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Privately Finding Specifications

Westley Weimer and Nina Mishra

Abstract—Buggy software is a reality and automated techniques for discovering bugs are highly desirable. A specification describes
the correct behavior of a program. For example, a file must eventually be closed once it has been opened. Specifications are learned
by finding patterns in normal program execution traces versus erroneous ones. With more traces, more specifications can be learned
more accurately. By combining traces from multiple parties that possess distinct programs but use a common library, it is possible to
obtain sufficiently many traces. However, obtaining traces from competing parties is problematic: By revealing traces, it may be
possible to learn that one party writes buggier code than another. We present an algorithm by which mutually distrusting parties can
work together to learn program specifications while preserving their privacy. We use a perturbation algorithm to obfuscate individual
trace values while still allowing statistical trends to be mined from the data. Despite the noise introduced to safeguard privacy, empirical
evidence suggests that our algorithm learns specifications that find 85 percent of the bugs that a no-privacy approach would find.

Index Terms—Specification techniques, software quality, learning, privacy.

1 INTRODUCTION

SOFTWARE bugs are prevalent and testing remains the
primary approach for finding software errors. Software
testing is difficult and expensive, so techniques to auto-
matically find classes of errors statically [1], [2], [3], [4], [5],
[6], [71, [8], [9], [10] or dynamically [11], [12] are gaining
popularity. Such tools can typically find some bugs or
verify the absence of some mistakes.

These tools require formal specifications or policies about
what programs should be doing and the tools report bugs
when programs violate those policies. Specifications typically
reflect program invariants [7], [13], structural constraints [14],
correct API usage [1], [8], security concerns [2], concurrency
[4], [15], or general notions of safety [5], [6], [9].

For example, operating systems should ensure that free
pages are blanked before allocating them to a new
requesting process to avoid leaking sensitive information
[16]. Applications that format untrusted data (for example,
from the disk or the network) must sanitize data to avoid
being compromised via format string vulnerabilities [17],
[18]. Operating system trap implementations and device
drivers must validate the ranges of user-level and kernel-
level pointers before dereferencing them [19]. As a final
example, e-commerce and Web applications must carefully
handle user input to avoid SQL injection and cross-site
scripting attacks [20]. These specifications guard against
many different security vulnerabilities (for example, reveal-
ing private data, untrusted accesses to databases, and
compromises of remote hosts), but they all include rules of
the form some event a must occur before some other event b
(for example, “proper sanitization” must occur before “a
user-supplied string is used”).
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One promising recent approach has been to extract
program invariants [13], [21] or full specifications [6], [12],
[22], [23], [24], [25] from program sources or traces of
program executions. A frace is a sequence of events that can
be collected statically from the source code or dynamically
from instrumented binaries. Unfortunately, the automated
specification mining of traces tends to be imprecise in
practice. Miners often produce many candidate specifica-
tions, only a few (for example, 1 percent to 11 percent [6],
[24]) of which are valid. Techniques producing single
specifications tend to produce noisy policies (for example,
they are too permissive, too strict, or both).

This paper poses the following question: Is it possible to
cooperatively learn specifications while preserving the
privacy of participants? On the surface, the answer to this
question would seem to be “no.” After all, participants
enjoy perfect privacy when nothing is shared about their
code. On the other hand, specifications are optimally
learned when everything is shared about the participants’
code. Surprisingly, however, a balance between the two
extremes can be struck by making a few critical observa-
tions. We can learn specifications without exchanging
source code or traces. Modern specification miners only
require information about the number of times that a
function calls another in a normal versus erroneous trace.
Our work takes this requirement one step further and
shows that even these exact values need not be shared. We
describe a method of perturbing these numbers to values
that look like random noise. We call these perturbed values
a blurry trace. The blurring ensures that the participant’s
privacy is preserved. Despite this strong privacy protection,
we show how we can still learn specifications from all of the
blurry traces in aggregate.

Fig. 1 outlines our technique. Multiple companies have
programs that use the same interface or API. Each company
obtains traces from its own software and then blurs those
traces before publishing them. Aggregate information from
all published traces can be used to aid specification mining.
Each company expects that its source code and trace
information will remain private and each company’s
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Fig. 1. A diagram showing the privacy-preserving specification model
that we propose. The construction of the blurry traces and the use of the
aggregate trace information in a specification miner are key concepts in
this paper.

specification mining efforts benefit from the aggregate
information provided by the other companies.
The main contributions of this paper are:

1.  We introduce the notion of privacy to the domain of
specification mining. We give a definition of privacy
that is motivated by the context of finding specifica-
tions. Intuitively, the definition considers the prior
knowledge that an attacker has and the posterior
knowledge that an attacker gains upon seeing the
published information. Privacy is preserved if the
posterior knowledge is about the same as the prior
knowledge.

2. We introduce blurry traces, which convert informa-
tion in a trace into essentially random noise. We
show that, if a participant publishes a blurry trace,
then privacy is preserved.

3. We present an algorithm that allows mutually
distrusting participants to work together to mine
specifications from these blurry traces. We show that
values deduced from the blurry traces approximate
their true values, that is, from unblurred traces,
provided that there are sufficiently many participants.

4. We also perform an extensive series of experiments.
We test our algorithm on almost two million lines of
code, mining specifications that find over 700 meth-
ods with errors. Despite the blurring, we still find
85 percent of the bugs (and end up with 85 percent
of the specifications known) that would be found by
no-privacy approaches. Each participant contributes
a different illustration of correct usage and, so, the
group is able to learn more by collaborating
compared to the individuals working alone.

2 BuG FINDING AND SPECIFICATION MINING

Automated bug-finding techniques check a program
against a specification and report potential bugs where
the two differ. If the bug finder is sound, the specification is
correct and the model of the program’s environment reflects
reality, then the bug is real. Otherwise, the bug report is a
false positive. Bug-finding techniques are often incomplete as
well and exhibit false negatives as they fail to report some
real bugs. The advantage of bug finding is that it can
cheaply locate bugs, without the costs of testing. False
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positives negate that advantage by requiring developers to
spend time investigating spurious bug reports.

If the specification used for checking for bugs is
incorrect, in general, all of the resulting reports will be
false positives. In addition, bugs can only be found with
respect to the specifications available. It is thus important to
have as many correct specifications as possible.

Given a specification, potential bugs are found using a
number of techniques, the most prominent of which are
data-flow analysis [3], [5], [6], [9], [10] and iterative
abstraction refinement [1], [8], [26]. Different approaches
favor different trade-offs with respect to scalability and
precision. Almost all existing bug-finding tools can take
advantage of the specifications that we mine. A new
specification can easily be incorporated into an existing
bug-finding system.

2.1 Specification Mining

Specification mining involves extracting models of correct
program execution (called specifications or policies inter-
changeably) from possibly buggy traces of program
behavior. It is conceptually related to time-series prediction,
data mining, and some machine learning notions of
clustering and classification (for example, [27]). In general,
learned specifications can be used for documenting, testing,
refactoring, debugging, maintaining, optimizing, and for-
mally verifying programs. Most commonly, however, they
are used in conjunction with bug-finding tools to locate
program defects.

In practice, specifications take the form of simple finite-
state machines' over an alphabet of important program
events Y. These events are commonly method invocations.
Other events are possible (for example, specifications based
on variable invariants [12], [22]), but policies based on
function call orderings are well established and correspond
to intuitive API usage rules. Policies are learned from traces,
which are sequences of events. Each party collects its own
traces statically from the source code or dynamically from
instrumented binaries. Traces are often annotated with
additional information such as types or error codes. Traces
can be interprocedural, covering the program from start to
finish, or intraprocedural, listing all of the events that occur
within one method invocation.

Intuitively, specification mining might begin by instru-
menting a program to print out the name of each function as
it is entered. The program is then run on indicative
workloads or test cases and the recorded sequences of
method invocations become the traces. A mining algorithm
interprets those traces and produces candidate specifica-
tions: simple finite-state machines that describe legitimate
orderings for functions (for example, every open must be
followed by a close).

A formal description of the specification mining problem
can be found in [23]. Even restricted versions of the problem
are undecidable or difficult, however, and, in practice, all
mining algorithms involve approximations. One key prac-
tical reason relates to the algorithmic input: the traces. The
program under consideration is typically buggy. Since
specifications are used to find defects automatically, mining

1. More complicated properties can often be converted to simpler state
machines (for example, [28]). In this paper, we use “simple” to refer to two-
state DFAs and we concentrate on learning properties of that form.
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algorithms and bug finders are usually run on buggy
programs rather than correct ones. The traces are thus
inherently noisy. Even if open followed by close is a valid
specification, the program may violate it in a few traces or
may not exhibit it if there are not enough test cases. Scalable
specification mining algorithms typically use statistics and
ranking to address this lack of precision: A mining
algorithm may produce many candidate specifications,
only some of which turn out to be real. For humans,
determining if a simple two-state specification is valid is
typically much easier than creating a new specification from
scratch or debugging an existing one [29] and the final step
in the specification mining process involves presenting the
candidate specifications to a user for judgment.

2.2 Mining Algorithms

Specification mining is a relatively new research area and
only a few prominent techniques are available. Our
previous work [24] contains a survey and experimental
discussion of the relative bug-finding powers of some
miners. We will concentrate on two scalable approaches
that attempt to learn pairs of events (a,b) corresponding to
the two-state FSM specification described by the regular
expression (ab)”. Other events unrelated to the specification
can occur at any point, so the policy may also be viewed as
(X*aX*bE*)", where ¥ is the set of all events.

Finite automata corresponding to (ab)” might seem too
simple to be worthwhile as formal specifications. In fact,
12 simple specifications, such as “not releasing acquired
locks, calling blocking operations with interrupts disabled,
using freed memory, and dereferencing potentially null
pointers,” all of which follow the (ab)* pattern, have been
used together to find roughly 1,000 distinct bugs in the
Linux and OpenBSD kernel code [30].

We classify a trace as an “error trace” if it terminates with
exceptional control flow (for example, a runtime error). Other
traces are “normal traces.” Let Ny, be the number of normal
traces that have a followed by b and let N, be the number of
normal traces thathave a atall. We define E,;, and E, similarly
for error traces. The normal or error nature of a trace can be
determined by how it is gathered (for example, using fault
injection [31] typically results in error traces) or by what it
contains (for example, traces can be inspected for uncaught
exceptions or runtime errors). Previous work suggests that
programs often fail to adhere to specifications in the presence
of runtime errors [10].

Engler et al. [6] propose the ECC technique for mining
rules of the form “b must follow a” as part of a larger work
on may-must beliefs, bugs, and deviant behavior. They
mine event pairs (a,b), where a is followed by b in some
traces but not in others: N, — Ny + E,— E,; >0 and
Nay + Eqy, > 0. In addition, a series of data-flow dependency
checks is employed to weed out unrelated events (for
example, “b must follow a” is more likely to be a real rule if
a’s return value is one of b’s arguments). ECC produces a
large number of candidate specifications which are then
hierarchically ranked using the z-statistic for proportions.
Engler et al. use the ranking because its value grows with
the frequency with which the pair is observed together and
decreases with the number of counterexamples observed.

In previous work, we proposed the WN technique [24] for
mining “b must follow a” rules. Exceptional paths contain
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more mistakes [10] and we use this trend to learn policies
more precisely. WN mines all pairs (a, b) such that £, > 0,
E,—E; >0, and a and b are related by data-flow and
program structure requirements. The resulting candidates
are ranked in favor of N,/ N,. These restrictions favor pairs of
events that are almost always present on normal paths, are
important enough to be enforced on some error paths, but are
tricky enough to be forgotten on other error paths.

Together, the ECC and WN mining algorithms have
previously found more than 70 specifications that found
almost 500 real bugs in almost one million lines of code [24].
Our presentation intentionally casts the ECC and WN
miners in a very similar light in order to highlight their use
of the same four input values (N,, Ny, E,, and E), plus
some public-type information about the API under con-
sideration. The two mining algorithms have very different
false positive rates in practice.

3 DEFINING PRIVACY

Our intuitive notion of privacy is that it should be
impossible to determine that one participant has buggier
traces (and hence buggier software) than another. We will
keep all trace characteristics, including bug counts, private.

Most participants will not want to make their source
code public. Furthermore, program traces are just as
sensitive as the source code. Given a specification, each
trace can be checked against it for compliance: Having each
trace available allows one to count bugs in the original
program. Participants cannot suppress all buggy traces,
however, because the specifications are not known in
advance. The mining goal is to learn new policies, some of
which will be violated by some input traces. Unless the
traces are protected in some manner, successful mining
necessarily breaks the privacy by revealing defects in the
participants” programs.

3.1 Models of Privacy

One way of attacking the privacy problem is to assume a
trusted third party who collects traces from participants
and publishes the appropriate specifications. However, in
practice, trusted third parties are hard to find. Indeed, it is
quite unlikely that a software company will agree to share
information about its source code with any other party.

In the absence of a trusted third party, the traditional
cryptographic solution is to use secure function evaluation
(SFE). In short, SFE gives participants the ability to compute
any function of their combined data, without leaking any
information beyond the value of the function [32], [33]. The
privacy definition is that, with high probability, nothing
more is leaked than what could be learned from giving the
data to a trusted third party. We discuss the SFE approach
more extensively in Section 8.2.

Instead, we follow a model where participants maintain
complete control over their data [34]. If a participant wishes
to publish perturbed versions of its data, it can do so while
simultaneously preserving its privacy. The perturbed
versions of the data can be mined either by a miner or
collectively by the participants. We go on to prove that
large-scale aggregate data can be well estimated, provided
there are sufficiently many participants.
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3.2 Privacy Definition

We view privacy as a game between an attacker and a
participant. The attacker possesses some prior knowledge
modeled as a probability distribution D. The participant
does not know D. Each participant wants to protect how
buggy its code is. Once a specification is released, if an
attacker knows how many times b follows a in a
participant’s traces, then the attacker can deduce a lower
bound on how many bugs the participant has and, thus,
how much more buggy the participant’s code is than the
attacker originally believed. We thus seek to prevent an
attacker from learning Ny, N,, Eq, and E,.

Intuitively, we say that privacy is preserved if the
attacker does not learn much from the published informa-
tion s. Let 7 denote a trace and let f(r) denote some
characteristic of the trace. The functions f that are of interest
in this paper are Ny, Eq, N,, and E, with respect to the
trace 7. One way of defining privacy is to ensure that the
attacker’s posterior belief that f(7) = x is similar to its prior
belief. This is precisely the spirit of the first definition of
privacy, except that we assume a given set of intervals,
denoted Z: Privacy is preserved if the posterior belief that
f(7) € I is about the same as its prior belief for each I € 7.
Note that this definition is more general since it includes, as
a special case, the set of intervals where each consists of just
one integer value.

Definition 1. A perturbation algorithm is e-secure with respect
to f if, for any private trace T, it produces a perturbation s
such that, for every interval I € Z,

1 < Pr(f(r) € I|User published s)
1+e™ Pr(f(r) € I)

where the prior probability is taken over the attacker’s prior
beliefs and the posterior probability is taken over the attacker’s
beliefs and the random coin tosses of the perturbation
algorithm.

<(l+e),

We now explain why this is a strong definition of
privacy. Our perturbation algorithm will produce a blurred
version of f(7), for example, a blurred version of N. Since
the specifications that we learn are of the form a precedes b,
from this blurred version, it will not be possible to deduce
how buggy a single participant’s code is: The privacy
definition above requires that the attacker learn almost
nothing from the published information. Consequently,
once a specification of the form b must precede a is mined,
an attacker will not be able to determine how many times a
participant’s code makes the mistake of calling a before b,
that is, N,. Furthermore, it is also not possible for an
attacker to determine if one participant has more bugs
another. In short, since we will show that the values that a
participant publishes approximate random noise, an attack-
er will not be able to learn anything about a single
participant’s source code. Nevertheless, with enough
participants, specifications can still be discovered.

Although the above definition captures an intuitive
definition of privacy, we use a different definition that is
easier to work with mathematically. Lemma 1 shows that
the definitions are actually equivalent to each other and,
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consequently, we will actively use the latter definition in
our proofs.

Definition 2. A perturbation algorithm is e-private with respect
to f if, for any private trace T, it produces a perturbation s
such that, for any two intervals I' and I" in T,

Pr(User published s|f(7) € I)
Pr(User published s|f(7) € I")

<(1+e), (1)

where the probability is taken over the random coin tosses of
the perturbation algorithm.

The following lemma states the relationship between the
two privacy definitions. The proof is folklore.

Lemma 1. An e-private algorithm is e-secure and an e-secure
algorithm is 3e-private.

In our work, we assume that each participant’s trace is
independent of every other participant’s trace. It seems that
this assumption is needed for any input perturbation
algorithm because, otherwise, a participant’s privacy could
be compromised, even if no information is published. In
practice, there are likely to be dependencies between
participants’ data. We do not address this dependency in
our work, but note that interparticipant privacy seems to be
an open problem in most privacy research to date.

4 PRESERVING PRIVACY: BLURRY TRACES

To mine specifications, we must compute the aggregate
values N,, Ny, E,, and E,, from the traces. To preserve
privacy and utility, we perturb the traces in a manner that
allows us to approximately infer aggregate values. The
techniques and analysis presented here derive from the
work in [35] and [36]. Our contribution is the application
and experimental evaluation of these techniques to the
specification mining and bug-finding problems.

In practice, there are many relevant events a and b and
we need N,, Ny, E,, and E,;, for all combinations of them.
We will explain our handling of N, for fixed/arbitrary a
and b. The other cases are symmetric.

41 A Blurry N,

How can a participant publish a perturbed version of Ng;?
The main idea involves first representing each participant’s
data as an indicator vector over the possible values or, more
generally, intervals of values that N, can take. An example is
shown in Fig. 2. The participants agree on an upper bound for
Ny, in this case 50, and a binning strategy, in this case, each
interval has five integer points. In the participant’s traces,
suppose that b follows a 11 times. Then, the vector @ is an
indicator vector for that participant’s private data.

If the indicator vector was published, the utility require-
ment would be met, but the privacy requirement would not
be. The participant’s value could be pinned down to one of the
five numbers. On the other hand, if each element of ¥, was
flipped with probability 1/2, the privacy would be preserved,
but nothing could be learned from the resulting totally
random vector. Instead, we suggest flipping each element of
U with probability slightly under 1/2, thatis, p=1/2 —e.
With this slightly biased flip, we can prove e-privacy.
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Fig. 2. The top row describes ranges for 10 distinct bins corresponding to the number of times that event a precedes event b in a trace. The middle
row is an indicator vector describing a trace where a precedes b 10-14 times. The bottom row is a published perturbed vector, with p close to 1/2.

Lemma 2. For a trace 7, let v denote the vector obtamed by

p-perturbing the interval indicator vector ¥ for f(r). If

p=1/2—¢/12, then ¥
Proof. Letting I and I’ be two intervals:

Pr(t =alf(r) €1) _ (1 —p>2
Pr(¢ =z|f(r)el') — \ p
1+e 2
:(? 12) <l+e
27 12

We assume that all participants perturb with the same
probability p. This is a simplifying assumption in that each
user could select a different probability p so as to “dial their
own” privacy. The bound in the lemma quantifies the
resulting mathematical loss in privacy. From a utility
perspective, with more values of privacy p, however, more
participants will be needed to estimate aggregate data. To
simplify the presentation, we assume that p is the same for
each participant.

Furthermore, we assume that the perturbation probability
p is public information. This is a standard assumption in
cryptography (Kerkhoff’s principle): Even though the priv-
acy-preserving algorithm is public, an attacker still cannot
gain any knowledge about a participant’s private data.

4.2 A Blurry Trace

Although the previous analysis assumed that each partici-
pant was publishing only one value, specification mining
requires an estimate of N, and E,, for all pairs of functions a
and b, as well as N, and E, for all a. We advocate that each
participant publish a blurry version of each of these values.
In other words, given that the participants agree on a
binning for each attribute and given that they agree on a
perturbation value p, they each produce a p-perturbed
version of these values. We call the collective perturbed
versions of Ny, and E for all pairs a,b and N, and E, for
all @ a blurry trace.

Note that some unperturbed values are likely to depend
on others, that is, the number of times that b follows ¢ and d
follows c in a trace may be related. For example, a program
with no calls to create new sockets will also have no calls
to close or write to sockets. The dependencies in the
unperturbed values potentially create dependencies in the
perturbed values, resulting in an increased loss of privacy.
We quantify this loss in the following lemma:

is e-private for f.

a

Lemma 3. If a participant releases ¢ perturbed interval indicator
vectors ¥,,...,U, corresponding to ¢ different functions
fis.., fo, then, for any two possible private values
(I, ..., Iy and (I}, ..., I}),

( » )2f< Pr(ALy (¥ = @)| Ay (fi(7) € 1))
L—p) = Pr(A_ (¥ = ;)| A, (fi(r) € 1))
1 —p 20
: (T) |

2
The lemma follows since, conditioned on a user’s trace, each
perturbed vector is generated independently.

The ensuing loss of privacy could, in theory, be very
large. If there are thousands of functions, then the number
of pairs of functions is on the order of millions. However,
this is a decidedly worst-case upper bound on the value ¢ in
the previous lemma. Based on our empirical experience, we
find that the number of functions that depend on each other
is typically at most six (for example, see [12], [22]). If all
functions could be partitioned into groups of six so that
there are only dependencies within sets of size six, then the
loss of privacy can be quantified in the above lemma, with
¢ = 36. However, even this is a loose upper bound since the
proof of the lemma assumes that by “dependency,” we
mean that the values are identical. Thus, in practice, the loss
of privacy will be substantially less than what the preceding
lemma suggests.

5 EXTRACTING AGGREGATE VALUES

Despite the noise, some aggregate values can be approxi-
mately recovered from the perturbed data. For an interval I,
let F,;; be the fraction of participants, with N, in the
interval I. We show how we can estimate F,,; from the
perturbed traces. Let F;, ; be the fraction of participants that
submit perturbed traces, with a “1” in the interval
corresponding to I. Via a simple calculation, we have

E(Eyr) = (1 —p)Eur+p(l — Fap),

which implies that

E(Fab,l) -p

Fur=
b1 1-2p

Thus, if we can estimate E(Fab, 1), then we can estimate F ;.
We next claim that, if we have enough participants, we can,
in fact, estimate E(Fy1)-

Lemma 4. Assume that we have a collection of 3t 3rlog 2

independent participants. Let Fﬁ‘? denote the fraction of
participants who publish a perturbed vector, with a “1” in the
interval 1. With probability at least 1 — 6, for every interval
LT, ] = B <7

Proof. By the Chernoff bound, if there are F;log 2
independent participants, then the probability that
|F5;j‘l} E(E, )| is larger than that v is at most §/|Z].
Thus, by the Union bound, the probability that any one
of the |Z| intervals is not well estimated is at most §. O
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Given estimates for Fy; ;, we can lower and upper bound
% (where n is the total number of participants) as follows:

ab
Z uEzb,[?u >~ < Z vFy, [u,v]

[uv]eT [uv]eT

Thus, if we select the midpoint of each interval, then the
error in estimating 2 is, with high probability, at most the
sum over all intervals of the error in Fy,; times half the
length of the interval. For example, if each interval has the
same length z, then the error is at most =5 |I |5.

5.1 Privacy versus Utility Trade-Off

These results illustrate an inherent classic trade-off between

privacy and utility. For example, the closer p is to 1/2, the

more privacy is given to the participants, but the worse the
error in estimating aggregate data such as N,. As another
example, the more intervals used, the more privacy is given
to the participants, but the worse the error in estimating
large-scale data. The reason is that privacy for a fine-
grained set of intervals implies privacy for a coarser grained
set. Specifically, privacy for the intervals in Z implies

privacy for unions of intervals in Z (proven in Lemma 5).

The implication in the other direction does not hold, that is,

privacy over a coarse-grained set of intervals does not

imply privacy over a finer grain. The solution, however, is
not to simply increase the number of intervals since, then,
more participants are needed to accurately estimate Fi ;.

Furthermore, the approximation error in estimating Ng

declines. An appropriate balance must be struck between

the number/length of intervals and p so as to achieve the
desired level of privacy and utility.

We conclude the section with a proof that privacy for the
intervals in Z implies privacy for unions of intervals in Z.
Lemma 5. A perturbation that is e-secure for all intervals in T is

also e-secure for all unions of intervals in I.

Proof. We do the proof for two consecutive intervals and
a similar argument works for more intervals. Let [u, ]
and [v,w] each be esecure. We want to show that,
then, [u,w] is also e-secure. Let o = Pr(f(7) € [u,]|s),

B="Pr(f(r) € [u,v]), v=Pr(f(7) € [, WHS) and
6= Pr( (1) € [v,w]). By assumption, i <3< (+e),
and 1 - <1< (1+¢). We want to show that

1 < Pr(f(r) € [u,w]|s)
1+e™ Pr(f(r) € [u,w)])

<(1+e).

Since the probability that f(r) €
disjoint events f(7) € [u,v] or f(7) € [v,w], we can write
Pr(f(r) € [u,w]|s) as & + v and Pr(f(7) € [u,w]) as B+ 6.
We want to show that = <27 <1+e Using the

1+e B+6 —
v < 6(14€)

B(1+e)
p+o p+6 = [+6

< (1 + €), as desired. Similarly, it can

[u,w] is comprised of

and

assumption, we have that 545 <-

aty
B+6 —

o+
be shown that 75 > 1+f ad

so that the sum
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6 PRIVACY-PRESERVING SPECIFICATION MINING
ALGORITHM

Our algorithm works as follows:

1. A number of mutually distrusting participants agree
to mine specifications with respect to an API or
library known to all of them. This choice fixes the set
of interesting events X, from which the various as
and bs are drawn.

2. Each participant chooses an interval size .S, a number
of intervals I, and a perturbing probability p such
that that its desired level of privacy is achieved.

3. Global values S, I, and p, are set to the largest
proposed p and S values and the smallest proposed
I value. This satisfies all privacy guarantees.

4. Each participant privately examines its own traces
and computes real values of N,, Ny, E,, and Ey, for
allac X and b e X.

5. Each participant encodes its own N,, Ny, E,, and
Eq values into indicator vectors with sizes S, and I,
and then p,-perturbs® and publishes each result.

6. Each participant uses the techniques in Section 5 to
recover approximate aggregate values for N,, N,
E,, and E,, that describe the entire cumulative set of
traces used by all participants.

7. Each participant mines specifications from that
aggregate data.

In Step 1, the participants must all have programs that
use a common library or APL. Programs with nothing in
common cannot benefit from our technique.

In Steps 2 and 3, the participants trade off privacy for
utility: preserving privacy sacrifices utility. Our experi-
ments in Section 7 show that generous levels of privacy still
allow useful results to be obtained from the perturbed data.

In Step 5, note that the perturbed indicator vectors need
not be published simultaneously in a tamper-proof manner.
The perturbed vector preserves privacy, regardless of who
views it, and participants can post vectors at different times.

The novelty of the algorithm lies in publishing the
perturbed data to preserve privacy while maintaining
utility: The actual specification mining is performed by an
off-the-shelf algorithm on the reconstructed aggregate data.
We view this as an advantage: As presented, our algorithm
works with both the WN and ECC mining techniques.
Other mining algorithms (for example, [25]) could use this
framework by extending it to publish perturbed versions of
the data that they require.

The mining actually happens after the perturbed traces
have been published. The noisy traces serve as input to the
mining algorithm (see Section 2.2). Note that the summed
values (for example, of N,) for all participants are added
and not averaged: If one participant uses the common API
more than others do, thus making a very large N,;, we can
still learn the specification (a,b) even if other small
participants have low values for Ng,.

2. In Steps 2, 3, and 5, the participants can choose separate S, I, and
p values for each vector. For example, the perturbed vector for N, might
use fewer bins than the one for E. This allows participants to fine-tune
their privacy requirements on a per-value basis (for example, to deal with
values that are not independent, as in Section 4.2).
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Program LOC | Traces | Description

1. axion 65k 8513 | database

2. hibernate? 57k 16266 | object persistence
3. hsgldb 65k 14381 | database

4. openreports 15k 5020 | web reporting

5. ireport 149k 8649 | visual reporting
6. scheduler 79k 24808 | job scheduler

7. squirrel 197k 33254 | database client

8. opentaps 266k 55607 | business

9. dbmt 4k 3563 | data migration
10. jbpm 75k 9780 | business

11. jboss 107k 23121 | middleware

12. neogia 614k | 126384 | business

13. cayenne 86k 14102 | object framework
14. mckoisqgl 116k 19651 | database

Grand Total 1895k | 363099

Fig. 3. Programs used in experiments, with lines-of-code counts and
numbers of associated traces. The programs are presented in the
random order chosen for the primary trials (for example, an experiment
with three participants involves axion, hibernate2, and hsgldb).

The miner produces candidate specifications (that is,
candidate (a, b) pairs). Since all of the perturbed traces have
been published, each participant can run the miner and get
the same results. There is no trusted third party that “does
the mining.” We view this as an advantage.

7 EXPERIMENTS

We performed an extensive series of experiments to test the
hypothesis that our privacy-preserving technique can
produce useful results, even as it safeguards privacy.

Our experiments involved 14 open source programs,
totaling 1.9 million lines of code (see Fig. 3). We generated a
set of traces for each program. In our experiments, each
program represents a separate participant that wishes to
learn, without sacrificing its privacy, specifications about
the Java Standard Library. In our experiments, the
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participants always join in the random order in which they
are presented in Fig. 3. For example, an experiment with
two participants involves axion and hibernate?2.

We chose open source programs and APIs because of
their availability. In practice, the Java Standard Library is
well understood, which allowed us to quickly verify or
reject candidate specifications.

7.1 Additional Traces

Our first experiment provides a baseline for our general
claim that additional traces increase the precision of
specification mining. An abundance of traces mitigates the
effects of noisy traces and unindicative traces. In our first
experiment, we chose a single program, neogia, for which
we had an unusually large number of traces (seven times
more than our per-program average).

Fig. 4 shows that increasing the number of available
traces increases the precision of the WN specification miner
and the number of specifications found. On each input set
of traces, the miner outputs scores of candidate specifica-
tions. Developers rarely spend effort on inspecting all
candidate traces, so we considered only the 20 highest
ranked candidates for each trial and manually determined if
they were real or false positives. Given more and better
traces, automated specification miners produce more and
better specifications, which can thus find more bugs.

7.2 Specification Mining

We applied our algorithm in Section 6 to the participants in
Fig. 3. Each participant published a set of blurry traces. We
applied the WN and ECC algorithms to those blurry traces,
collected the resulting candidate specifications, and then
manually determined if those candidates were valid
policies or false positives.

When perturbing the data, we fixed the number of
intervals at I =100. The interval size varied over the
value being encoded but was generally S = 2,000. Fixing
these parameters allowed us to consider the perturbing

Specifications Learned vs. Input Traces
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Fig. 4. A plot of the number of real specifications among the first 20 candidates specifications produced by the WN specification miner versus the
number of input traces. All traces are from the neogia program. Each point represents an independent random subset of the traces. The dashed
line near 15,000 indicates the median number of traces available over the programs in our data set. Note that performance continues to improve with
additional traces beyond 15,000: This provides a strong motivation for sharing traces.
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Specifications Known vs. Participants

p=04 m p=045

A p=0.49999 )¢ No Sharing x No Privacy|

Sum Total Specifications Known

8 9 10 1 12 13 14

Fig. 5. A plot of the total number of valid specifications known, summed over all 14 potential participants. The horizontal line at 144 indicates the total
number of specifications known if each participant works independently, without sharing. Finding 714 specifications is a potential upper bound for
this experiment. The p = 0.45 curve reaches 85 percent of that with all 14 participants.

probability p as the only independent variable: Higher p
values yield more privacy and less utility.

Over the course of all of the experiments presented here,
the WN mining algorithm generated 3,658 false-positive
specifications (for example, java.util.Set.add should
be followed by java.util.Timer.cancel) and 112 real
specifications (for example, java.sgl. Connection.
createStatement should be followed by java.sql.
Statement.close). High false-positive rates are common
in specification mining [6], [10], [29].

We are also interested in the total number of specifications
known to all development teams. Beyond an immediate use
in bug finding, specifications can also be used to guide
development and aid in program understanding. In this
experiment, we sum over all 14 potential participants the
number of specifications known to that participant. This is
different from measuring the total number of unique
specifications known anywhere. From a software engineer-
ing perspective, we view it as twice as good if two separate
participants are both aware of the same valid specification. In
such a case, both independent development groups can make
local use of the same specification.

Fig. 5 shows a plot of the sum of the total number of
specifications known as a function of the number of
participants. If no sharing takes place at all and each
participant works alone, there are 144 total known
specifications: axion learns 8, hibernate2 learns 13, the
others learn 123 total, and, on average, each participant
learns 10.2 valid specifications. The total knowledge
increases as more participants share. For example, with
two participants, the aggregate perturbed traces of axion
and hibernate2 can be mined to learn 18 valid traces. The
number of known traces increases to 159 (18 for axion, 18
for hibernate, and the same 123 for the nonparticipating
others). When all 14 participants work together, they are
each able to take advantage of the 43 resulting valid
specifications. This is four times, on average, of what they
would have when working alone.

Over the course of all of the experiments that we
conducted, 51 of the 112 valid specifications mined dealt
with the Java Standard Library. Thus, 714 (=51 x 14)
represents an upper bound of sorts for this mining

technique. The true upper bound is not known: No
exhaustive analysis of the Java Standard Library has been
performed and, in general, it is impossible to know if all
potential specifications have been identified (see Sec-
tion 8.1.2). However, if everything had gone perfectly and
all 14 participants had shared all of their data without any
concern for privacy, it would have been possible to learn
those 51 specifications. In practice, with p=0.45 and
14 participants, we learned 85 percent of that total.

The p = 0.49999 curve shows the results of specification
mining on very blurry traces. The resulting interval vectors
are very close to random bits.

All of the numbers presented above are the result of
applying the WN algorithm to the blurry traces. We also
applied the ECC algorithm to the traces, but it produced a
large number of false-positive specifications. For example,
with p=04 and only two participants (axion and
hibernate2), ECC reported 36,148 candidate specifica-
tions, of which 3,768 had a positive z-statistic ranking. We
did not have time to manually verify all of ECC’s candidate
specifications. We will return to it in Section 7.4.

For the experiments shown in Fig. 5, the runtime cost of
preserving privacy is quite low. On average, it took
0.823 seconds per 1,000 traces to construct and populate
the interval vectors and another 0.559 seconds per
1,000 traces to perturb the interval vectors on a 3.6 GHz
Pentium 4. Preserving privacy on the final experiment, with
all 14 participants, took a total of 505 s. However, the
blurring can and should be done in parallel, with each
participant constructing its own perturbed interval vector.
The average time per participant was 36 s, with neogia
taking the longest at 176 s. These numbers are for / = 100
and p = 0.4. The time taken scales linearly with I and is not
affected by changes in p.

7.3 Bug Finding

One important measure of the utility of a specification is the
number of program bugs that it allows you to find. We
gathered all of the valid specifications learned via the
previous experimental setup. We then checked the source
code of the participants against those valid specifications by
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Bugs Found vs. Participants
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Fig. 6. A plot of the number of bugs found using the specifications learned as a function of the number of participants. Each point is an independent
random trial. A method with multiple errors counts as one bug. The p = 0 curve shows the utility obtained when privacy is completely sacrificed (all
data is published unperturbed). The “No Sharing” curve shows the total number of bugs that the participants find by working alone on their own
traces. However, note that this cumulative “No Sharing” curve is hypothetical since it involves participants sharing their learned specifications and
bugs without regard to privacy. The p = 0.4 curve is, on average, 85 percent of the p = 0 curve.

using a standard type-state flow analysis [5], [10]. We
counted the number of distinct methods that contained at
least one indicated error and called each such method a
single bug.

Fig. 6 shows the number of bugs found as a function of
the number of participants. The p = 0 curve shows the no-
privacy result when all values are published unperturbed.
This requires mutually trusting parties and represents the
highest achievable utility. The “No Sharing” curve shows
the total number of bugs participants find by working alone
on their own traces [10]. The p = 0.3 and p = 0.4 curves
show that, even with a high degree of privacy for
participants, our technique allows useful information to
be extracted from the aggregate perturbed values: We mine
real specifications that find bugs. The p = 0.4 curve is, on
average, 85 percent of the nonprivate p =0 curve and is
12 percent better than the “No Sharing” total.

The p = 0.49999 curve shows the results of bug finding
using only specifications mined from highly perturbed
data. Some valid bugs are found, but the participants are
better off working alone than using aggregate data that
resembles random noise.

7.4 The Price of Privacy

One potential concern is that maintaining adequate privacy
would result in traces that were too blurry to be useful. In
our experiments, that was not the case.

Miners typically have poor false-positive rates, with
1 percent to 11 percent of candidate specifications turning
out to be real [6], [24] in no-sharing, no-privacy scenarios.
With p=0.4 and sharing, the average precision was
13.6 percent, which is a minor improvement over previous
results [24] or our average p = 0 precision of 8.36 percent for
this set of programs. Sharing blurry traces does not impair
precision, but mining algorithms still require a human
expert to evaluate their output.

Beyond precision, another way of measuring the
impact of blurry traces on miners involves their ranking
of candidate specifications. Developers typically stop

examining candidate specifications after a certain point,
so if valid specifications have moved down the ranked
list, then more developer effort will be required to find
and take advantage of them. With two participants, ECC
finds a valid specification involving PreparedState-
ment .executequery and ResultSet.close. At p=0,
it occurs at position 48 on the list, so developers are likely to
find and use it. With p = 0.4 and blurry traces, it occurs at
position 2999.

This loss of ranking order for valid specifications is
significant for ECC, but it is mitigated by using a mining
algorithm that does not produce as many false positive
specifications. For example, for that same two-participant
data set, between p=0 and p=0.4 the average valid
candidate specification produced by the WN miner moves
down 13 percent in the ranked output. However, since WN
produces a total of only 78 candidate specifications that
must be manually examined, that translates into only an
extra 10 candidate specifications to examine. Thus, reason-
able privacy can be attained without sacrificing precision or
adding high manual verification costs.

7.5 Experimental Conclusions

These experiments support the claim that useful results can
be obtained from the aggregate perturbed data produced by
our algorithm. Even with high privacy constraints such as
p values of 0.4 or 0.45 that make any particular published
interval vector similar to random noise, the aggregate
information still allows many useful specifications to be
learned. While preserving privacy, we still find 85 percent
of the bugs (and end up with 85 percent of the specifications
known) that could be found by forsaking privacy entirely.

8 DiSCUSSION

In this section, we discuss several issues related to the
general problem of specification mining. We also compare
and contrast our privacy-preserving solution to several
simpler techniques.
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8.1 Specification Mining Difficulties

Specification mining is complicated by the application-
specific nature of important behavior, the difficulty of
extracting specifications from documentation, the shortage
of useful program traces, and the lack of privacy involved
in sharing such traces. All of these issues help motivate the
algorithm presented in this paper.

8.1.1 Particular Applications

A specification must be related to the target program in
order to be useful: A specification for handling 3D graphics
resources is not directly relevant to a user-level Web server.
Unfortunately, specifications are difficult to create and
debug manually [29]. As a result, frequently used bug-
finding tools either use general low-level specifications that
are applicable to all programs (for example, “do not
dereference a function argument that is known to be a null
pointer” [5], [6], [9]) or restrict themselves to a small
application domain for which key specifications can be
manually gathered over time (for example, handling
asynchronous 1/O request packets in Windows device
drivers [1]). Bug-finding tools have had little penetration for
finding “nonshallow” bugs in most application domains.

8.1.2 Specifications from Documentation

Specifications might reasonably come from the library or
interface writer. For example, one might expect the official
API documentation to lay out all of the important
specifications involving its member functions. In practice,
this does not occur. As a case in point, the most recent
version of the Java API documentation (which is currently
the Java Platform Standard Edition 6) for java.sql.
Statement .close states that it “releases this Statement
object’s database and JDBC resources immediately instead
of waiting for this to happen when it is automatically
closed.” This wording suggests that close is optional and
that developers might harmlessly choose to wait for the
resources to be reclaimed automatically. Conversely, the
Oracle9i JDBC Developer’s Guide and Reference makes the
consequences of failing to do so clear: “The drivers do not
have finalizer methods. ... If you do not explicitly close
your ResultSet and Statement objects, serious memory
leaks could occur. You could also run out of cursors in the
database” [37]. Running out of database cursors lowers
transactional throughput not just for the ill-behaved client
but for all other clients sharing that database. Programmers
are typically very concerned with closing these objects as
quickly as possible, but nothing about that is mentioned in
the official API documentation.

In addition, in the particular domain of security, many
specifications forbid insecure practices that are officially
allowed by the API or library. For example, there is nothing
in the official IEEE Standard 1003.1 description of the exec
family of system calls stating that exec should not be called
before setuid root privileges have been dropped [38].
There are a few legitimate programs that fail to do so (for
example, su and sudo). However, for most programs,
failing to do so can lead to security flaws and the MOPS tool
for finding security vulnerabilities checks that very policy
[2]. More tellingly, despite the fact that setuid is a
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common system call with clear security implications that
should be well documented, Chen et al. had to use a form of
specification mining to find a formal model of setuid on
Linux, Solaris, and FreeBSD systems [39]. Even security-
critical functions in very popular interfaces are not
adequately documented. Specification mining is thus quite
important in practice.

Finally, in the rare cases when partial specifications are
present in official documentation, they are not present in
forms that can be automatically checked by bug-finding or
software assurance tools. In order to be useful in this
context, such natural language specifications would have to
be converted to formal specifications. Unfortunately, pre-
vious research has shown that humans are poor at creating
or debugging specifications [29]. Specification mining not
only discovers important policies but also describes them
formally for use by third-party tools. In practice, library
specifications are not present, are conflicting, or are too
informal, especially for security policies.

8.1.3 Lack of Traces

Despite these strong motivations for obtaining relevant
specifications from programs, there has been only limited
success in the area of specification mining. The primary
reason for the inaccuracy of current specification mining is
the lack of traces. Some traces can be gathered statically
from the program source code or dynamically by running
the program on indicative workloads. Both approaches
present a skewed picture: Traces gathered from the
program’s source code overestimate unlikely or even
infeasible paths, whereas traces gathered from workloads
underrepresent exceptional situations that are critical to
correctness. Both cases also present only a subset of all
possible paths. In addition, the programs themselves
typically violate the specifications. Traces are thus typically
quite noisy and miners need many of them to work well.

Unfortunately, obtaining traces typically requires access
to the source code or an instrumented binary, along with
many indicative workloads. A fixed number of traces can be
obtained from the source code and a given set of test cases.
Given the size of typical test suites, that number is
insufficient, in practice, for precise mining [24], [29].

Our solution is to combine the traces from multiple
separate programs to learn policies about any components
or interfaces that they share. For example, traces from two
Java programs that both use the JDBC database interface
could be combined to mine specifications about the proper
use of that interface. Similarly, multiple programs written
against the Win32 API or the C standard library could be
used to learn policies in those domains. Policies learned
from the combined set of traces can be applied to both
programs, finding more bugs in each.

8.1.4 Sharing Traces
Despite this incentive of working together, companies may
be unwilling to share their source code, binaries, or test
cases. We give both privacy and security reasons for why it
is problematic to share source code and traces.

From a privacy perspective, a company may not release
source code if it is possible that a subsequently discovered
specification exposes that the company has particularly
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buggy code. For example, if a specification is released which
says that function A must precede function B and a
company’s source code has many examples of B preceding
A, then it is possible to deduce how buggy the company’s
code is. Furthermore, it is particularly troubling if it is
possible to deduce that company X has buggier code than
company Y. Note that this information can even be deduced
from the traces, that is, without the source code, since a trace
includes the number of times that B precedes A.

From a security perspective, making the source code
available can, if the company is not adequately prepared,
make it easier for attackers to find and exploit vulnerabil-
ities. In the case of SQL injection attacks, having the source
code to a deployed application available would allow an
attacker to tailor attacks to particular input handling
routines that fail to sanitize the input correctly rather than
having to exhaustively probe all input combinations.
Similar information (for example, about control-flow and
function call ordering) can be deduced from program
traces: If an attacker can see that inputA and inputB are
always followed by sanitize but that inputC never is,
inputC can be targeted for attacks.

8.2 Secure Function Evaluation

Given the large benefit that sharing traces brings to
specification mining, it is natural to imagine that many
existing cryptographic techniques could be brought to bear
to share traces without giving up privacy.

Current specification mining algorithms require that the
sum of a collection of private values be computed. If there
are n parties, each holding one of the private values
z1,...,%,, we explain how the sum can be securely
computed without leaking anything beyond the sum.

The easiest solution is for party 1 to select a random
value r and pass 1 + r to its neighbor party 2. The process
repeats with party j passing (>°/_, z;) +r to its neighbor
j+ 1. Eventually, party 1 receives from party n the value
(3", %) +r and, by subtracting r from the value that it
receives, learns and publishes the sum. This solution has the
advantage of being simple and also not requiring any
cryptographic assumptions. However, there is a single
point of failure in that party 1 may learn the sum and not
publish it. In addition, the technique is susceptible to
collusion attacks: Parties i and 7 +2 can combine their
values together to deduce party (i + 1)’s private value.

Another solution is for each party i to select a random
polynomial [40] p; of degree n, where p;(0) is the private
value z;. Then, party ¢ sends to each party j the value p;(j).
Thus, party j can compute ¢(j) = >_,_; px(j). Note that g is
also a polynomial of degree n, but now ¢(0) = >, z;. Each
party j then publishes ¢(j) and, collectively, they have
enough values to learn the coefficients of the polynomial ¢
so that each party can compute ¢(0). This solution does not
require any cryptographic assumptions, but requires O(n?)
communication overhead. In addition, n — 1 parties may
collude to determine one person’s private value.

A final cryptographic solution uses homomorphic en-
cryption techniques [40] that hinge on the hardness of
computing discrete log. For simplicity, assume that com-
puting the discrete log of a large number is difficult but that
computing it for a small number is easy. Assume that each
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party i’s private key is a;, where a = > | a; (a is not known
to any party) and the public key is g%, where g is a random
integer selected from a sufficiently large range. Let r; be a
random value selected by party . Party i publishes
(g7, 9" g"). All parties then compute the product of these
values ( gz i gt 2. gz 7). Each party then publishes ¢“ dom ,
and all parties compute the product ¢“2.". Party ¢ now
divides g”zr' gz " by gaz” to obtain gz 1. Assuming that
the z; values are small, each party can now compute > z;.
Although this scheme is more efficient than the previous
one, it requires synchronization among the parties and

makes cryptographic assumptions.

We compare these secure computation solutions to our
blurry trace solution. The secure computation assumption is
that parties are committed to learning the exact sum. The
privacy guarantee is stronger in that nothing is learned
beyond the sum. However, these schemes are not resistant
to collusion among n — 1 parties. Since we only need an
estimate of the sum, and only if there are enough parties, for
our blurry trace scheme, even if n—1 parties collude,
nothing can be learned from what a party publishes (by
Lemma 2). Furthermore, the blurry trace solution does not
hinge on any cryptographic assumptions.

9 CONCLUSION

We presented an algorithm for learning program specifica-
tions that preserves the privacy of the participant’s traces.
This allows mutually distrusting participants to reap almost
all benefits of sharing basic trace data without allowing
observers to draw unfavorable conclusions about the
quality of their code. The algorithm allows participants to
trade off utility in order to meet privacy requirements. Our
experiments show that, even with strong privacy guaran-
tees, it is possible to get useful results: We can preserve
privacy while learning specifications that find 85 percent of
the software bugs that could be found by forsaking privacy.
The lack of specifications is currently a bottleneck in the use
of automated bug-finding tools. Automated specification-
mining techniques need many traces to be truly effective
and companies are unwilling to give out their traces or their
source code. We present a technique that gives participants
the practical bug-finding and specification-mining benefits
of sharing their data while maintaining their privacy.

Many avenues for future work remain. In terms of
learning specifications, it would be interesting to design
scalable algorithms that learn patterns beyond (ab)*. In
terms of privacy, although we have quantified an absolute
worst-case loss of privacy when events are completely
correlated (Lemma 3), it would be interesting if the analysis
could be improved in the case when events are only
somewhat correlated. Finally, our techniques currently
assume independence among parties. However, it is
possible for program traces from different parties to be
correlated. A further investigation of the impact of correla-
tion on privacy is warranted.
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