOVER: A symbolic execution and automatic
test generation tool for C++ programs. In CAV, pages 609–615. Springer, 2011.

28. F. Long and M. Rinard. Automatic patch generation by learning correct code. In
POPL, volume 51, pages 298–312. ACM, 2016.

29. S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. In ICSE, pages 691–701. ACM, 2016.

30. B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of
UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

31. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language
and tools for analysis and transformation of c programs. In Compiler Construction,
pages 213–228. Springer, 2002.

32. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program
repair via semantic analysis. In ICSE, pages 772–781. ACM, 2013.

33. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using Dynamic Analysis to
Discover Polynomial and Array Invariants. In ICSE, pages 683–693. IEEE, 2012.

34. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Connecting program synthesis
and reachability. Technical report, University of Nebraska, Lincoln, Oct 2016.

35. H. Rice. Classes of recursively enumerable sets and their decision problems. Trans.
of the American Mathematical Society, 74(2):358–366, 1953.

36. S. Saha, P. Garg, and P. Madhusudan. Alchemist: Learning guarded a�ne func-
tions. In CAV, pages 440–446, 2015.

37. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In CAV, pages 419–423. Springer, 2006.

38. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In PLDI, pages 15–26. ACM, 2013.

39. A. Solar-Lezama. Program synthesis by sketching. PhD thesis, University of Cali-
fornia, Berkeley, 2008.

40. A. Solar-Lezama, G. Arnold, L. Tancau, R. Bod́ık, V. A. Saraswat, and S. A.
Seshia. Sketching stencils. In PLDI, pages 167–178. ACM, 2007.

41. A. Solar-Lezama, R. Rabbah, R. Bod́ık, and K. Ebcioğlu. Programming by sketch-
ing for bit-streaming programs. PLDI, 40:281–294, 2005.

42. S. Srivastava. Satisfiability-based program reasoning and program synthesis. PhD
thesis, University of Maryland, 2010.

43. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In POPL, pages 313–326. ACM, 2010.

44. S. Srivastava, S. Gulwani, and J. S. Foster. Template-based program verification
and program synthesis. Soft. Tools for Technol. Transfer, 15(5-6):497–518, 2013.

45. SyGuS: Syntax-guided synthesis competition. www.sygus.org, 2016-10-19.
46. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically Finding

Patches Using Genetic Programming. In ICSE, pages 364–367. IEEE, 2009.

