
Understanding understanding: How do we
reason about computational logic?

Hammad Ahmad
Ph.D. Dissertation Proposal

1

“Understanding understanding”
Cognition: Mental processes involved in comprehension and
gaining knowledge

2

Cognition and Pedagogy

3

“Computational Logic”

Computers do not think like humans do!

Future industry professionals and academics
need to be trained for computational logic
reasoning

Logical reasoning in CS forms a core
component of undergraduate CS curricula

Introductory CS courses structured around
cultivating creative thinking and problem
solving using logical reasoning

4

Defining “Logic”
Digital logic

(e.g., hardware designs)

5

Defining “Logic”
Digital logic

(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)

6

Defining “Logic”
Digital logic

(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)

Programming logic
(e.g., manipulating data structures)

7

Desired Properties of a Solution
(1) Non-intrusive Methodology

instead of

8

Desired Properties of a Solution
(2) Objective Measures

9

instead of

Desired Properties of a Solution
(3) Context-specific Models

vs. vs.

10

Desired Properties of a Solution
(4) Incoming Preparation or Expertise

11

?

Insights
We can implement objective, non-intrusive measures in a CS context to
obtain correlations.

We can use medical devices in a CS context to investigate causality.

We can employ advanced statistical rigor in CS to account for student
background and context.

12

Insights: Explained
We can implement objective, non-intrusive measures in a CS context to
obtain correlations.

13

Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

14

Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

We can use medical devices in a CS context to investigate causality.

15

Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and
transcranial magnetic stimulation (TMS) in a CS context to investigate
causality.

16

Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and
transcranial magnetic stimulation (TMS) in a CS context to investigate
causality.

We can employ advanced statistical rigor in CS to account for student
background and context.

17

Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and
transcranial magnetic stimulation (TMS) in a CS context to investigate
causality.

We can employ advanced statistical rigor in CS to account for student
incoming preparation effects on task outcomes.

18

Thesis Statement

It is possible to use objective measures to obtain
context-specific mathematical models of the cognitive

processes underlying logical reasoning, and these models
can accurately explain student behavior.

19

It is possible to use functional, physiological, and medical
measures to obtain context-specific mathematical models of the

cognitive processes underlying logical reasoning, and these
models can accurately explain student behavior.

If we can construct an accurate model for the cognitive processes
associated with computational reasoning tasks, educators may be
able to use that understanding to investigate how to better teach
logical reasoning to students.

20

Thesis Statement: Explained

Proposal Overview
Three components:

21

Proposal Overview
Three components:

Using automated program repair for hardware as a debugging
assistant for designers

22

Proposal Overview
Three components:

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

23

Proposal Overview
Three components:

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using TMS to codify the relationship between spatial reasoning and
programming

24

Automated Program Repair for
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

25

Automated Program Repair (APR)

Faulty software
program w/

deterministic bug(s)

Test suite w/ at least
one failing test

Fault
localization

Patch

Validation

Repaired
program

No Repairs
Found

OR

26

Hardware Designs
● Digital specifications for electronic

devices, computer systems, or
integrated circuits

27

Hardware Designs
● Digital specifications for electronic

devices, computer systems, or
integrated circuits

● Typically written using hardware
description languages (HDLs) like
Verilog and VHDL module counter (input clk,

 input rstn,
 output reg[3:0]
out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

28

Hardware Designs
● Digital specifications for electronic

devices, computer systems, or
integrated circuits

● Typically written using hardware
description languages (HDLs) like
Verilog and VHDL

● Correspond to the “stage 0” of the
hardware design process

module counter (input clk,
 input rstn,
 output reg[3:0]
out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

29

Software vs. Hardware

One key difference: serial execution vs. parallelism

30

module counter (input clk,
 input rstn,
 output reg[3:0] out);

always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;

end endmodule

animals = [“cat”, “dog”, “cat”]
cat_counter = 0
for animal in animals:

if animal == “cat”:
cat_counter += 1

print(cat_counter)

Serial Python code Parallel Verilog code

APR for Hardware?

Problem: Existing techniques from software APR cannot be directly
applied to hardware designs!

How do we bridge the gap between software APR and
hardware designs?

31

Introducing: CirFix
CirFix: A hardware-design focused automated repair algorithm based on
genetic programming

● First-of-its kind APR tool for hardware designs
● Novel dataflow-based fault localization approach for hardware
● Novel approach to guide the search for repairs using the existing

hardware design process

32

● Preliminary results in ASPLOS’22 and TSE’23

More details in the proposal text!

33

RQ1: What fraction of defects can CirFix actually repair?

Problem: No publicly-available benchmarks for hardware defects that
are indicative of real industrial defects and corresponds to a wide range
of project sizes (largely due to IP constraints)!

How do we evaluate CirFix?

RQ1: Experiments and Metrics

34

RQ1: Experiments and Metrics
Problem: No publicly-available benchmarks for hardware defects that
are indicative of real industrial defects and corresponds to a wide range
of project sizes (largely due to IP constraints)!

Constructed a benchmark suite of 32 different hardware defects to
evaluate CirFix

35

RQ1: Experiments and Metrics
Problem: No publicly-available benchmarks for hardware defects that
are indicative of real industrial defects and corresponds to a wide range
of project sizes (largely due to IP constraints)!

Constructed a benchmark suite of 32 different hardware defects to
evaluate CirFix

● Corresponds to 6 introductory-level circuit designs and 5
off-the-shelf (larger, industrial) designs

● Includes 19 “easy” defects and 13 “hard” defects

We make our benchmark suite publicly available for future researchers
to evaluate hardware repair approaches!

36

RQ1: Preliminary Results
RQ1: What fraction of defects can CirFix actually repair?

● Ran five resource-constrained, independent CirFix trials for each
defect, stopping when a plausible repair (i.e., a repair passing all
tests) was found

● CirFix found 21/32 (65.6%) plausible repairs, with 16/32 (50%)
deemed to be correct (i.e., high quality) upon manual inspection

● Repair rate comparable to strong results from software-based APR
(e.g., GenProg at 52.5%, Angelix at 34.1%)

37

RQs 2-3: Experiments and Metrics
RQ2: Does the CirFix fault localization improve designers’ objective
performances?
RQ3: In what contexts do designers find CirFix helpful?

Problem: Need to have real designers use CirFix as a debugging assistant
to evaluate its efficacy!

How do we meaningfully evaluate real designers using
CirFix?

38

RQs 2-3: Controlled Human Study
● Conducted under IRB HUM00199335
● n = 41 participants in the study

● Participants asked to identify and fix defects from the CirFix
benchmark, each accompanied with no debugging hints, partial
debugging hints, or full debugging hints
○ Partial hints: highlighting variables implicated by CirFix
○ Full hints: highlighting lines of code implicated by CirFix

● Participants also asked to rate the accuracy and helpfulness of
debugging hints (where applicable)

● Designer performance assessed by evaluating F-scores (F
1
) and time

taken to complete each debugging task

39

RQs 2-3: Controlled Human Study

40

Example stimulus

RQs 2: Results
RQ2: Does the CirFix fault localization improve designers’ objective
performances?

● No statistically significant difference in time taken to localize faults
with annotations (p = 0.41, Student t-test)

● F-score for participants higher for full hints vs. partial hints vs. no
hints (F

1
 = 0.67, F

1
 = 0.33, F

1
 = 0.29)

○ Trend was not statistically significant (p = 0.12)

● Difference in F-scores for experts vs. novices when given debugging
hints (F

1
 = 0.37, F

1
 = 0.17)

○ Statistically significant with large effect size (p = 0.04, d = 0.54)

41

RQs 2: Results
RQ2: Does the CirFix fault localization improve designers’ objective
performances?

● F-score for participants higher for full hints vs. partial hints vs. no hints
(F

1
 = 0.67, F

1
 = 0.33, F

1
 = 0.29)

○ Trend was not statistically significant (p = 0.12)

● Difference in F-scores for experts vs. novices when given debugging
hints (F

1
 = 0.37, F

1
 = 0.17)

○ Statistically significant with large effect size (p = 0.04, d = 0.54)

⇒ CirFix can be useful as a hardware debugger!

42

RQs 3: Results
RQ3: In what contexts do designers find CirFix helpful?

● Full debugging hints on intro-level designs rated as significantly
more helpful than those on larger, off-the-shelf designs (p = 0.01, d =
0.7; p = 0.002, d = 1.05; large effect size)

⇒ CirFix can be more beneficial as a debugging assistant in a
pedagogical context!

43

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

44

CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

Yes, we can!

45

Proposal Overview
Three components:

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using TMS to codify the relationship between spatial reasoning and
programming

46

Eye-Tracking for Computer Science
Formalisms

Can we use objective measures to investigate how students
read and understand computer science formalisms (i.e.,
mathematical logic)?

47

Formalism Comprehension

Educators put a lot of emphasis on training students for
logical algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses
focusing on formal reasoning (e.g., discrete math, theory,
algorithm analysis)

Yet, undergraduate CS theory courses tend to have poor
student outcomes and satisfaction

48

Formalism Comprehension

49

Are students learning and retaining effective strategies for
reasoning about computer science formalisms?

Formalism Comprehension

50

Are students learning and retaining effective strategies for
reasoning about computer science formalisms?

Sadly, not as much as we would like. :-(

Enter: Eye-Tracking

● Objective measure for participant problem
solving strategies

● Cheap and non-invasive

● Approximates dynamics of visual attention (e.g.,
where participants focus, and for how long)

● Serves as a proxy for cognitive load (i.e., strain on
working memory) and task difficulty

51

Formalism Comprehension:
Experiments and Metrics

52

Formalism Comprehension:
Experiments and Metrics

53

Pre-defined Areas
of Interest (AOIs)

Formalism Comprehension:
Experiments and Metrics

54

Fixation

Formalism Comprehension:
Experiments and Metrics

55

Saccade

Formalism Comprehension:
Experiments and Metrics

56

Attention
Switching

Formalism Comprehension:
Controlled Human Study

57

● Conducted under IRB HUM00204278
● n = 34 participants in the study

● Participants shown a series of algorithmic proofs from an
undergraduate textbook, each with an associated figure and possible
logical / arithmetic mistake

● Participants asked to identify the presence of mistakes in each proof

● Individual performance assessed by evaluating response accuracy
and time, response strategy assessed by evaluating gaze data

● Preliminary results in ICSE’23

RQ1: Experiments and Metrics
RQ1: What is the effect of incoming preparation on student outcomes
for formalism comprehension?

Problem: Incoming preparation is hard to measure!

How do we determine if someone is more- or
less-prepared for formal reasoning?

58

RQ1: Experiments and Metrics
Problem: Incoming preparation is hard to measure!

Use both coursework count and performance as a proxy for preparation

● Coursework count: The number of CS theory courses covering
formalisms a participant has completed with passing grades or is
currently enrolled in

● Performance: Whether or not a participant correctly identifies the
mistake in a pre-screening proof from an undergraduate textbook

Participants who have course count > the median value and pass the
pre-screening classified as more-prepared (16/34 participants)

59

RQ1: Preliminary Results
RQ1: What is the effect of incoming preparation on student outcomes for
formalism comprehension?

● No statistically significant difference in response times and
accuracies between more- and less-prepared participants (p = 0.93,
p = 0.96; two-tailed Mann-Whitney U-test)

● No correlation between # theory courses and response accuracy
(Pearson’s r = 0.036, p = 0.84)

⇒ Students with more incoming preparation perform no better on
formalism comprehension tasks, on average, than students with lower
incoming preparation!

60

RQ1: Preliminary Results
RQ1: What is the effect of incoming preparation on student outcomes for
formalism comprehension?

● More-prepared students fixate longer on the proof text (p = 0.005),
correct answer (p = 0.038), and distractor choices (p = 0.03)

⇒ Students with more incoming preparation may be better trained to
read the proof and answer choices more thoroughly, yet do not achieve
better outcomes than students with less preparation!

61

RQ2: Preliminary Results
RQ2: How do student performance self-reports align with more empirical
task outcomes?

● No correlation between
○ Response accuracy and self-reported expertise with formalisms

(Kendall’s τ test, τ = 0.21, p = 0.18)
○ Response accuracy and self-perceived task difficulty (τ = 0.14, p

= 0.35)
○ Response accuracy and self-perceived proof readability (τ = -0.14,

p = 0.32)

⇒ Students may not be accurate at self-reporting their experience or
familiarity with formalism comprehension tasks!

62

RQ3: Preliminary Results
RQ3: What distinguishes higher-performing students from lower
performing ones?

Participants with above median response accuracy classified as
higher-performing (15/34 participants)

● Higher-performing participants more likely to spot mistakes in
inductive proofs (ꭓ2 test, p = 0.01)

● Higher-performing participants more likely to spot mistakes in
proofs for recursive algorithms (p = 0.006)

⇒ Lower-performing students may benefit from more practice with
inductive proofs and recursive algorithms.

63

RQ3: Preliminary Results
● Higher-performing participants display more attention switching

behavior, i.e., frequently go back and forth between AOIs (p = 0.002)

64

RQ3: Preliminary Results
● Higher-performing participants display more attention switching

behavior, i.e., frequently go back and forth between AOIs (p = 0.002)

⇒ Students may benefit from teaching materials that facilitate perusal
with ease (e.g., without requiring multiple page flips).

65

Formalism Comprehension:
Wrapping it Up

Can we use objective measures to investigate how students read
and understand computer science formalisms (i.e., mathematical
logic)?

66

Formalism Comprehension:
Wrapping it Up

Can we use objective measures to investigate how students read
and understand computer science formalisms (i.e., mathematical
logic)?

Yes, we can!

67

Proposal Overview
Three components:

Using automated program repair for hardware as a debugging
assistant for designers

Using eye-tracking to understand cognition for computer science
formalisms

Using TMS to codify the relationship between spatial reasoning and
programming

68

TMS for Programming

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?

69

Programming and Spatial Reasoning

70

Programming and Spatial Reasoning
Brain activity for spatial reasoning correlates with that for programming
tasks

71

Programming and Spatial Reasoning
Brain activity for spatial reasoning correlates with that for programming
tasks

72

73

Is brain activity for spatial reasoning causally related to that
for programming tasks?

Programming and Spatial Reasoning

Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for

depression, smoking cessation, OCD, etc.
● Well-established research tool

74

Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for

depression, smoking cessation, OCD, etc.
● Well-established research tool

● Time-efficient way to investigate causal
relationships (e.g., compared to
longitudinal studies)

75

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

76

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region

77

How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region

78

By altering activity in certain brain regions, we can investigate causal
relationships between tasks and brain activity!

Localization for TMS

Problem: Identifying the location for TMS coil
placement is a challenging task (e.g., due to
anatomical differences in individual brains)

How do identify and precisely target brain
regions for TMS treatment?

79

Localization for TMS
Problem: Identifying the precise location for TMS coil placement is a
challenging task

Solution: High-resolution, per-participant brain scans with
widely-accepted, anatomical landmark-based localization approaches
from the scientific community

80

TMS for Programming: Experiments
and Metrics
● Two phase experimental process: fMRI session to obtain anatomical

brain scan, followed by 2-4 TMS sessions (each on a different day)

● Each TMS session can correspond to treatment or control conditions
○ Treatment conditions: supplementary motor area (SMA) or

primary motor cortex (M1), both responsible for motor actions
and associated with spatial reasoning

○ Control condition: cranial vertex region, not associated with
spatial reasoning

81

TMS for Programming: Brain Regions

82

M1

Vertex

SMA / pre-motor

TMS for Programming: Protocol

● Per-participant active motor threshold (AMT) to obtain the “lowest
stimulation intensity” that still influences brain activity

● Each TMS session conducted using an off-the-shelf, widely-used
continuous theta-burst stimulation (cTBS) protocol
○ 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a

total of 600 pulses in 40 seconds
○ cTBS applied at 80% AMT to comply with commonly-accepted

safety standards

83

TMS for Programming: Stimuli Design
Data structure manipulation (including arrays, linked lists, trees)

84

Mental rotation

85

TMS for Programming: Stimuli Design

Code comprehension (including tracing code, analyzing complexity)

86

TMS for Programming: Stimuli Design

TMS for Programming: Experiments
and Metrics

● After each cTBS session, participants work on study stimuli in front
of a regular computer (i.e., in a more ecologically valid setting)
○ 35 minutes of study stimuli

● Participant performance will be evaluated by looking at changes in
response times and accuracies as a result of TMS treatment

87

TMS for Programming: RQs

Three RQs:

● Does disrupting brain regions associated with spatial reasoning
affect a programmer’s ability to correctly reason about code?

● Does disrupting brain regions associated with spatial reasoning
affect the time taken for a programmer to reason about code?

● How does demographic information (e.g., incoming preparation or
expertise) mediate the effect of TMS on task outcomes?

88

● Internal grant of $17,000 from the University of Michigan Functional
MRI Lab

● IRB approval (HUM00216195)
● Stimuli design
● TMS safety training
● Research access to fMRI and TMS equipment

89

TMS for Programming: Project Status

TMS for Programming: Project Status

● Participant recruitment
● Data analyses

90

● Internal grant of $17,000 from the University of Michigan Functional
MRI Lab

● IRB approval (HUM00216195)
● Stimuli design
● TMS safety training
● Research access to fMRI and TMS equipment

TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?

91

TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?

???

92

Ph.D. Timeline

93

Relevant Publications
1. CirFix: Automated Hardware Repair and its Real-Word Applications. Priscila

Santiesteban, Yu Huang, Westley Weimer, Hammad Ahmad. TSE (2023).
[9.22 impact factor]

2. How Do We Read Formal Claims? Eye-Tracking and the Cognition of Proofs about
Algorithms. Hammad Ahmad, Zachary Karas, Kimberly Diaz, Amir Kamil,
Jean-Baptiste Jeannin, Westley Weimer. ICSE (2023). [26% acceptance rate]

3. CirFix: Automatically Repairing Defects in Hardware Design Code. Hammad Ahmad,
Yu Huang, Westley Weimer. ASPLOS (2022). [20% acceptance rate]

4. Applying Automated Program Repair to Dataflow Programming Languages. Yu
Huang, Hammad Ahmad, Stephanie Forrest, Westley Weimer. GI Workshop @ ICSE
(2021).

94

Other Publications
1. LOGI: An Empirical Model of Heat-Induced Disk Drive Data Loss and its

Implications on Data Recovery. Hammad Ahmad, Colton Holoday, Ian Bertram,
Kevin Angstadt, Zohreh Sharafi, Westley Weimer. PROMISE (2022).

2. Digging into Semantics: Where Do Search-Based Software Repair Methods Search?
Hammad Ahmad, Padraic Cashin, Stephanie Forrest, Westley Weimer. PPSN (2022).

3. Sift: Using Refinement-Guided Automation to Verify Complex Distributed Systems.
Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jeannin,
Manos Kapritsos, Baris Kasikci. ATC (2022). [16% acceptance rate]

4. A Program Logic to Verify Signal Temporal Logic Specifications of Hybrid Systems.
Hammad Ahmad, Jean-Baptiste Jeannon. HSCC (2021). [35% acceptance rate]

95

Broader Impact

Mentorship

96

● Undergraduate involvement in research activities (particularly from
groups underrepresented in CS)
○ Mentored four undergraduate / non-traditional students on

research activities included in this proposal
○ Written text for an NSF REU proposal (that was funded for $8000

total) to fully support an additional undergraduate student

Broader Impact

● Recommendations for educators and suggestions for pedagogical
intervention studies
○ Approached by an educator at the University of Michigan to

deploy a hardware debugging assistant in a classroom setting
○ Approached by an educator at the University of Washington to

use preliminary eye-tracking results for undergraduate theory

● Accounting for incoming preparation in proposed research
○ Results and suggestions from our research can be applied to a

wider variety of student groups with varying levels of
preparation for the CS major

97

Pedagogy

Proposal Summary
● Three components:

○ Using automated program repair for hardware as a debugging assistant
for designers

○ Using eye-tracking to understand cognition for computer science
formalisms

○ Using TMS to codify the relationship between spatial reasoning and
programming

98

Proposal Summary
● Three components:

○ Using automated program repair for hardware as a debugging assistant
for designers

○ Using eye-tracking to understand cognition for computer science
formalisms

○ Using TMS to codify the relationship between spatial reasoning and
programming

● Thesis statement:
○ We can use objective measures to obtain mathematical models of

logical cognition, and these models can accurately explain student
behavior.

○ Obtaining such an understanding may impact how educators better
teach logical reasoning to students.

99

