
RAPID Programming of
Pattern-Recognition Processors

Kevin Angstadt
Qualifying Exam Depth Presentation

MCS Project Presentation

22. April 2016

Publication: ASPLOS 2016

2

RAPID Programming of Pattern-Recognition Processors
ASPLOS 2016

April 2–6

Atlanta, GA

Acceptance Rate: 23%

Finding Needles in a Haystack
• Researchers and

companies are

collecting increasing

amounts of data

• 44x data production in

2020 than in 2009
†

• Demand for real-time

analysis of collected

data
‡

3

†
Computer Sciences Corporation. Big data universe beginning to explode. 2012

‡
Capgemini. Big & fast data: The rise of insight- driven business. 2015.

Locate the most

probable location for a

DNA fragment in the

human genome

Find products that are

most commonly

purchased together

Parse English text to

identify historical

records that are

duplicates

Identify consumer

sentiment based off of

social media posts

Search for Higgs

events based off on

paths of subatomic

particles

What is the common theme?
Pattern Search Problems

4

Parallel searches

5

T G GG G C T A

Incoming Data

CGGCAT

ATCGA

…

Key

Active

Searches
=

Target
Pattern�

Parallel searches

6

T G GC G G C T A

Incoming Data

CGGCAT

G

ATCGA

G

❌

❌

G

G

G

G

…

Key

Active

Searches
=

Target
Pattern�

Parallel searches

7

T G GA C G G C T A

Incoming Data

CGGCAT

G

ATCGA

G

❌

❌

G

G

G

G

…

Key

Active

Searches
=

Target
Pattern�

Parallel searches

8

T G GT A C G G C T A

Incoming Data

CGGCAT

T

ATCGA

T

❌

�

T

T

T

T

…

Key

Active

Searches
=

Target
Pattern�

Parallel searches

9

T G GA T A C G G C T A

Incoming Data

CGGCAT

A

ATCGA

A

❌

�

A

A

A

A

…

Key

Active

Searches
=

Target
Pattern�

Parallel searches

10

T G GC A T A C G G C T A

Incoming Data

CGGCAT

T

ATCGA

T

❌

��

T

T

T

T

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

11

T GC C A T A C G G C T A

Incoming Data

CGGCAT

C

ATCGA

C

�

���

C

C

C

C

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

12

TA C C A T A C G G C T A

Incoming Data

CGGCAT

G

ATCGA

G

��

����

G

G

G

G

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

13

G A C C A T A C G G C T A

Incoming Data

CGGCAT

G

ATCGA

G

���

����❌

G

G

G

G

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

14

G A C C A T A C G G C TT

Incoming Data

CGGCAT

C

ATCGA

C

����

❌

C

C

C

C

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

15

G A C C A T A C G G CC T

Incoming Data

CGGCAT

A

ATCGA

A

�����

�

A

A

A

A

… …

Key

Active

Searches
=

Target
Pattern�

Parallel searches

16

G A C C A T A C G GG C T

Incoming Data

CGGCAT

T

ATCGA

T

������

��

T

T

T

T

… …

Key

Active

Searches
=

Target
Pattern�

Parallel Searches: Goals
• Fast processing

• Concise, maintainable representation

• Efficient compilation

– High throughput

– Low compilation time

17

Specialized Hardware

RAPID

Programming

Language

A researcher should spend his or her time
designing an algorithm to find the important
data, not building a machine that will obey

said algorithm.

18

The Remainder of this Talk
• Automata Processor

– Architectural Overview

– Current Programming Models

• RAPID Programming Language

– Language Overview

– AP Code Generation and Optimizations

• Experimental Evaluation

• Conclusions and Future Directions

19

The Remainder of this Talk
• Automata Processor
– Architectural Overview
– Current Programming Models

• RAPID Programming Language

– Language Overview

– AP Code Generation and Optimizations

• Experimental Evaluation

• Conclusions and Future Directions

20

Micron’s Automata Processor
• Accelerates identification of patterns in

input data stream using massive parallelism

• Hardware implementation of non-deterministic

finite automata

• 1 gbps data processing

• MISD architecture

21

Micron’s Automata Processor
• Implements homogeneous NFAs

– All incoming edges to state have same

symbol(s)

– State Transition Element (STE)

• Memory-derived architecture

– Memory as a computational medium

– State consists of a column in DRAM array

– Connections made with reconfigurable routing

matrix partitioned into blocks

• 1.5 million states on development board

• Saturating Up Counter, Boolean Logic

22

Start STE Reporting STE

.*[Dd](o|ough)nut

Micron’s Automata Processor

23

Figure courtesy of Micron

Programming Workflow

24

Source: www.micronautomata.com

Synthesis, Placement,

and Routing

Compiled

Binary

Front End

Language

Current Programming Models

25

• Automata Network Markup

Language

• Directly specify homogeneous

NFA design

• High-level programming

language bindings for

generation

• Support for a list of regular

expressions

• Support for PCRE modifiers

• Compiled directly to binary

Programming Challenges
• ANML development akin to assembly programming
– Requires knowledge of automata theory and

hardware properties

– Tedious and error-prone development process

• Regular expressions challenging to implement

– Often exhaustive enumerations

– Similarly error-prone

26

Programming Challenges
• Implement single instance of a problem

– Each instance of a problem requires a brand new

design

– Need for meta-programs to generate final design

• Current programming models place unnecessary burden

on developer

27

Goals: Current Approaches Fail
• Fast processing �

• Concise, maintainable representation ❌

• Efficient compilation

– High throughput �

– Low compilation time ⚠️

28

The Remainder of this Talk
• Automata Processor

– Architectural Overview

– Current Programming Models

• RAPID Programming Language
– Language Overview
– AP Code Generation and Optimizations

• Experimental Evaluation

• Conclusions and Future Directions

29

RAPID at a Glance
• Provides concise, maintainable, and efficient

representations for pattern-identification algorithms

• Conventional, C-style language with domain-specific

parallel control structures

• Excels in applications where patterns are best

represented as a combination of text and computation

• Compilation strategy balances synthesis time with

device utilization

30

Program Structure
• Macro

– Basic unit of computation

– Sequential control flow

– Boolean expressions as statements for

terminating threads of computation

• Network
– High-level pattern matching

– Parallel control flow

– Parameters to set run-time values

31

network (…) {
…

}

macro qux (…) {
…

}

macro foo (…) { … }

macro baz (…) { … }

macro bar (…) { … }

Program Structure

32

Network Macros

Thinking ahead…
This program structure also

exposes optimizations

Program Structure

33

Network

Macro

Macro

Macro

M
M

M

Macro

Macro

Macro

M
M

M

Macro

Macro

Macro

M
M

M

network (…) {
…

}

macro qux (…) {
…

}

macro foo (…) { … }

macro baz (…) { … }

macro bar (…) { … }

Data in RAPID
• Input data stream as special function

– Stream of characters

– input()
• Calls to input() are synchronized across all

active macros

• All active macros receive the same input character

34

Counting and Reporting
• Counter: Abstract representation of

saturating up counters

– Count and Reset operations

– Can compare against threshold

• RAPID programs can report
– Triggers creation of report event

– Captures offset of input stream and current

macro

35

Parallel Control Structures
• Concise specification of multiple, simultaneous

comparisons against a single data stream

• Support MISD computational model

• Static and dynamic thread spawning for massive

parallelism support

• Explicit support for sliding window computations

36

@NITBDELGMVUDBQZZDWIEFHPTG@ZBGEXDGHXSVCMKADSKFJÖKLGJADSKGOWESIOHGADHYCBG0ASDGßAEGKQEYKPREBN…

Pattern

Parallel Control Structures
Sequential
Structure

Parallel
Structure

if…else either…orelse

foreach some

while whenever

37

Either/Orelse Statements
1 either {

2 hamming_distance(s,d); // hamming distance

3 ’y’ == input (); // next input is ’y’

4 report; // report candidate

5 } orelse {

6 while(’y’ != input ()); // consume until ’y’

7 }

38

• Perform parallel exploration of input data

• Static number of parallel operations

Some Statements

• Parallel exploration may depend on candidate

patterns

• Iterates over items, dynamically spawn computation

39

1 macro hamming_distance (String s, int d) {

2 Counter cnt;

3 foreach (char c : s)

4 if(c != input()) cnt.count ();

5 cnt <= d;

6 report;

7 }

8 network (String [] comparisons) {

9 some(String s : comparisons)

10 hamming_distance(s,5);

11 }

Whenever Statements
1 whenever(ALL_INPUT == input ()) {

2 foreach(char c : "rapid")

3 c == input ();

4 report;

5 }

40

• Body triggered whenever guard becomes true

• ALL_INPUT: any symbol in the input stream

Example RAPID Program

41

Association Rule Mining
Identify items from a database that

frequently occur together

Example RAPID Program
macro frequent (String set, Counter cnt) {

foreach(char c : set) {

while(input() != c);

}

cnt.count();

}

network (String[] set) {

some(String s : set) {

Counter cnt;

whenever(START_OF_INPUT == input())

frequent(s,cnt);

if (cnt > 128)

report;

}

}

42

Spawn parallel

computation for each

item set

Sliding window

search calls frequent
on every input

If all symbols in item

set match, increment

counter

Trigger report if
threshold reached

Input

System Overview

43

RAPID
Program

Annotations

RAPID
Compiler

Driver
Code

ANML

apcompile

AP
Binary

Output

Code Generation

44

network (…) {
…

}

macro qux (…) {
…

}

macro foo (…) { … }

macro baz (…) { … }

macro bar (…) { … }

RAPID Program

• Recursive transformation

of RAPID program

– Input Stream à STEs

– Counters à 1 or more

physical counter(s)

• Similar to RegEx à NFA

transformation

Challenge: Synthesis
• Placement and routing are resource-

intensive

• Large AP designs often fail outright

• Goal: technique to reduce AP design such

that synthesis tools succeed

45

Tessellation Optimization
• Automata Processor designs are often repetitive
• Programmatically extract repetition, and compile once

• Load dynamically at runtime

46

Block

The Remainder of this Talk
• Automata Processor

– Architectural Overview

– Current Programming Models

• RAPID Programming Language

– Language Overview

– AP Code Generation and Optimizations

• Experimental Evaluation
• Conclusions and Future Directions

47

Reminder: Goals
• Fast processing

• Concise, maintainable representation

• Efficient compilation

– High throughput

– Low compilation time

48

�

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains?

2. (Conciseness) Do RAPID programs require fewer lines of code than a

functionally equivalent ANML program to represent a given pattern

search problem?

3. (Maintainability) Does a RAPID program require fewer modifications

than an equivalent ANML program to alter functionality?

4. (Efficiency) Are RAPID programs no less efficient at runtime and

during synthesis than hand-optimized ANML programs?

49

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains?

2. (Conciseness) Do RAPID programs require fewer lines of code than a

functionally equivalent ANML program to represent a given pattern

search problem?

3. (Maintainability) Does a RAPID program require fewer modifications

than an equivalent ANML program to alter functionality?

4. (Efficiency) Are RAPID programs no less efficient at runtime and

during synthesis than hand-optimized ANML programs?

50

Benchmark Description Domain
Baseline
Generation
Method

ARM Association Rule Mining ML Meta Program

Brill Brill Part of Speech Tagging NLP Meta Program

Exact Exact DNA Alignment Bioinformatics ANML

Gappy DNA Alignment with Gaps Bioinformatics ANML

MOTOMATA Planted Motif Search Bioinformatics ANML

Description of Benchmarks

51

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains?

2. (Conciseness) Do RAPID programs require fewer lines of code than
a functionally equivalent ANML program to represent a given
pattern search problem?

3. (Maintainability) Does a RAPID program require fewer modifications

than an equivalent ANML program to alter functionality?

4. (Efficiency) Are RAPID programs no less efficient at runtime and

during synthesis than hand-optimized ANML programs?

52

RAPID Lines of Code

0%

20%

40%

60%

80%

100%

ARM Brill Exact Gappy MOTOMATA

P
e
r
c
e
n

t
 R

e
d

u
c
t
i
o

n

53

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains?

2. (Conciseness) Do RAPID programs require fewer lines of code than a

functionally equivalent ANML program to represent a given pattern

search problem?

3. (Maintainability) Does a RAPID program require fewer
modifications than an equivalent ANML program to alter
functionality?

4. (Efficiency) Are RAPID programs no less efficient at runtime and

during synthesis than hand-optimized ANML programs?

54

RAPID is Maintainable

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Handcrafted RAPID

P
e
r
c
e
n

t
 o

f

C

o
d

e
 C

h
a
n

g
e
d

55

Task: Convert Hamming

distance comparison of

length 5 to length 12

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains?

2. (Conciseness) Do RAPID programs require fewer lines of code than a

functionally equivalent ANML program to represent a given pattern

search problem?

3. (Maintainability) Does a RAPID program require fewer modifications

than an equivalent ANML program to alter functionality?

4. (Efficiency) Are RAPID programs no less efficient at runtime and
during synthesis than hand-optimized ANML programs?

56

Parallel searches

57

T G GG G C T A

Incoming Data

CGGCAT

ATCGA

…

Key

Active

Searches
=

Target
Pattern�

Maximize number of

parallel active searches

by reducing STE usage

Small footprint
increases

throughput

Generated STEs

-40%

-20%

0%

20%

40%

60%

80%

ARM Brill Exact Gappy MOTOMATA

P
e
r
c
e
n

t
 R

e
d

u
c
t
i
o

n

58

Compilation Time

0.1 1 10 100 1000 10000 100000

ARM*

Brill

Exact*

Gappy*

MOTOMATA*

Handcrafted RAPID

59

Time (seconds)

* RAPID Tessellation

Research Questions
1. Do RAPID constructs generalize to pattern search problems across

multiple problem domains? YES

2. (Conciseness) Do RAPID programs require fewer lines of code than a

functionally equivalent ANML program to represent a given pattern

search problem? YES

3. (Maintainability) Does a RAPID program require fewer modifications

than an equivalent ANML program to alter functionality? YES

4. (Efficiency) Are RAPID programs no less efficient at runtime and

during synthesis than hand-optimized ANML programs? OFTEN
(YES)

60

The Remainder of this Talk
• Automata Processor

– Architectural Overview

– Current Programming Models

• RAPID Programming Language

– Language Overview

– AP Code Generation and Optimizations

• Experimental Evaluation

• Conclusions and Future Directions

61

Architectural Targets

62

RAPID

Program

Debugging Support

• Spurious reports in large data stream

• Can we quickly “sweep” to problematic

region and inspect?

• Replay debugging

63

Conclusions
• RAPID is a concise, maintainable, and efficient

high-level language for pattern-search algorithms

• Achieved with domain-specific parallel control
structures, and suitable data representations

• Prototype compiler allows for acceleration using

the Automata Processor

64

