
Ray PL Buse

2.6.2008

@author Ray PL Buse

@date 2.6.2008

@slide 3

 Exceptions: Why?
 Handling exceptions
 A look at existing practice in 10 popular Java

programs
 Hypothesis:

 We can automatically generate documentation
describing when exceptions are thrown that is, on
average, better than human-written documentation

 Evaluation
 Usage Considerations and Conclusions

@slide 4

 Language construct for transferring control
to a place where an event can be handled

 2 General Cases

 Legitimate environmental events

▪ e.g., the disk is full

 Checking invariants or preconditions

▪ e.g., argument must not be null

@slide 5

 Context

 Modules lead us to generic (reusable) code

 In general, error handling can’t be generic

saveDoc()

main() write()

Disk I/O module

logEvent()

@slide 6

@slide 7

More
Context

Exception!Less
Context …

Detect Event

@slide 8

More
Context

Exception!Less
Context …

Detect Event

Gather Context

Handle

@slide 9

 In real life we can “think up” solutions
on-the-fly

 In software, we have to anticipate
everything

 We have to understand the conditions
that can cause exceptions

@slide 10

 Mishandling or Not handling can lead to…

 Security vulnerabilities

▪ May disclose sensitive implementation details

 Breaches of API encapsulation

▪ Might want to change exceptions later

 Any number of minor to serious system failures

@slide 11

 Solution 1: No exceptions. Total functions
only.

 Solution 2: Pretend exceptions don’t happen.
 Solution 3: Keep track of all exceptions and

handle them appropriately.

@slide 12

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 13

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 14

When does this throw
an exception?

Here’s one spot

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 15

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

Must check here

and here

When does this throw
an exception?

@slide 16

 Need to check all the methods
that are reachable

 With subtyping and dynamic
dispatch there could be many
implementations of a method

 And what happens as the
system evolves?

@slide 17

 For Developers

 Easier to keep track of what’s going on

 For Maintenance

 90% of the total cost of a typical software project

 40% - 60% of maintenance is spent studying
existing software

 For Users

 Easier to integrate existing software libraries

@slide 18

Program Name Application Domain kLOC

Azureus Internet File Sharing 470

DrJava Development 131

FindBugs Program Analysis 142

FreeCol Game 103

hsqldb Database 154

jEdit Text Editor 138

jFreeChart Data Presentation 181

Risk Game 34

tvBrowser TV guide 155

Weka Machine Learning 436

Total 1944

@slide 19

 Exception Instance

 An Exception type and a method that can propagate it

 Each exception instance is an opportunity for a
documentation

 Depth of an Exception Instance

 Minimum number of dynamic method invocations
between the Exception Instance and a throw
statement of its type

 Intuitively, greater depth implies harder to figure out

@slide 20

@slide 21

@slide 22

Can we do better?
/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 23

/**

* Moves this unit to america.

*

* @exception IllegalStateException thrown when

* getLocation() is not a Europe.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

@slide 24

 We can create an automatic tool that
documents exceptions better than
developers have

 Better?

▪ More complete

▪ More precise

@slide 25

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 A simple example:

@slide 26

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 Find the throw
statements

@slide 27

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n)

{

if(n == 4)

throw new Exception();

}

 Link method
invocations to
possible targets

 We use an off-the-
shelf call graph
generator

@slide 28

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Determine which
methods can
throw which
exceptions
 Use a fixpoint

worklist to deal
with cycles

 Must consider
catch and
finally blocks

@slide 29

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Enumerate control
flow paths that can
lead to exceptions

 Work backward
from exception
throwing
statements

@slide 30

main() {Exception}

{

if(x < 0)

throw new Exception();

else

sub(x);

}

sub(int n) {Exception}

{

if(n == 4)

throw new Exception();

}

 Symbolically
execute paths,
record predicates

 Use another
fixpoint worklist

@slide 31

 Predicates along
the path become
the documentation

@throws Exception if

x < 0 OR (x >= 0 AND x==4)

main()

{

if(x < 0)

throw new Exception();

else

sub(x);

}

@throws Exception if

parameter:n == 4

sub(int n)

{

if(n == 4)

throw new Exception();

}

@slide 32

 Finally, some simplification & readability
enhancements

 TRUE becomes “always”

 FALSE OR x becomes “x”

 x != null becomes “x is not null"

 x instanceof T becomes “x is a T"

 x.hasNext() becomes “x is nonempty"

 x.iterator().next() becomes “x.{some
element}"

@slide 33

 Generate call graph
 Track all explicitly thrown exceptions by

concrete type
 Construct and symbolically execute all

(exponentially many) paths that can lead
to a throw

 Construct predicates and make them more
readable

@slide 34

 Baseline: Existing JavaDocs

 10 Benchmarks from earlier

 ~950 documentations

 Run tool on each program and create pairs

 <tool doc, existing doc>

 Bin each in: Worse, Same, Better

@slide 35

 Sometimes we do better:

 Sometimes we do about the same:

 Sometimes we do worse:

@slide 36

@slide 37

 throw statements are relatively rare
 Only have to execute paths that lead to a
throw

 We don’t follow back edges

 Some limit needed to guarantee termination

 Whole process takes about 10 min on average

@slide 38

 Exceptions that seem possible aren’t really

 Better call graph

 Exceptions contexts are deep and complex

 Could be a symptom of bad design

 Might want to ignore certain types or threshold
depth

 Same exception type stands for many error
conditions

 Increase granularity of exception type hierarchy

@slide 39

 External API

 System users

 Code Reviews

 Reading & Inspection

 Verification

 If we want to be more formal

@slide 40

 Exceptions probably aren’t going away
 Many exception instances remain poorly or

not documented in practice
 On average, we do at least as well as humans

83% of the time and are fully automatic
 We can scale to large programs

 Azureus has 470 kLOC, tool runs in ~25 min

@slide 41

throw new OutOfSlidesException();

