Automatic, Efficient, and General
Repair of Software Defects using
Lightweight Program Analyses

Dissertation Proposal
Claire Le Goues

September 22, 2010

. Software Errors Are Expensive .

“Everyday, almost 300 bugs appear
| [...] far too many for only the Mozilla

. ﬁﬂ programmers to handle.”
ez — Mozilla Developer, 2005

* Even security-critical errors take 28 days to fix.?

* Software errors in the US cost $59.5 billion
annually (0.6% of GDP)3.

1. J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In International Conference on Software Engineering, pages 361-370, 2006.
2. P.Hooimeijer and W. Weimer. Modeling bug report quality. In Automated software engineering, pages 34-43, 2007.
3. NIST. The economic impacts of inadequate infrastructure for software testing. Technical Report NIST Planning Report 02-3, NIST, May 2002.

. Proposed Solution .

Automatic Error Repair

. Previous Work .

* Runtime monitors + repair strategies [Rinard,
Demsky, Smirnov, Keromytis].

— Increases code size, or run time, or both.
— Predefined set of error and repair types.
* Genetic programming [Arcuri].

— Proof-of-concept, limited to small, hand-coded
examples.

* Lack of scalability and generality.

. Insights .

1. Existing program code and behavior
contains the seeds of many repairs.

2. Test cases scalably provide access
to information about existing
program behavior.

. Proposal .

Use search strategies, test cases, and
lightweight program analyses to
quickly find a version of a program
that doesn’t contain a particular
error, but still implements required
functionality.

. Outline -

* Repair technique metrics
* System overview

* Four research contributions, including
preliminary results

 Schedule
 Conclusions

9/27/10

. Overall Metrics .

* Scalability
— Lines of code. Success: hundreds of thousands of lines.
— Time. Success: minutes.

* Generality
— Varied benchmark set.

— As much as possible, real programs (open source) with
real vulnerabilities (public vulnerability reports).

e Correctness

— Large, held-out test suites.
— Performance on workloads.

INPUT

EVALUATE DISTANCE
BETWEEN EACH VARIANT
AND GOAL

_ P¢

&

MUTATE TO CREATE NEARBY VARIANTS

CLOSER
TO GOAL:
KEEP
TRYING

FAR FROM GOAL:
DISCARD

OUTPUT

. Four Proposed Contributions .

1. Initial prototype, with baseline representation,
localization, and variant evaluation choices.

Preliminary Results

Program Description Size (loc) Fault Time (s)
gcd example 22 Infinite loop 149 s
zune example 28 Infinite loop 42 s
uniq Text processing 1146 Segmentation fault 32s
look-ultrix | Dictionary lookup 1169 Segmentation fault 42 s
look-svr4 | Dictionary lookup 1363 Infinite loop 51s
units Metric conversion 1504 Segmentation fault 107 s
deroff Document processing | 2236 Segmentation fault 129 s
nullhttpd | webserver 5575 Remote heap overflow | 502 s
indent Code processing 9906 Infinite loop 533s
flex Lexer generator 18775 Segmentation fault 233s
atris Graphical tetris game | 21553 Local stack overflow 69 s
Total/Avg 63K 171.7 s
9/27/10 | 11

MUTATE TO CREATE NEARBY VARIANTS

. Four Proposed Contributions .

2. Fault and fix localization: Identify code
implicated in the error (that might profitably be
changed), and code to use to make changes.

Mutating a Program

* Given program Al: -

Fault localization defines probability

— With some probability, that code at a location is modified.
choose code at a e Goal: Code likely to affect bad
location. behavior without affecting good

behavior = high change probability

— Insert code before it, or
replace it entirely, by

C?py”;]g CO(.jeth:Om Fix localization defines probability
elsewnere In the same that code is selected for insertion.

program, cho§gn ! * Goal: code likely to affect repair =
some, probability. high probability of selection.

e Result: program A2

Search space size is approximated by combining these probabilities over the
entire program (how much we can change * how many ways we can change it).

. Fault and Fix Localization: Idea .

* Plan: use machine learning to relate
lightweight features to fault/fix probability.

— Statistics relating statements and dynamic data
values to important events, like failure.

— Static features shown by previous work to
correlate with quality.

 |dentify code that might affect variables
implicated in failure, or code that is similar,
but not identical, to likely-faulty code (the
same, but includes a null-check, for example).

. Fault and Fix Localization: Evaluation .

e Effect on search space size (scalability):

— Score metric: proportion of code eliminated from
consideration (higher is better).

— Measure space size by summing returned

probability over the entire program (lower is
better)

* Find/create benchmarks with difficult-to-
localize errors, like SQL injection attacks
(generality).

Four Proposed Contributions

3. Repair templates: Generalize previous work by
mining and using repair templates, or pieces of
code with “holes” for local variables.

9/27/10 |

17

00 J & U1 & W N B

O

10.
11.
12.

}

.void gcd(int a,

Moving Code: Baseline

if (a == 0)

while (b > 0)

}

printf(“%d”, b);

if (a > b)

a =a— b;
else

b =Db - a;

printf (“%d”, a);

return;

9/27/10 |

int b) {

l.void gcd(int a, int b)
2. 1if (a == 0)

3. printf (“%d”, b);
4. return;

5. while (b > 0) {

6. if (a > b)

7. a = a — b;

8. else

9. b =Db— a;

10. }

11. printf(“%d”, a);
12. return;

13.

{

18

Repair Templates: Idea |

l.int gecd2(int a, int b) { |1.Mine promising template
2. if (a == 0) candidates from existing
3 printf(“%d”, b); source code or the source
4. while (b > 0) T | control repository.

5. if (a > b) 2.Synthesize templates from
6 a =a—b; ? candidates, generating code
7 else with annotated “holes.”

8 b =b —aj 3.Use a template to do

9. } mutation, as in previous
10. printf(“sd”, a); work in error repair or

11. l|return a;| ‘ dynamic compilation

12.} techniques.

9/27/10 | 19

Repair Templates: Evaluation

* Measure proportion of intermediate variants
that compile (more is better).

* Formalize: small-step contextual semantics
(optional).

* Find/create benchmarks with errors amenable
to templated repairs (i.e.: errors handled in

previous error repair work or repaired in the
source code history).

9/27/10 | 20

EVALUATE DISTANCE
BETWEEN EACH VARIANT
AND GOAL

\ X

¢ Q
R

. Four Proposed Contributions .

4. Precise objective function: Develop a precise
way to estimate the distance between a variant
and a program that passes all test cases.

. Evaluating Intermediate Variants .

* The objective function estimates the distance
between an intermediate variant and the goal
(i.e., to pass all test cases); variants closer to
goal are used in the next mutation round.

* Natural baseline: how many test cases does a
variant pass?

A Buffer Underflow Vulnerability

.void broken(int sock) {
char* line, buff=NULL;

.void fixed(int sock) {
char* line, ff=NULL;

int len;

sgets(line,socket);

1 1

2 2

3 3 int len;

4 4 sgets(line,socket);

5 len = atoi(line); 5 len = atoi(line);

6. // no bounds check 6. if(len>0 && len<MAX)({
7 buff=calloc(len * 2); 7 buff=calloc(len * 2);
8 // vulnerable recv 8 recv(sock,buff,len);
9 recv(sock,buff,len); 9

1 1

1 1

}

0. return buff;

1.}

0. return buff;

1.}

Objective Function: Idea

1.void almost(int sock) { _]

2. char* line, £f=NULL; * Function should be precise,

3. int len: correlating well with actual

4. sgets(line,socket); distance; counting test cases

5. len = atoi(line); is imprecise because it

6. if(len>0 && len<MAX)({ throws away intermediate

7. buff=calloc(len * 2); information.

8. recv(sock,buff,len); |e Plan: use machine learning

9. } to relate differences in

10. len = 5 / 0; dynamic behavior between

11. return buff; broken program and

12.} intermediate program to
distance.

. Objective Function: Evaluation .

e Starting points for “actual” distance: tree-
structured differencing, profiles of dynamic
behavior.

e Estimate the function’s fitness distance
correlation, or the correlation between it and
the “ground truth”.

* Find/create benchmarks that require more
than one change to repair.

Schedule

May 2008 May 2009 May 2010 May 2011 May 2012 May 2013

GP for Program Repair | N |

Fault/Fix Localization %
Precise Fitness Functions B Research Period

Repair Templates] Publication Lag
Journal Paper (optional)

e Graduate May 2013 (3 more years).
* Journal article on contribution 1 under revision.

e Slack in schedule: another internship, collaborative
project on safety-critical medical equipment software,
new ideas that arise from proposed research.

9/27/10

. Conclusions .

* Goal: scalable, general, correct automatic error
repair.

* Approach: search closely-related programs for a
version that passes all of the test cases.

e Questions to be answered:

— What representation choices are necessary to make
this possible? (Initial Prototype)

— How should intermediate variants be created from
nearby programs? (localization, templates)

— How should intermediate variants be evaluated, to

effectively guide the search? (Precise objective
functions)

1.

Journal
C. Le Goues and W. Weimer. Measuring code quality to
IEEE Trans. Software Engineering (to appear), 2010.
W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic Repair with Evolutionary
Computation. Communications of the ACM. Vol 53 No. 5, May, 2010, pp. 109-116.
Conference
E. Fast, C. Le Goues, S. Forrest and W. Weimer. Designing Better Fitness Functions for
Automated Program Repair. Genetic and Evolutionary Computation Conference (GECCO)
2010: 965-972.
S. Forrest, W. Weimer, T. Nguyen and C. Le Goues. A Genetic Programming Approach to
Automatic Program Repair. Genetic and Evolutionary Computation Conference (GECCO)
2009: 947-954.
W. Weimer, T. Nguyen, C. Le Goues and S. Forrest. Automatically Finding Patches Using
Genetic Programming. International Conference on Software Engineering (ICSE)
2009:364-374.
C. Le Goues and W. Weimer. With Few False Positives. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) 2009: 292-306
Workshop
C. Le Goues, S. Forrest and W. Weimer. The Case for Software Evolution. FSE/SDB
Workshop on the Future of Software Engineering Research (to appear), 2010.
T. Nguyen, W. Weimer, C. Le Goues and S. Forrest, Extended Abstract: Using Execution
Paths to Evolve Software Patches. Search-Based Software Testing (SBST) 2009.

' Please ask difficult questions. .

