
Using	run)me	behavioral	signals	
to	predict	whether	programs	
behave	as	intended	

Claire	Le	Goues	
(work	largely	performed	by	Deborah	

Katz,	CMU	graduate	student)	

1	

2

TESTING/EXECUTION	PROVIDES	ONE	
TYPE	OF	EVIDENCE	THAT	REPAIR	AND	
RECOVERY	MECHANISM	SHOULD	BE	
TRUSTED.	

3

Exis)ng	work	provides	important	star)ng	
points	for	test	input	genera)on.	
•  Examples	of	test	input	generaDon	strategies	
include:	
– Random.	
– Maximize	various	measures	of	code	coverage.	
–  Leverage	previous	knowledge	of	inputs	that	are	
oJen	problemaDc.	

•  However,	we	sDll	need	expected	output:	
– Some	techniques	use	specificaDons	or	“gold	
standards”,	or	global	known	properDes	(e.g.,	
segmentaDon	faults	are	bad.)	

– Generally,	known	unsolved	problem.	

4

GOAL:	characterize	normal	
program	behavior	such	that	
we	can	generically	iden)fy	

abnormal	behavior,	in	a	
program-specific,	defect-

independent	way.	
	

(solve	the	oracle	problem)	

5

INTUITION:		
Dynamic	run)me	

characteris)cs	can	be	used	to	
predict	whether	a		program	
execu)on	corresponds	to	

expected	behavior.	

6

Intui)on	via	example:	Zune	infinite	loop	
•  On	the	last	day	of	a	leap	
year,	enters	an	infinite	
loop	on	lines	3	through	
16.	

hTp://news.bbc.co.uk/2/hi/
technology/7806683.stm	

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n",
18 year);
19}
	

7

Zune	–	expected	behavior	
•  Calling	with	730	
produces	expected	
behavior.	
–  Represents	12/30/81.	

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n",
18 year);
19}
	

8

Zune	–	unexpected	behavior	
•  Calling	with	366	produces	

unexpected	behavior.	
–  Represents	12/31/80,	last	

day	of	a	leap	year!	
•  Consider	runDme	signals	

that	suggest	that	this	
behavior	is	abnormal:	
–  Max	program	counter	
–  Number	of	branches	taken	
–  Return	value	of	isLeapYear	

funcDon	
–  Library	code	called	
–  …	

	

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n",
18 year);
19}
	

9

Approach:	use	machine	
learning	to	relate	
program	runDme	
characterisDcs	to	

expected/unexpected	
behavior.		

10

f2	

fn	

f1	

…	

Signal	collecDon	Input:	Program	variants,	tests	

Model	construcDon	

(Unsupervised)	

(Supervised)	

f2	
f1	

…	
fn	

f2	
f1	

…	
fn	

Model	A	

Model	B	

(to	be	evaluated	
and	deployed)	

11

We	used	feature	reduc)on	to	iden)fy	
a	core	set	of	15	predic)ve	signals.	

1.  FracDon	of	staDcally-loaded	
instrucDons	used.	

2.  Number	of	unique	instrucDons	
executed.	

3.  FracDon	of	main	executable	
instrucDons	used.	

4.  Number	of	unique	instrucDons	
used	in	main	executable.	

5.  FracDon	of	rouDnes	executed.		
6.  Number	of	unique	rouDnes	

executed.	
7.  Mean	of	all	addresses	read.		
8.  Address	of	most	frequent	stack	

write.	

9.  Mean	address	of	writes	not	on	the	
stack	or	heap.	

10. Mean	distance	between	a	read	
and	the	next	write.	

11. Mean	distance	between	a	write	
and	the	next	write.	

12. Number	of	instrucDons	executed	
inside	main	executable.	

13. Number	of	instrucDons	executed	
in	staDcally-loaded	images	but	not	
main	executable.	

14. FracDon	of	instrucDons	executed	
in	main	executable.	

15. Number	of	instrucDons	executed.	

12

There	are	several	scenarios	in	which	this	
might	be	useful.	
•  Proof	of	concept:	is	this	remotely	reasonable?		

–  Strategy:	supervised	machine	learning	on	mulDple	versions	of	
individual	programs.	

•  What	if	we	want	to	augment	our	exisDng	tests?		
–  Strategy:	supervised	machine	learning	based	on	a	single	
version	of	a	program.		

•  What	if	we	have	a	dramaDcally	under-	or	un-tested	
program?	
–  Strategy:	unsupervised	machine	learning	over	mulDple	
versions	of	a	program.	

•  What	if	we	have	no	tests	at	all	(but	access	to	github)?	
–  Strategy:	supervised	learning	based	on	other	programs	and	
test	suites.		

13

We	need	a	dataset	of	programs	
with	mul)ple	versions	and	

mul)ple	test	cases.	

LOC	 	Versions	 Tests	
Si
em

en
s	

prinTokens	 475	 8	 4130	

prinTokens2	 401	 10	 4115	

replace	 512	 33	 5542	

schedule	 292	 10	 2650	

schedule2	 297	 11	 2710	

tcas	 135	 42	 1608	

toDnfo	 346	 24	 1052	

G
en

Pr
og
	

deroff	 1203	 727	 6	

gcd	 22	 141	 6	

indent	 4643	 118	 6	

svr-look	 176	 148	 6	

ultrix-look	 160	 160	 6	

uniq	 562	 159	 6	

zune	 20	 150	 24	

Co
re
U
)l
s	

chgrp	 249	 27	 63	

chmod	 436	 25	 142	

chown	 258	 26	 30	

cp	 1003	 30	 264	

dd	 1709	 14	 128	

df	 1249	 20	 48	

We	anDcipate	actual	
deployment	at	the	method	or	
node	level	of	systems	of	
arbitrary	size.	

–  Consider:	ROS	nodes		
For	iniDal	invesDgaDon,	focused	
on	small	programs	that	saDsfied	
experimental	needs,	but	can	be	
mentally	mapped	to	a	smaller	
part	of	a	larger	system.	

–  Each	set	of	programs	presents	
interesDng	relevant	
characterisDcs.	

14

Train	and	test	within	
mulDple	versions	of	a	
single	program.	

–  Training	on	balanced	
datasets,	tesDng	on	
unbalanced	datasets.	

Generally	good	
performance	across	all	
metrics.	
Precision	especially	high,	
which	is	good!	
	

Accuracy	 Precision	 Recall	 F-Measure	
Si
em

en
s	

prinTokens	 0.76	 0.99	 0.77	 0.87	

prinTokens2	 0.80	 0.99	 0.81	 0.89	

replace	 0.85	 1.00	 0.85	 0.92	

schedule	 0.74	 0.99	 0.74	 0.85	

schedule2	 0.81	 1.00	 0.81	 0.90	

tcas	 0.80	 1.00	 0.80	 0.89	

toDnfo	 0.91	 0.99	 0.91	 0.95	

G
en

Pr
og
	

deroff	 0.89	 0.96	 0.85	 0.90	

gcd	 0.99	 0.99	 0.99	 0.99	

indent	 0.94	 0.95	 0.96	 0.95	

svr-look	 0.98	 0.99	 0.98	 0.98	

ultrix-look	 0.89	 0.96	 0.88	 0.92	

uniq	 1.00	 1.00	 1.00	 1.00	

zune	 0.91	 0.89	 0.89	 0.89	

Co
re
U
)l
s	

chgrp	 0.80	 0.98	 0.80	 0.88	

chmod	 0.89	 0.98	 0.88	 0.93	

chown	 0.81	 0.98	 0.81	 0.89	

cp	 0.74	 0.94	 0.73	 0.82	

dd	 0.84	 0.92	 0.82	 0.87	

df	 0.61	 0.51	 0.55	 0.53	

Proof-of-concept	

15

Accuracy	 Precision	 Recall	 F-Measure	
Si
em

en
s	

prinTokens	 0.73	 0.99	 0.73	 0.84	

prinTokens2	 0.85	 0.99	 0.85	 0.91	

replace	 0.84	 1.00	 0.84	 0.91	

schedule	 0.81	 0.99	 0.81	 0.89	

schedule2	 0.80	 1.00	 0.80	 0.89	

tcas	 0.85	 1.00	 0.85	 0.92	

toDnfo	 0.86	 0.99	 0.86	 0.92	

G
en

Pr
og
	

deroff	 0.61	 0.89	 0.53	 0.67	

gcd	 0.91	 0.97	 0.93	 0.95	

indent	 0.76	 0.96	 0.76	 0.84	

svr-look	 0.87	 0.98	 0.88	 0.93	

ultrix-look	 0.67	 0.84	 0.68	 0.75	

uniq	 0.67	 0.99	 0.66	 0.79	

zune	 0.86	 0.83	 0.83	 0.83	

Co
re
U
)l
s	

chgrp	 0.75	 0.96	 0.75	 0.84	

chmod	 0.79	 0.95	 0.78	 0.86	

chown	 0.58	 0.95	 0.57	 0.71	

cp	 0.62	 0.90	 0.59	 0.72	

dd	 0.74	 0.86	 0.71	 0.78	

df	 0.52	 0.39	 0.45	 0.41	

Train	and	test	on	a	single	
version,	and	test	
predicDon	accuracy	for	a	
new	test	input.	
Generally	good	
performance	across	all	
metrics.	
Precision	is	sDll	high.	

Adding	a	new	
test	case	

16

Accuracy	 Precision	 Recall	 F-Measure	
Si
em

en
s	

prinTokens	 0.88	 1.00	 0.88	 0.93	

prinTokens2	 0.90	 0.98	 0.92	 0.89	

replace	 0.92	 0.99	 0.92	 0.96	

schedule	 0.88	 0.98	 0.89	 0.94	

schedule2	 0.84	 0.99	 0.85	 0.91	

tcas	 0.95	 0.99	 0.95	 0.97	

toDnfo	 0.91	 0.97	 0.94	 0.95	

G
en

Pr
og
	

deroff	 0.67	 0.66	 0.97	 0.79	

gcd	 0.57	 0.47	 1.00	 0.64	

indent	 0.75	 0.73	 0.99	 0.84	

svr-look	 0.80	 0.79	 0.98	 0.87	

ultrix-look	 0.78	 0.79	 0.98	 0.87	

uniq	 0.76	 0.76	 0.98	 0.86	

zune	 0.49	 0.43	 1.00	 0.60	

Co
re
U
)l
s	

chgrp	 0.91	 0.93	 0.98	 0.95	

chmod	 0.77	 0.82	 0.92	 0.87	

chown	 0.90	 0.93	 0.97	 0.95	

cp	 0.79	 0.81	 0.96	 0.88	

dd	 0.62	 0.64	 0.92	 0.75	

df	 0.36	 0.37	 0.88	 0.52	

Outlier	detecDon,	trained	
on	mulDple	versions	of	a	
single	program	
More	difficult	than	
supervised	learning,	but	
sDll	effecDve	on	many	
types	of	programs.	
Recall	is	generally	beTer	
than	precision	here.	
	

Unsupervised	
predic)on	within	a	

program	

17

Accuracy	 Precision	 Recall	 F-Measure	
Si
em

en
s	

prinTokens	 0.65	 0.99	 0.65	 0.79	

prinTokens2	 0.67	 0.96	 0.68	 0.80	

replace	 0.34	 0.98	 0.34	 0.50	

schedule	 0.59	 0.98	 0.59	 0.74	

schedule2	 0.64	 0.99	 0.64	 0.78	

tcas	 0.36	 0.95	 0.37	 0.53	

toDnfo	 0.60	 0.94	 0.61	 0.74	

G
en

Pr
og
	

deroff	 0.41	 0.70	 0.13	 0.21	

gcd	 0.67	 0.81	 0.21	 0.33	

indent	 0.34	 0.50	 0.38	 0.43	

svr-look	 0.81	 0.96	 0.77	 0.85	

ultrix-look	 0.78	 0.79	 0.95	 0.86	

uniq	 0.27	 0.48	 0.04	 0.08	

zune	 0.56	 0.45	 0.53	 0.49	

Co
re
U
)l
s	

chgrp	 0.89	 0.92	 0.96	 0.94	

chmod	 0.70	 0.88	 0.82	 0.82	

chown	 0.86	 0.93	 0.92	 0.92	

cp	 0.52	 0.81	 0.53	 0.64	

dd	 0.48	 0.63	 0.45	 0.52	

df	 0.69	 0.71	 0.36	 0.48	

Train	supervised	models	
on	other	programs,	use	to	
predict	correctness	on	
held-out	program.	
Most	difficult	task	for	us,	
with	wider	variability	in	
success.	
However,	results	are	fairly	
promising,	especially	
since,	again,	precision	is	
high.	
	

Genera)ng	tests	for	a	new	
program	based	on	other	

programs.	

18

Summary	and	future	direc)ons	
•  Collected	dynamic	signals	about	program	execuDon	and	used	

machine	learning	to	predict	whether	the	execuDons	passed	or	
failed,	achieving	promising	results	for	several	applicaDons.	

•  Present	goal:	analyze	funcDons/modules	within	a	larger	system:	
–  Tackling	deployment	to	the	quadcopters.	
–  Deploying	to	other	autonomous	systems	in	the	context	of	robustness	

tesDng.		
•  CollaboraDon	with	CMU’s	NaDonal	RoboDc’s	Engineering	Center	(NREC)	

funded	by	DoD’s	Test	Resource	Management	Center	(TRMC).	
•  Future	direcDon:	anomaly	detecDon	via	learned	dynamic	

structural	system	properDes.	
–  Crossover	with	BRASS	DARPA	project	(where	we	are	analyzing	

collaboraDve	grounded	robots).	

19

I	promise	this	
is	tethered.	CLG	grad	

student	

CLG	grad	
student	

CLG	summer	
undergrad	

CLG	summer	
undergrad	

CLG	

this	park	is	bigger	
than	it	looks	

Offscreen:	other	
CMU	researchers	
with	a	drone	on	a	

fishing	rod	

20

Summary	and	future	direc)ons	
•  Collected	dynamic	signals	about	program	execuDon	and	used	

machine	learning	to	predict	whether	the	execuDons	passed	or	
failed,	achieving	promising	results	for	several	applicaDons.	

•  Present	goal:	analyze	funcDons/modules	within	a	larger	system:	
–  Midway	to	deployment	on	the	quadcopters.	
–  Deploying	to	other	autonomous	systems	in	the	context	of	robustness	

tesDng.		
•  CollaboraDon	with	CMU’s	NaDonal	RoboDc’s	Engineering	Center	(NREC)	

funded	by	DoD’s	Test	Resource	Management	Center	(TRMC).	
•  Future	direcDons:		

–  Anomaly	detecDon	via	learned	dynamic	structural	system	properDes;	
Crossover	with	BRASS	DARPA	project	(where	we	are	analyzing	
collaboraDve	grounded	robots).	

–  Test	explicitly:	How	do	models	handle	evoluDon?		Our	scenarios	
indicate	that	it	works	over	mulDple	versions,	but	we	need	to	study	
directly.	

21

Other	things	I	could	talk	about.	
•  IntegraDng	models	based	on	dynamic	signals	
into	robustness	tesDng	of	safety-criDcal	
autonomous	systems.	
– Some	of	this	is	ITAR,	so	I	can	speak	in	generaliDes.	
–  (As	a	note:	ROS	also	has	many	bugs.)	

•  Learning	dynamic	architectural	properDes	of	
ROS	systems.	

•  Program	repair	using	semanDc	search.	
– Related	to	predicDng,	assuring,	and	measuring	
repair	quality.		

22

