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 Exceptions: Why?
 Handling exceptions
 A look at existing practice in 10 popular Java 

programs
 Hypothesis:

 We can automatically generate documentation 
describing when exceptions are thrown that is, on 
average, better than human-written documentation

 Evaluation
 Usage Considerations and Conclusions
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 Language  construct for transferring control 
to a place where  an event can be handled

 2 General Cases

 Legitimate environmental events

▪ e.g., the disk is full

 Checking invariants or preconditions

▪ e.g., argument must not be null
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 Context

 Modules lead us to generic (reusable) code

 In general, error handling can’t be generic

saveDoc()

main() write()

Disk I/O module

logEvent()
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Exception!Less
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Detect Event
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 In real life we can “think up” solutions 
on-the-fly

 In software, we have to anticipate 
everything

 We have to understand the conditions
that can cause exceptions
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 Mishandling or Not handling can lead to…

 Security vulnerabilities

▪ May disclose sensitive implementation details

 Breaches of API encapsulation

▪ Might want to change exceptions later

 Any number of minor to serious system failures
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 Solution 1: No exceptions. Total functions 
only.

 Solution 2: Pretend exceptions don’t happen.
 Solution 3: Keep track of all exceptions and 

handle them appropriately.
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/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}
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When does this throw 
an exception?

Here’s one spot

/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}
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/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}

Must check here

and here

When does this throw 
an exception?
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 Need to check all the methods 
that are reachable

 With subtyping and dynamic 
dispatch there could be many 
implementations of a method

 And what happens as the 
system evolves?
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 For Developers

 Easier to keep track of what’s going on

 For Maintenance

 90% of the total cost of a typical software project

 40% - 60% of maintenance is spent studying 
existing software

 For Users

 Easier to integrate existing software libraries
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Program Name Application Domain kLOC

Azureus Internet File Sharing 470

DrJava Development 131

FindBugs Program Analysis 142

FreeCol Game 103

hsqldb Database 154

jEdit Text Editor 138

jFreeChart Data Presentation 181

Risk Game 34

tvBrowser TV guide 155

Weka Machine Learning 436

Total 1944
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 Exception Instance

 An Exception type and a method that can propagate it

 Each exception instance is an opportunity for a 
documentation

 Depth of an Exception Instance

 Minimum number of dynamic method invocations 
between the Exception Instance and a throw
statement of its type

 Intuitively, greater depth implies harder to figure out
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Can we do better?
/**

* Moves this unit to america.

*

* @exception IllegalStateException If the move is illegal.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}
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/**

* Moves this unit to america.

*

* @exception IllegalStateException thrown when   

* getLocation() is not a Europe.

*/

public void moveToAmerica() {

if (!(getLocation() instanceof Europe)) {

throw new IllegalStateException("A unit can only be "

+ "moved to america from europe.");

}

setState(TO_AMERICA);

// Clear the alreadyOnHighSea flag:

alreadyOnHighSea = false;

}
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 We can create an automatic tool that 
documents exceptions better than 
developers have

 Better?

▪ More complete

▪ More precise
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main()

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n )

{

if( n == 4 )

throw new Exception();

}

 A simple example:
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main()

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n )

{

if( n == 4 )

throw new Exception();

}

 Find the throw 
statements
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main()

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n )

{

if( n == 4 )

throw new Exception();

}

 Link method 
invocations to 
possible targets

 We use an off-the-
shelf call graph 
generator
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main() {Exception}

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n ) {Exception}

{

if( n == 4 )

throw new Exception();

}

 Determine which 
methods can 
throw which 
exceptions
 Use a fixpoint

worklist to deal 
with cycles

 Must consider 
catch and 
finally blocks
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main() {Exception}

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n ) {Exception}

{

if( n == 4 )

throw new Exception();

}

 Enumerate control 
flow paths that can 
lead to exceptions

 Work backward 
from exception 
throwing 
statements
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main() {Exception}

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

sub( int n ) {Exception}

{

if( n == 4 )

throw new Exception();

}

 Symbolically 
execute paths, 
record predicates

 Use another 
fixpoint worklist
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 Predicates along 
the path become 
the documentation

@throws Exception if

x < 0 OR (x >= 0 AND x==4)

main()

{

if( x < 0 )

throw new Exception();

else

sub( x );

}

@throws Exception if

parameter:n == 4

sub( int n )

{

if( n == 4 )

throw new Exception();

}
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 Finally, some simplification & readability 
enhancements

 TRUE becomes “always”

 FALSE OR x becomes “x”

 x != null becomes “x is not null"

 x instanceof T becomes “x is a T"

 x.hasNext() becomes “x is nonempty"

 x.iterator().next() becomes “x.{some 
element}"
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 Generate call graph 
 Track all explicitly thrown exceptions by 

concrete type
 Construct and symbolically execute all 

(exponentially many) paths that can lead 
to a throw

 Construct predicates and make them more 
readable
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 Baseline: Existing JavaDocs

 10 Benchmarks from  earlier

 ~950 documentations 

 Run tool on each program and create pairs

 <tool doc, existing doc>

 Bin each in: Worse, Same, Better
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 Sometimes we do better:

 Sometimes we do about the same:

 Sometimes we do worse:
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 throw statements are relatively rare
 Only have to execute paths that lead to a 
throw

 We don’t follow back edges

 Some limit needed to guarantee termination

 Whole process takes about 10 min on average
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 Exceptions that seem possible aren’t really

 Better call graph

 Exceptions contexts are deep and complex

 Could be a symptom of bad design

 Might want to ignore certain types or threshold 
depth

 Same exception type stands for many error 
conditions

 Increase granularity of exception type hierarchy
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 External API

 System users

 Code Reviews

 Reading & Inspection

 Verification

 If we want to be more formal
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 Exceptions probably aren’t going away
 Many exception instances remain poorly or 

not documented in practice
 On average, we do at least as well as humans 

83% of the time and are fully automatic
 We can scale to large programs 

 Azureus has 470 kLOC, tool runs in ~25 min
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throw new OutOfSlidesException();


