Improving Programming Support
for Hardware Accelerators Through
Automata Processing Abstractions

PhD Dissertation Proposal

Kevin Angstadt
angstadt@umich.edu

COMPUTER SCIENCE
& ENGINEERING

18. December 2018

I THE RAPID GROWTH OF GLOBAL DATA

THEWEATHER NETFLIX
. GHANNEL SSseveu

RECEIVES

S 131)55555
—SHIPS'I'I]'I

PACKAGES

UNKED

The production of data is expanding at an astonishing pace. Experts
now point to a 4300% Increase In annual data generation by 2020.

Drivers include the switch from analog to digital technologies and the
rapid increase in data generation by individuals and corporations alike

_~ —— USERS SEND

OF INFORMATION. \
2018
erery
1.2z8
129861
TEXTS SENT
of the

BITCOIN
By 2020, it's estimated that for INSTAGRAM
every person on earth, 1.7MB of AMERICANS ,H;,os

data will be created every second. 6940 /5649 (139 | zsoooo
DOMO, “Data Never Sleeps 6.07.2018 B ccsacrions ' | OF INTERNET DATA

RIDES |

K. Angstadt - PhD Proposal

18. December 2018

Physical Limits Spark Creativity

Carbon
nanotubes

New devices and materials

New architectures and packaging

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.

18. December 2018

K. Angstadt - PhD Proposal

How Accelerators Help

A. Shimoni, “A gentle introduction to hardware accelerated data processing”. Medium, 2018

18. December 2018 K. Angstadt - PhD Proposal

Significant Interest from Industry

l n e RADEON
Q/ NVIDIA.
CPU GPU

}Go le
AV Goog

General Purpose Highly Specialized

Co-Processors FPGA
T (nteD I
(ntel) =
Microsoft

Adapted from: J. Poort, “Cloud 3.0: The Rise of Big Compute”. Rescale, 2017.

18. December 2018 K. Angstadt - PhD Proposal

Significant Interest from Industry

FORTUNE Moz
ADEON

v /y}Go gle
ofic o1 you | WY Microsoft Has Bet on

AP TPU
Micron’ EPGAs to Infuse Its Cloud | |
=={ By Desire Athow

General Pu a
A CPU in th WI AWS News Blog
EC2 F1 Instances W|th FPGAs - Now Generally Available

eff Barr | on 19 APR 2017 | in An 1 EC2 | Permalink | ™ Sha

Recor ™
Azure SDN to Bing

IIIIIIII \¥4

Adapted from: J. Poort, “Cloud 3.0: The Rise of Big Compute”. Rescale, 2017.

18. December 2018 K. Angstadt - PhD Proposal

Lack of [Good] Programming Models

* Akin to “assembly-level” programming on CPU architectures
* Are circuit design and digital logic concepts in CS curricula?

* Require low-level knowledge of architectural design to
produce performant code

e Difficult to debug and maintain: oscilloscopes and logic
analyzers

* Many efforts to improve
* OpenCL, Xilinx SDAccel, etc.
* High-level language + annotations + decent performance

* Non-intuitive impact of high-level implementation on
performance

18. December 2018 K. Angstadt - PhD Proposal

Successful Programming Models

* Performance and Scalability: minimize overhead introduced by
high-level programming models and tools.

* Ease of Use: provide familiar abstractions and a shallow learning
curve.

* Expressive Power: support the applications that developers wish to
accelerate with dedicated hardware.

e Legacy Support: support the adaptation of existing software to
execute efficiently on hardware accelerators while placing a
minimal burden on developers.

18. December 2018 K. Angstadt - PhD Proposal

Finite automata provide a suitable abstraction
for bridging the gap between high-level
programming models and maintenance tools
familiar to developers and the low-level
representations that execute efficiently on
hardware accelerators.

Proposal Thesis

18. December 2018 K. Angstadt - PhD Proposal

Automata Processing in the Big Data World

-

Detecting Intrusion
Attempts in Network
Packets

~

-

-

Looking for Virus
Signatures in Binary
Data

~

-

18. December 2018

\

\
Learning Association

Rules with an a priori

approach

-

~
Detecting Higgs

Events in Particle

-

Collider Data

K. Angstadt - PhD Proposal

_

Detecting incorrect
POS tags in NLP

~

)

-

Aligning DNA
Fragments to the
Human Genome

\

Finite Automata: 10,000ft View

 Key)

C)\ Active

— Searches

(Automata
LA

Incoming Data ->®\-

Matching —p 0O
patterns trigger —
reports

18. December 2018 K. Angstadt - PhD Proposal

Homogeneous Finite Automata

* Finite set of states with
transitions operating over a
finite alphabet

* Input data processed by
repeatedly applying transition
rules

Traditional NFA
N
28
Q
=
1
Qo

. . <
» Non-determinism: multiple = start—
transitions on single input >
. . . O
* Homogeneity: all incoming s
transitions occur on the same S
Input character £ start—

18. December 2018 K. Angstadt - PhD Proposal

Homogeneous Finite Automata

-~

State Transition Element

~

Traditional NFA
N
28
Q
=
1
Qo

(STE): a state in a
homogeneous NFA

N _ .
* Non-determinism: multiple z start—

transitions on single input >

= . . O

* Homogeneity: all incoming 3

transitions occur on the same S
Input character £ start—

18. December 2018 K. Angstadt - PhD Proposal

Automata/RegEx Processing Platforms

- S PAP @ Micron AP@
& ® Cache Automaton
&
Existing Architecture Custom ASIC
CPU-Based GPU-Based c
.OVHASir;rSCan @DFAGE g
- ngohi, et al.|_@INFAN2 2 UAP @
@ PCRE IBM PowerEN @Y~ HARE @

18. December 2018 K. Angstadt - PhD Proposal

Proposal Overview

* Proposed Research Efforts

* High-Level Programming Language: RAPID

* High-Speed, Interactive Debugger for Hardware Accelerators

* In-Cache Accelerator for Pushdown Automata

* Adapting Legacy Code for Execution on Hardware Accelerators

e Candidate Schedule
* Conclusion/Discussion

18. December 2018 K. Angstadt - PhD Proposal

High-Level Languages for
Automata Processing

Research Effort 1

Research Effort 1 RE

Goal: establish the feasibility of compiling an imperative, high-level

programming language to a set of finite automata for execution on
hardware accelerators

Hypothesis: A high-level programming language will improve the
conciseness of representing an algorithm while maintaining the
performance of hand-crafted applications for hardware accelerators

18. December 2018 K. Angstadt - PhD Proposal

RAPID at a Glance RE

* Provides concise, maintainable, and efficient
representations for pattern-identification algorithms

* Conventional, C- or Java-style language with domain-
specific parallel control structures

* Excels in applications where patterns are best represented
as a combination of text and computation

 Compilation strategy supports execution on AP, FPGASs,
CPUs, and GPUs

18. December 2018 K. Angstadt - PhD Proposal

Domain-Specific Code Abstraction RI:

/Key \
C)\ Active —Q) O
: = Searches
O\ (Automata D\-

N R -

R »@\-
Incoming Data ' ->®\-
Matching
patterns trigger /
reports

18. December 2018 K. Angstadt - PhD Proposal

Domain-Specific Code Abstraction RI:

{ Network } : Macros }

18. December 2018 K. Angstadt - PhD Proposal

Parallel Control Structures RI:

* Concise specification of multiple, simultaneous comparisons
against a single data stream

e Support common pattern search paradigms

e Static and dynamic thread spawning for massive parallelism
support

* Explicit support for sliding window computations

@NITBDELGMVUDBQZZDWIEFHPTG@ZBGEXDGHXSVCMKADSKF JOKLGJADSKGOWESIOHGADHYCBGOASDGBAEGKQEYKPREBN...

L

18. December 2018 K. Angstadt - PhD Proposal

Multi-Architecture System Overview RI:

Hyperscan
Compiler

CPU Engine }

FEAAD B Automata | VASim =—> iNFAnt2
Program Compiler |

Focus of this research effort

REAPR —> Xilinx PAR FPGA Engine

GPU Output }

Micron AP
Compiler

18. December 2018 K. Angstadt - PhD Proposal M

AP Binary

R

Code Generation RE

RAPID Program

e Recursive transformation of RAPID

macro foo (..) { .. }
) . program
macro bar (.) { .. } . .
. /I« Similar to RegEx > NFA
macro baz) { .. } transformation
' acro an (5 § 1|+ Adapt strategy from Staged
} Computation
> < — Imperative statements: evaluate at
network (.) { compile time
\} y — Declarative interaction with input:

evaluate at runtime

18. December 2018 K. Angstadt - PhD Proposal

Experimental Methodology Rl:

* Five benchmarks from real-world applications (expressiveness)
e Success: Applications can be implemented in RAPID

« Compare LOC in RAPID and hand-crafted baseline automata
(scalability)
» Success: RAPID size remains constant or grows sublinearly with application
instance size
* Measure required hardware resources for AP and FPGA

(performance)
e Success: overheads within 15% of baseline

18. December 2018 K. Angstadt - PhD Proposal

RAPID Lines of Code RE

B Handcrafted B RAPID
ARM

F
F

Exact

MOTOMATA

Ganpy —
—

0] 500 1000 1500 2000 2500
Lines of Code

18. December 2018 K. Angstadt - PhD Proposal

RAPID Hardware Utilization RE

Automata Processor FPGA

1600 1600
m Handcrafted LUTs

m Handcrafted STEs

1400 m RAPID STEs 1400 m RAPID LUTs
1200 1200 m Handcrafted Reg.
1000 1000 m RAPID Reg.

800 800

600 600

400 400

200 I 200 I

o Tmmm - 1 .- o HHNm I e mmll IIII
ARM

Brill Exact Gappy MOTOMATA ARM Brill Exact Gappy MOTOMATA

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 1 Summary RE

* Feasibility of compiling an imperative, high-level programming
language to a set of finite automata for execution on hardware
accelerators

* RAPID extends C- or Java-like language with domain-specific
parallel control structures and code abstraction

* Preliminary results demonstrate low overheads on AP and FPGA;
reduced program size

18. December 2018 K. Angstadt - PhD Proposal

Interactive Debugging for High-
Level Languages and
Accelerators

Research Effort 2

Houston, we have a problem!

Unexpected output deep in data
processing

o0
Bug in corner case infrequently _\ »@\

activated by input

‘ —>®\-
Incoming Data . »@\-
CPU too slow to debug full application, but — o O
may be difficult to extract subset of input

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 2

Goal: Design a high-speed interactive debugger for a high-level
language (RAPID) executing on a hardware accelerator

Hypothesis: The automata abstraction reduces the program state
that must be monitored at the signal level on hardware accelerators
while still allowing for program semantics to be lifted to higher levels
of abstraction and meaningfully supporting debugging

18. December 2018 K. Angstadt - PhD Proposal

R

=

“A [debugger is a] program designhed to help
detect, locate, and correct errors in another
program. It allows the developer to step

through the execution of the process and its
threads, monitoring memory, variables, and

other elements of process and thread context.”
MSDN Windows Dev Center

(https://msdn.microsoft.com/en-us/library/windows/desktop/ms679306(v=vs.85).aspx)

18. December 2018 K. Angstadt - PhD Proposal

Multi-Step Process Rl?

1. First, we must halt execution and extract current
program state from the processor

Insight: repurpose existing hardware/signal monitoring

2. Then, we lift the extracted state to the semantics
of the source language

Insight: generate mapping from expressions/statements to hardware
elements during compilation

18. December 2018 K. Angstadt - PhD Proposal

Where do we stop? Rl?

* Breakpoints annotate expressions/statements to specify locations
to pause execution for inspection
* Traditional notion relies on instructions stream
 Mechanism does not apply directly to architectures with no instructions
(e.g., FPGAs, AP)
* Key Insight: Automata computation driven by input
* Set breakpoints on input data, not instructions
e Supports use case of stopping computation at abnormal behavior
» Can also provide abstraction of traditional breakpoints

18. December 2018 K. Angstadt - PhD Proposal

Capturing State

Challenge: Space
overhead on FPGAs

* Process input data up to breakpoint
e State of automata is compact

* O(n) in the number of states of the NFA ILAs can be dynamically
« State vector captures relevant execution reconfigured to probe
information different signals, but
* Repurpose existing hardware to capture support additional features,
* AP: State vector cache already stores active causing bloat
states

* FPGA: Integrated Logic Analyzers (ILAs) and

Virtual 1/0 pins (VIOs) allow for probing of VIOs are tied to the >ame
activation bits clock as the design slow

down the design

18. December 2018 K. Angstadt - PhD Proposal

Lifting Hardware State to Source-Level Rl?

- Modify the RAPID compiler to generate debugging tables
* Approach for the RAPID compiler is similar to traditional compilation
* For every line, which NFA states does it map to?
* For every line, what variables are in scope and what are their values (or
which hardware resources hold their values)?
- At breakpoint, apply mappings in reverse

- Now have:
- Expressions currently executing
- Values of in-scope variables

18. December 2018 K. Angstadt - PhD Proposal

Putting it all together

Standard Program Execution
8

Accelerator processes data g \ .
P Abnormal behavior observed

Debugging Execution

Accelerator processes data ’\ N User-defined breakpoint
" System-calculated breakpoint
‘ I Y () el N e
..... > S |
-
~
. Ma ,O'\ b
Accelerator Simulator Simulator Ing
state vector processes state vector
data =

18. December 2018 K. Angstadt - PhD Proposal

R

=

Experimental Methodology

 Measure performance and scalability of FPGA-based automata
debugging
« ANMLZoo benchmark Suite (14 real-world applications)
* Measure additional resources used and relative clock frequency
. Sucpess: fit on commercial FPGA and exceed performance of baseline CPU
engine
 Measure ease of use with a human study
 Participants given fault localization task
* Ten RAPID programs with indicative bugs
* Collect implicated lines and measure time taken to answer
» Success: statistically significant improvement in accuracy or time

18. December 2018 K. Angstadt - PhD Proposal

Preliminary FPGA Results

60 100%
90%
50 80%
70%
40 0 vqa)o
- 60% =
3
£ 30 50% S
(]>) o
3 40% %
20 2
30% ©
10 20%
10%
0 — ‘- ‘- ‘- J- ‘- ‘- 0%
S X4 & & N &
&Q} oé{b 2 < \@Q
QP & &
R >

mmm | UT Overhnead @~ mmmFF Overhead == Power Overhead —#=Clock Percentage

18. December 2018 K. Angstadt - PhD Proposal

-

Human Study Results R

 N=61 participants (predominantly UVA students)

* Our debugging tool improves a user’s fault localization accuracy for
RAPID programs in a statistically significant manner (p = 0.013)

* No statistically significant impact on the time needed to localize
faults in RAPID programs

* Debugging information for RAPID programs helps novices and
experts alike (there is no interaction between developer experience
and the ability to interpret debugging information)

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 2 Summary Rl?

* Design a high-speed interactive debugger for RAPID on hardware
accelerators

* Repurpose existing hardware to extract runtime state from
accelerator and bridge semantic gap with high-level language

* Preliminary FPGA results demonstrate viability
* High overhead remain a challenge

* Human Study results demonstrate ease of use

18. December 2018 K. Angstadt - PhD Proposal

Expressive Power of In-Memory
Automata Accelerators

Research Effort 3

Automata/RegEx Processing Platforms RE

- S PAP @ Micron AP@
& ® Cache Automaton
&
Existing Architecture Custom ASIC
CPU-Based GPU-Based c
‘QVHASir;rSCan @DFAGE g
- ngohi, et al.|_@INFAN2 2 UAP @
@ PCRE IBM PowerEN @Y~ HARE @

18. December 2018 K. Angstadt - PhD Proposal

Automata/RegEx Processing Platforms RE

Finite automata are fundamentally limited in the kinds
and complexity of analyses they support

18. December 2018 K. Angstadt - PhD Proposal

Automata 000 A

—— GIFS

11

PACKAGES

—— USERS SEND

47300
Finite autom: i @ 19861

and ¢
BITGOIN

GOOGLE

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 3 RE

Goal: Extend the expressive power of automata-based accelerators
to support more common data processing tasks, including the
parsing of recursively-nested structures.

Hypothesis: An in-cache accelerator architecture supporting
pushdown automata computation will support a rich class of
applications, and allow for improved performance over state-of-the-
art baselines.

18. December 2018 K. Angstadt - PhD Proposal

ASPEN Will Support Richer Analyses RE

* Accelerated in-SRAM Pushdown ENgine

e Scalable processing engine that uses LLC slices to accelerate
Pushdown Automata computation

* Custom five-stage datapath using SRAM lookups can process up to
one byte per cycle

* Optimizing compiler supports existing grammars, packs states
efficiently, and reduces the number processing stalls

18. December 2018 K. Angstadt - PhD Proposal

lll
 J L 4
* L 4

- ' Input Symbol Match
Pot)O I

oop ‘O,op of Stack Match
. V% !
‘ Stack Actions ‘ wp

1
1
Pop 1
No Push

Pushdown Automata Refresher

18. December 2018 K. Angstadt - PhD Proposal 47

r—'-

Q)

O

<

D

Q
I<I

RE

Deterministic Pushdown Automata (DPDA) avoid
stack divergence, but still support parsing of most
common languages

18. December 2018 K. Angstadt - PhD Proposal 48

Recognizing Palindromes with a Middle Character

--
““““
. .

STACK

€
1
Pop O
No Push

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 49

Recognizing Palindromes with a Middle Character

lll
Q‘ .0
*

*
Pop O
Push ‘O’ e
_ 1
Pop O Pop O
> 1 No Push No Push
*

Pop O
Push ‘1’

]
[]
[]
]
]
.
.
*
*

*
0..

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 50

Recognizing Palindromes with a Middle Character

--
o*"* N,

.
. .

STACK

€
1
Pop O
No Push

*
*

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 51

Recognizing Palindromes with a Middle Character

--
o*"* N,

.
.

. STACK

€

_ 1
Pop O

No Push

*
*

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 52

Recognizing Palindromes with a Middle Character

lll
 J L 4
* L 4

STACK

€

_ 1
Pop O

No Push

*
*

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 53

Recognizing Palindromes with a Middle Character

--
o*"* N,

.
.

. STACK

€

_ 1
Pop O

No Push

*
*

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 54

Recognizing Palindromes with a Middle Character

lll
 J L 4
* L 4

STACK

€

_ 1
Pop O

No Push

*
*

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 55

Recognizing Palindromes with a Middle Character

lll
 J L 4
*

. STACK

€
1
Pop O
No Push

L 4
ll

18. December 2018 K. Angstadt - PhD Proposal 56

Recognizing Palindromes with a Middle Character

lll
 J L 4
* L 4

STACK

Pop 0

./ Ho Push

L 4
ll

0
0..

18. December 2018 K. Angstadt - PhD Proposal 57

Recognizing Palindromes with a Middle Character

STACK

*
*

18. December 2018 K. Angstadt - PhD Proposal 58

Recognizing Palindromes with a Middle Character

STACK

*
*

18. December 2018 K. Angstadt - PhD Proposal 59

Recognizing Palindromes with a Middle Character

STACK

*
*

18. December 2018 K. Angstadt - PhD Proposal 60

Recognizing Palindromes with a Middle Character

STACK

*
*

18. December 2018 K. Angstadt - PhD Proposal 61

Recognizing Palindromes with a Middle Character

STACK

*
*

LOlOiOCOiO;!.WQ

18. December 2018 K. Angstadt -

Mapping DPDA Efficiently to Hardware RE

 ASPEN supports homogeneous DPDA

 All transitions to a state occur on the same input character, top of stack
comparison, and stack operation

e Similar in nature to homogeneous NFAs
 Equal expressive power as standard DPDA
e State increase is quadratic in the worst case with a fixed alphabet

 Allows for efficient mapping to hardware resources
* Transitions decoupled from input/stack matches

18. December 2018 K. Angstadt - PhD Proposal

Five Steps of DPDA Execution Per Cycle RE

L 01010c01010

18. December 2018 K. Angstadt - PhD Proposal

Five Steps of DPDA Execution Per Cycle RE

*
3

Input Matche
Stack Match :
Action Lookup
Stack Update

c €
Pop O HPOD 0
No Push No Push
State

TranSItiON = ““*eusssasscccceeeeeeseeesssssssssnnnnnn nsssessssssssssnnns® ’

m1010C01010

Pop 1
No Push

Pop 1
No Push

o & Wb

18. December 2018 K. Angstadt - PhD Pro

Five Steps of DPDA Execution Per Cycle RE

Input Matche &
Stack Match :
Action Lookup
Stack Update

State
Transition

o & Wb

mlOlOcOlOiO

18. December 2018 K. Angstadt - PhD Pro

Five Steps of DPDA Execution Per Cycle RE

Input Matche &
Stack Match :
Action Lookup
Stack Update

State
Transition

o & Wb

mlOlOcOlOlO

18. December 2018 K. Angstadt - PhD Proposal

Five Steps of DPDA Execution Per Cycle RE

Input Matche &
Stack Match :
Action Lookup
Stack Update

State
Transition

o & Wb

mlOlOcOlOiO

18. December 2018 K. Angstadt - PhD Pro

Five Steps of DPDA Execution Per Cycle RE

Input Matche
Stack Match :
Action Lookup
Stack Update

State , .
TraANSITION = *+eecccasssscccnsssssnnnsssssnnnsssssnnsnssssnnnsssnnnnnnns®

mlOlOcOlOiO

o & Wb

18. December 2018 K. Angstadt - PhD Proposal

Where is ASPEN?

O ASPEN

O ASPEN G-switch B ASPEN G-stack

= = /
e P
'Ti.liw - :
e Ea | |
e Ry]
000
000
DRI kL T , \ ——
T (YY)
HUUUUR! 1 HEUUER{ llllll‘ \
Way 20

18. December 2018 K. Angstadt - PhD Proposal

Way 2 Way 1

RE

* ASPEN uses 2
arrays per bank

e 240 states per
bank

* Full connectivity
within bank

e Global switch
and stack in
CBOX for large
DPDA

ASPEN Datapath — 240 States in 2 SRAM Arrays RE
b5 O\

ok~ Wik

Input Match

Stack Match st
Action Lookufr
Stack Update

State

Transition ¢

18. December 2018

SRAM Arrayl

SRAM ArrayO 5

255 0

o Stack
Pointer
o w ®
. =g 2. Stack > &
) : © 9 : © A
o Matching T O Matching T o 2
®) o O o O
3 — = = — = 2 O [—
> @
2 One ® 9 One ® 2 3|
= = =
2 Column per QS Column per m L)
@
State Qo @ State =
o | | <
\
255 B 255
N A \ 4
N 41columnmux / N\ 41columnmux /
240b ¥ 8by _8by 256b | 240b v 80
IM Vector |t _| 2560 SM Vector S, Local TOS
Push Sym. Pop # | T0S +1 10S
Active State Vector 256

5

— Reconfigurable

Transition

K. Angstadt - PhD Proposal Matrix 71

RE

Optimizations
Epsilon Merging e Y
Goal: Reduce the
[A-Z] € [A-Z]
« % x number of stalls
b - — _ _
Pop O Pop 1 Pop 1 while processing
No Push Push ‘@’ Push ‘a’)
Input y
Multipop
£ £ £ £ £
Pop 1 Pop 1 Pop 1 Pop 1 » Pop 4 -
No Push No Push No Push No Push No Push

* Average of 65% reduction in epsilon states

18. December 2018

K. Angstadt - PhD Proposal

Experimental Methodology RE

 Compile existing grammars (expressive power and legacy support)
e Cool, JSON, XML, Dot, etc.
* Measure hardware utilization, including optimization improvement

* Real-world application case studies (performance and scalability)
e Stress different aspects of architecture
* Large DPDA with Global Stack (high connectivity)

 Small DPDA with Local Stacks (sparse connectivity)
 Compare runtime performance to state-of-the-art baselines

» Success: Outperform state-of-the-art for indicative applications
while not exceeding power thresholds for modern CPUs

18. December 2018 K. Angstadt - PhD Proposal

Application 1: XML Parsing

25

= > N
o ol o

o1

Speedup (normalized to Xerces)

o)

18. December 2018

m Xerces mExpat mASPEN mASPEN-MP

Low (< 0.3) Medium (0.3-0.7) High (>0.7)
Markup Density

Average

K. Angstadt - PhD Proposal

RE

e Benchmarks: Parabix,
Ximpleware, UW XML

 ASPEN is 13-18x
faster (on average)
than popular CPU
Parsers

e Performance did not
vary significantly with
complexity of XML

* Optimizations and
tokenization hide &-

stalls

Application 2: Anomaly Intrusion Detection RE

* [dentify abnormal program executions by monitoring memory
access patterns

* Hypothesis: normal executions will exhibit consistent, similar
memory access patterns
e Cache is perfect!

* Transparently snoop on memory access
» Automata accelerators repurpose address lines for data input

* Revisits “a sense of self” work by Forrest et al. using system calls
for signatures of normal behavior

18. December 2018 K. Angstadt - PhD Proposal

MemlIDS Basic Approach: Sliding Windows RE

* Successful approaches (syscalls) use simple automata
 Build dictionary of observed behavior
* Sliding window of sequences to determine normal/abnormal

vemoy AABACCBBC

A B C D E

A B C D E

18. December 2018 K. Angstadt - PhD Proposal

MemlIDS Basic Approach: Sliding Windows RE

* Successful approaches (syscalls) use simple automata
 Build dictionary of observed behavior
* Sliding window of sequences to determine normal/abnormal

vt AABACCBBC -

L

Testing
Memory AAECD

18. December 2018 K. Angstadt - PhD Proposal

MemIDS Research Questions RE

* Can we successfully detect the execution of different programs?
* How many bits of address are needed for a meaningful dictionary?

* What classes of abnormal behavior can we detect?
* Speculative execution-based attacks
e Stealthy malware
* Information leaks

* What do we do with this information?

* Block access
* Delay access
* Return bogus values

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 3 Summary RE

 Expand expressive power of automata accelerators with new in-
cache architecture for DPDA

* New homogeneous DPDA variant for efficient hardware
Implementation

* Optimizing compiler to support existing grammars

* Preliminary results demonstrate improved performance for XML
parsing

* Ongoing work to leverage accelerator for intrusion detection
applications

18. December 2018 K. Angstadt - PhD Proposal

Adapting Legacy Code for
Execution on Hardware
Accelerators

Research Effort 4

Legacy Code in the Age of Hardware RE
Accelerators

* Legacy code typically cannot be directly compiled for accelerators

* Learning a new programming model is costly and slows rate of
adoption of new accelerators

 May want to “try out” new hardware with existing software
* No training on new hardware
* Limited time or resources to allocate

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 4 RF

Goal: Reduce the burden on developers tasked with porting legacy
code to execute on hardware accelerators

Hypothesis: An algorithm that learns a set of finite automata from a
legacy source code kernel, using a combination of automata learning
and formal methods, can correctly synthesize a functionally-
equivalent kernel computation, reduce the manual annotation and
refactoring efforts of human developers, and efficiently represent
real-world applications.

18. December 2018 K. Angstadt - PhD Proposal

Problem Statement

* Input: function kernel : string -> bool

 Assumptions:
* Function decides a regular language

e Source code for function is available

* Qutput: finite automaton with the same behavior on “all” inputs as
kernel

18. December 2018 K. Angstadt - PhD Proposal

Angluin-Style Learning (L*)

U/I/a/
€n
CG QUery
/k L
Automaton es or Coy (

A Merexampra L Oracle }

18. December 2018 K. Angstadt - PhD Proposal

Angluin-Style Learning (L*)

U/I/a/
€n
CG QUery
/k L
Automaton es or Coy (

A Merexampra L Oracle }

18. December 2018 K. Angstadt - PhD Proposal

Angluin-Style Learning (L*)

Automaton

A

18. December 2018 K. Angstadt - PhD Proposal 86 M

Equality Checking as Software Verification RF

* Explores control flow graph looking for property violations
e Success finding variety of bugs (e.g., double-free, locking violations, etc.)
* Used in industry for driver verification

* Properties specified as automata
* Research: How do we leverage this?
* Adapt L*-learned candidate automata to specifications
* Verify source kernel: violations are counterexamples

* Research: identify appropriate verification strategies

18. December 2018 K. Angstadt - PhD Proposal

Mitigating Risk: Speculative Research RF

* Restrict kernel functions
* Decide regular languages

e Streaming access to input data
* Time permitting: relax these assumptions

* Allow for approximate solutions
 Measure accuracy with respect to time
* Reduce impact of error with examples

* User-provided annotations
 Guide software verification
* Note “transitions” in kernel

o157 |

/n 'k‘~, <

18. December 2018 K. Angstadt - PhD Proposal

RE

Experimental Methodology

* Seek benchmark suite of existing kernel functions
* Is it possible for our algorithm to adapt kernels? (legacy support)

e Measure time needed to learn automata and their size In

states/hardware resources (scalability)
e Success: Run over the weekend and fit on commercial FPGA

 Measure accuracy of approximate solutions
* Use provided test suites and augment with test input generation
» Success: use of example inputs improves accuracy

18. December 2018 K. Angstadt - PhD Proposal

Research Effort 4 Summary RE.

* Design algorithm to adapt legacy kernels for execution on hardware
accelerators

* Adopt Angluin-style learning approach
* Convert equivalence queries to software verification tasks

e Speculative research
* Limit kernels to decide regular languages
* Annotations to guide software verification
* Approximate solutions and guiding example inputs

18. December 2018 K. Angstadt - PhD Proposal

Proposal Overview

* Proposed Research Efforts

* High-Level Programming Language: RAPID

* High-Speed, Interactive Debugger for Hardware Accelerators

* In-Cache Accelerator for Pushdown Automata

* Adapting Legacy Code for Execution on Hardware Accelerators

e Candidate Schedule
* Conclusion/Discussion

18. December 2018 K. Angstadt - PhD Proposal

Proposed Research Schedule

2014 2015 2016 2017 2018 2019 2020

|
RAPID Language [ASPLOS’16] i

Research Period

RAPID Multi-Architecture [TPDS'18]] B Publication Lag

Other

Debugging System [ASPLOS’19]

ASPEN [MICRO'18]]

ASPEN Security Application

Automata Learning

Primary Instructor

Undergraduate Mentorship

Today Graduation

18. December 2018 K. Angstadt - PhD Proposal

Typical Venues

Computer Architecture PL and Software Engineering

* MICRO (March/April) * ASE (April)

 HPCA (July/August) POPL (July)

* ASPLOS (August) * ICSE (August/September)

 TPDS (Journal)

18. December 2018 K. Angstadt - PhD Proposal

Publications Supporting Proposed Research

1.

Matthew Casias, Kevin Angstadt, Tommy Tracy Il, Kevin Skadron, Westley Weimer. Debugging Support for Pattern-
Matching Languages and Accelerators. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, Providence, Rhode Island, 2019. ACM, to appear.
(21% acceptance rate)

Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. Portable Programming with RAPID. In
Transactions on Parallel and Distributed Systems, to appear. IEEE. (4.181 journal impact factor)

Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi, Kevin Skadron, Westley Weimer, Reetuparna
Das. ASPEN: A Scalable In-SRAM Architecture for Pushdown Automata. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, Fukuoka, Japan. 2018. IEEE. (21% acceptance rate)

Kevin Angstadt, Jack Wadden, Vinh Dang, Ted Xie, Dan Kramp, Westley Weimer, Mircea Stan, and Kevin Skadron.
MNCaRT: An Open-Source, Multi-Architecture Automata-Processing Research and Execution Ecosystem. In Computer
Architecture Letters, vol. 17, no. 1, pp. 84-87, Jan.-June 1 2018. IEEE. (~24% acceptance rate)

Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and Mitigating Output Reporting Bottlenecks in
Spatial Automata Processing Architectures. In Proceedings of the 24th IEEE International Symposium on High-
Performance Computer Architecture, Vienna, Austria, 2018. IEEE. (21% acceptance rate)

Kevin Angstadt, Westley Weimer, and Kevin Skadron. RAPID Programming of Pattern-Recognition Processors. In
Proceedings of the 21st International Conference on Architectural Support for programming Languages and
Operating Systems, Atlanta, Georgia, 2016. ACM. (22% acceptance rate)

18. December 2018 K. Angstadt - PhD Proposal

Additional Publications

1.

Kevin Angstadt and Ed Harcourt. A Virtual Machine Model for Accelerating Relational Database Joins using a
General Purpose GPU. In Proceedings of the High Performance Computing Symposium, Alexandria, VA, 2015.
Society for Computer Simulation International

Sihang Liu, Kevin Angstadt, Mike Ferdman, Samira Khan. ARMOR: Towards Restricted Approximation with a Worst-
Case Guarantee. In: Proceedings of the 2018 Workshop on Approximate Computing Across the Stack, Williamsburg,
VA, 2018.

Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron Paulos, and Patrick Hurley. An Uncrewed Aerial
Vehicle Attack Scenario and Trustworthy Repair Architecture. In Proceedings of the 46th International Conference
on Dependable Systems and Networks, Industrial Track, Toulouse, France, 2016. IEEE.

Invited Papers and Tech Reports

10.

11.

Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy Tracy, Il, Jack Wadden, Mircea
Stan, and Kevin Skadron. An overview of Micron’s Automata Processor. In Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA,
2016. ACM.

Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. MNRL and MNCaRT: An Open-Source, Multi-
Architecture State Machine Research and Execution Ecosystem. Technical Report CS-2017-01, Department of
Computer Science, University of Virginia, May 2017.

18. December 2018 K. Angstadt - PhD Proposal

Proposal Summary

* Hardware accelerators more commonplace—need for programming
models and maintenance tools

* Four components to improve programming support for hardware
accelerators using automata abstractions
* High-level programming language (RAPID)
* High-speed, interactive debugging for RAPID on AP and FPGA
* |n-cache accelerator for pushdown automata (ASPEN)
* Adapt legacy kernels for execution on hardware accelerators

* Evaluation w.r.t. Performance & scalability, ease of use, expressive
power, and legacy support

18. December 2018 K. Angstadt - PhD Proposal

Discussion Cache

* Space overheads for FPGA debugging probes
* Dynamic probing or decoupling clock signals or some other approach?

* Memory-based intrusion detection evaluations and applications
« What classes of abnormal behavior can we detect?
e What do we do with this information?

* Automata synthesis approach and evaluation
* Thoughts on representing equivalence queries?
 What will computer architects want to know?

e Potential interest overlap and collaboration?
* Integrating with pedagogy...undergraduate mentorship?

18. December 2018 K. Angstadt - PhD Proposal

Bonus Slides

18. December 2018 K. Angstadt - PhD Proposal

Programming Support

High-Level Language |- New programming languages better-suited for
specific application domains/hardware

\ Software systems to adapt/transform/improve

existing (legacy) code

Low-Level (Assembly) Lang. v\
Operating System

Micro Architecture Low-level representations to bridge the gap
Logic between software and hardware

Transistors

Hardware

Architectural modifications to support
Geometry applications and features

18. December 2018 K. Angstadt - PhD Proposal

The AP at a High Level

Automata Processor

Row Address
(Input Symbol)

Routing
Matrix

v JV \ A / JV {V v v JV {V A4 lV {V v JV 47 A\ 4

J' A\ 4 Yy V. Vv Yy V. V A Yy Vv

18. December 2018

Row Access results in 49,152 match & route operations

K. Angstadt - PhD Proposal

Executing NFA in DRAM

e Columns in DRAM store STE labels (Each STE is a single column)

* Reconfigurable routing matrix connects the STEs Columns with “1”:

STE |E|S(e|< 12323 @
- 0 Bl s o B e =
Input: O |5]55]5 slalelels] £ STEs that accept
. RowEnablegZ"-ﬂ, 2",45 0 1 0 0 1 1 0 O 1 2 .
Drives a Row S ' 5 Input symbol
" Row Enable (2°-2) Mb > >0
g (common) (2°-2) EN
~ w En. .. ' gliziz e 2SIz Iglgl = WO
Lk EEEEl 2o
Input,lmg‘: ® & 3I3]3]3 ala1313 |3 gv
gl oy 6 . o |elclcle| @ o @ [elclclclE
Symbol’ = & SUSUSES SESHSESUS >
y o ® 3 -1 k1 Kk K SASHSHSIS E
é‘(g (3] (a3 (3] 8 o 8 3 8 O Q)-o
S w
aarmea s w L LN = £
5
g' Row Enable (1) Mb e
- (common) —> (1) — (o) .
roumern | e , S Active States
State Transition Clock Logic § § §) § §, § § § I

]
(common) 8
A = A = ; =

Active States for Next
Clock Cycle

A

18. December 2018 K. Angstadt - PhD Proposal

Program Structure RE

* Macro
e Basic unit of computation
* Sequential control flow

e Boolean expressions as statements for
terminating threads of computation

 Network

* High-level pattern matching
* Parallel control flow

e Parameters to set run-time values network (.

macro bar (..

18. December 2018 K. Angstadt - PhD Proposal

Either/Orelse Statements RI:

either {
hamming_distance(s,d); //hamming distance
’y? == input () ; //next input is ‘y’
report; //report candidate
} orelse {
while(’y’ != input()); //consume wuntil ’y’
by

* Perform parallel exploration of input data
e Static number of parallel operations

18. December 2018 K. Angstadt - PhD Proposal

Some Statements RE

network (Stringl] comparisons) {
some (String s : comparisons)
hamming_distance(s,5);

¥

* Parallel exploration may depend on candidate patterns
* [terates over items, dynamically spawn computation

18. December 2018 K. Angstadt - PhD Proposal

Whenever Statements RI:

whenever (ALL_INPUT == input()) {
foreach(char ¢ : "rapid")
c == input () ;
report,
}

* Body triggered whenever guard becomes true
 ALL_INPUT: any symbol in the input stream

18. December 2018 K. Angstadt - PhD Proposal

Parallel Control Structures RI:

Sequential Parallel Structure
Structure
If...else either...orelse
foreach some

while whenever

18. December 2018 K. Angstadt - PhD Proposal

Example RAPID Program RE

Association Rule Mining
ldentify items from a database that frequently
occur together

Example RAPID Program RE

macro frequent (String set, Counter cnt) {
 foreach(char c : set) {
while(input() != c);

+

_ cnt.count();

network (String[] set) {
some(String s : set) {
Counter cnt;
— whenever (START_OF_INPUT == input())
frequent (s, cnt) ;
if (cnt > 128)
report;

18. December 2018 K. Angstadt - PhD Proposal

Houston, we have a problem!

- Accelerator applications often target large datasets
- CPUs typically too slow to debug full applications

- Abnormal behavior may not manifest itself in testing inputs
* Low quality/coverage test suites

* Ex. ANMLZoo (automata processing benchmark suite) contains two inputs
per application and no gold standard output!

- May be difficult to extract subset of input for debugging

- Low-level debugging support exists—tedious to use and abstraction mismatch

18. December 2018 K. Angstadt - PhD Proposal

Traditional Breakpoints

RAPID Program

macro helloWorld() {
whenever(ALL_INPUT == input()) {
foreach(char ¢ : "Hello") {
c == input();
}
‘input() = ' '
foreach(char ¢ : "world") {
c == input();
}
report;
}
3

network() {
helloWorld();

}

RAPID @
Compiler ,:

Machine

Machine
B

l l l

4

Accelerator processes data with Machine B

Reports occur when
line is executed

18. December 2018

»

Accelerator processes data with Machine A

K. Angstadt - PhD Proposal

Input breakpoints
inserted at reports

Human Study Results

Input Data Stream:

nnnnnnnnnn

Example Code:

e (ALLINPUT == Lnput

Additional Program Information:
Inspect Data Stream

Previous Next

In-Scope Variables:

Line: 7

In-Scope Variables:

findZip : macro

In-Scope Variables:

18. December 2018

R

=

~60 participants (students and
professional developers)

Participants shown 10 RAPID
programs with seeded defects

- 5 have interactive debugger

- 5 have no debugging information

Asked to identify location of bug in
source code and describe

Recorded time needed to perform
each task

K. Angstadt - PhD Proposal

Implementing ASPEN in LLC RE

 ASPEN repurposes LLC slices for pushdown automata computation

* Location in LLC supports tighter coupling with CPU operations than
dedicated accelerator
* PDA often part of a larger workflow
* ASPEN similar to auxiliary functional unit in CPU (similar to FPU or vector
unit)
* SRAM arrays in LLC already support necessary operations for DPDA
execution

18. December 2018 K. Angstadt - PhD Proposal

Stack Match in SRAM

* Check all states against 0

top of stack

* One column of SRAM/state
* Input TOS as row address
e “1”: match; "0”: no match

* Intersect with currently

«<— Top of Stack (TOS)

19p023(] MOY

active states

N\

255

N 4:1columnmux /

Active State Vector

18. December 2018 K. Angstadt - PhD Proposal

:)——» Active States Matching Stack

Stack Match in SRAM

* Check all states against

top of stack
* One column of SRAM/state -
* Input TOS as row address 2
 “1”: match; "0”: no match g‘— Top of Stack (T0S)
« Intersect with currently @
active states
255[

N 4:1columnmux /

Active State Vector —:D——' Active States Matching Stack

18. December 2018 K. Angstadt - PhD Proposal

Preliminary Results: XML Parsing RE

ASPEN 880 MHz 850 MHz
Cache Automaton 4 GHz 3.4 GHz

* Baseline Evaluation

« CPU: 2.6 GHz dual-socket Intel Xeon Eb-2697-v3 (28 cores total)
* Performance and Power: PAPI, Intel RAPL
 ASPEN Simulation:

 METIS graph partitioning framework

 VASIim modified for cycle-accurate DPDA simulation

18. December 2018 K. Angstadt - PhD Proposal

Angluin-Style Learning

. Attem ptS to |earn a flnlte Generate Observation Table
automaton from a held-out model @ {b__ob_

. Requires set membership queries e e [P
(Is string In language’ Returns C Rkl bl
yeS/nO answer) C Kernel ba _Ilialse _IF_aIse _I;alse :za:se

- Run legacy code for answer b _|Foise | False | Folse | Fae

. Requires equivalence queries (lIs
the automaton equivalent to
model? Returns

yes/counterexample) -
. Software model checking to C | A/«

find differences Software Model
Checker

State
Machine

Q@
o
IS
@®©
x
()
—
Q
+—
[
>
Q
&

18. December 2018 K. Angstadt - PhD Proposal

