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“Understanding understanding”

Cognition: Mental processes involved in comprehension and
gaining knowledge
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“Computational Logic’

Computers do not think like humans do!

Future industry professionals and academics
need to be trained for computational logic
reasoning

Logical reasoning in CS forms a core
component of undergraduate CS curricula

Introductory CS courses structured around
cultivating creative thinking and problem
solving using logical reasoning

Computational
Logic and Human
Thinking

How to be Artificially Intelligent

ROBERT
KOWALSKI




Defining “Logic”

Digital logic - o
(e.g., hardware designs) b < |
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Defining “Logic”

Digital logic
(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)
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Defining “Logic”

Digital logic
(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)

Programming logic
(e.g., manipulating data structures)
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Desired Properties of a Solution

(1) Non-intrusive Methodology
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Desired Properties of a Solution

(2) Objective Measures
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Desired Properties of a Solution

(3) Context-specific Models
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Desired Properties of a Solution

(4) Incoming Preparation or Expertise
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Insights

We can implement objective, non-intrusive measures in a CS context to
obtain correlations.

We can use medical devices in a CS context to investigate causality.

We can employ advanced statistical rigor in CS to account for student
background and context.

m



Insights: Explained
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Insights: Explained

We can implement novel debugging algorithms and eye-tracking in a CS
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and
transcranial magnetic stimulation (TMS) in a CS context to investigate
causality.

We can employ advanced statistical rigor in CS to account for student
incoming preparation effects on task outcomes.

m



Thesis Statement

It is possible to use objective measures to obtain
context-specific mathematical models of the cognitive
processes underlying logical reasoning, and these models
can accurately explain student behavior.

m



Thesis Statement: Explained

It is possible to use functional, physiological, and medical
measures to obtain context-specific mathematical models of the

cognitive processes underlying logical reasoning, and these
models can accurately explain student behavior.

If we can construct an accurate model for the cognitive processes
associated with computational reasoning tasks, educators may be
able to use that understanding to investigate how to better teach

logical reasoning to students.

m



Proposal Overview

Three components:
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MR Using eye-tracking to understand cognition for computer science

N '_' formalisms
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Proposal Overview

Three components:

Using automated program repair for hardware as a debugging
# assistant for designers

Using eye-tracking to understand cognition for computer science

N '_' formalisms

Using TMS to codify the relationship between spatial reasoning and
programming




Automated Program Repair for
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

m



Automated Program Repair (APR)
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Hardware Designs -
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Hardware Designs —el

CH—<— out
e Digital specifications for electronic ) T
devices, computer systems, or | o
integrated circuits st F%
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e Typically written using hardware — (e | =

description languages (HDLs) like
Verllog and VHDL module counter ( input clk,

input rstn,
output reg[3:0]
out) ;
always @ (posedge clk) begin
if (! rstn) out <= 0;
else out <= out + 1;
end endmodule
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Hardware Designs -
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description languages (HDLs) like
Verilog and VHDL

module counter ( input clk,
input rstn,
output reg[3:0]
out) ;

e Correspond to the “stage 0” of the stuays ¢ (posedge <lk) begin
hardware design process else out <= out + 1;

end endmodule
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Software vs. Hardware

One key difference: serial execution vs. parallelism

mmm) animals = [“cat”, “dog”, “cat”] module counter ( input clk,

mmm) cat counter = 0 input rstn,

) animal animals: output reg[3:0] out);
animal == “cat”: always Q@ (posedge clk) begin
cat_counter += 1 if (! rstn) out <= 0;

(cat_counter) else out <= out + 1;

end endmodule

Serial Python code Parallel Verilog code

m



APR for Hardware?

Problem: Existing techniques from software APR cannot be directly
applied to hardware designs!

How do we bridge the gap between software APR and
hardware designs?

m



Introducing: CirFix

CirFix: A hardware-design focused automated repair algorithm based on
genetic programming

® First-of-its kind APR tool for hardware designs
e Novel dataflow-based fault localization approach for hardware

e Novel approach to guide the search for repairs using the existing
hardware design process

® Preliminary results in ASPLOS’22 and TSE’23

m



More details in the proposal text!




RQ1: Experiments and Metrics

RQ1: What fraction of defects can CirFix actually repair?

Problem: No publicly-available benchmarks for hardware defects that
are indicative of real industrial defects and corresponds to a wide range
of project sizes (largely due to IP constraints)!

How do we evaluate CirFix?

m
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RQ1: Experiments and Metrics

Problem: No publicly-available benchmarks for hardware defects that
are indicative of real industrial defects and corresponds to a wide range
of project sizes (largely due to IP constraints)!

Constructed a benchmark suite of 32 different hardware defects to
evaluate CirFix

e Corresponds to 6 introductory-level circuit designs and 5
off-the-shelf (larger, industrial) designs
® Includes 19 “easy” defects and 13 “hard” defects

We make our benchmark suite publicly available for future researchers
to evaluate hardware repair approaches!
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RQ1: Preliminary Results

RQ1: What fraction of defects can CirFix actually repair?

® Ran five resource-constrained, independent CirFix trials for each
defect, stopping when a plausible repair (i.e., a repair passing all
tests) was found

e CirFix found 21/32 (65.6%) plausible repairs, with 16/32 (50%)
deemed to be correct (i.e., high quality) upon manual inspection

® Repair rate comparable to strong results from software-based APR
(e.g., GenProg at 52.5%, Angelix at 34.1%)

m



RQs 2-3: Experiments and Metrics

RQ2: Does the CirFix fault localization improve designers’ objective

performances?
RQ3: In what contexts do designers find CirFix helpful?

Problem: Need to have real designers use CirFix as a debugging assistant
to evaluate its efficacy!

How do we meaningfully evaluate real designers using
CirFix?

m



RQs 2-3: Controlled Human Study

® Conducted under IRB HUMO00199335
® n =41 participants in the study

® Participants asked to identify and fix defects from the CirFix
benchmark, each accompanied with no debugging hints, partial
debugging hints, or full debugging hints
o Partial hints: highlighting variables implicated by CirFix
o Full hints: highlighting lines of code implicated by CirFix

® Participants also asked to rate the accuracy and helpfulness of
debugging hints (where applicable)

e Designer performance assessed by evaluating F-scores (F,) and time
taken to complete each debugging task

m



RQs 2-3: Controlled Human Study

Example stimulus

8 // This always block gets executed whenever a/b/c/d/sel changes value
9 // When that happens, based on value in sel, output is assigned to either
a/b/c/d

10 always @ (a or b or c or d or sel) begin

11 case (sel)

12 2'b00 : out <= a;

13 2'b01 : out <= b;

14 2 b1 N outr<=NC;

15 2'bll : out <= d;

16 endcase

17 end

18 endmodule

You are told that the highlighted line(s) could be responsible for the bug in this circuit
design.
If you are interested, you can access the full implementation of the circuit design here.

What line(s) in the circuit design are responsible for the bug? If there are multiple such
lines, separate the line numbers with a comma.




RQs 2: Results

RQ2: Does the CirFix fault localization improve designers’ objective
performances?

® No statistically significant difference in time taken to localize faults
with annotations (p = 0.41, Student t-test)

e F-score for participants higher for full hints vs. partial hints vs. no
hints (F, =0.67, F, = 0.33, F, =0.29)
o Trend was not statistically significant (p = 0.12)

e Difference in F-scores for experts vs. novices when given debugging
hints (F, =0.37, F, = 0.17)
o Statistically significant with large effect size (p = 0.04, d = 0.54)

m



RQs 2: Results

RQ2: Does the CirFix fault localization improve designers’ objective
performances?

e F-score for participants higher for full hints vs. partial hints vs. no hints

(F,=0.67,F,=0.33, F, =0.29)
o Trend was not statistically significant (p = 0.12)

e Difference in F-scores for experts vs. novices when given debugging
hints (F, =0.37, F, = 0.17)
o Statistically significant with large effect size (p = 0.04, d = 0.54)

= CirFix can be useful as a hardware debugger!

m



RQs 3: Results

RQ3: In what contexts do designers find CirFix helpful?

e Full debugging hints on intro-level designs rated as significantly
more helpful than those on larger, off-the-shelf designs (p = 0.01, d =
0.7; p=0.002, d = 1.05; large effect size)

=> CirFix can be more beneficial as a debugging assistant in a
pedagogical context!

m



CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?




CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for
hardware designs (i.e., digital logic), and use it as a debugging
assistant for designers?

Yes, we can!




Proposal Overview

Three components:

. . . :
MR Using eye-tracking to understand cognition for computer science

N '_' formalisms

Using TMS to codify the relationship between spatial reasoning and
< programming

m




48t Eye-Tracking for Computer Science
W Formalisms

Can we use objective measures to investigate how students
read and understand computer science formalisms (i.e.,
mathematical logic)?

m



Formalism Comprehension

Educators put a lot of emphasis on training students for
logical algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses
focusing on formal reasoning (e.g., discrete math, theory,
algorithm analysis)

Yet, undergraduate CS theory courses tend to have poor
student outcomes and satisfaction

Discrete
Mathematics

and Its

Applications

Theoretical

Computer Science

Introduction to Automata, Computability,
Complexity, Algorithmics, Randomization,
Communication, and Cryptography

a

2
f ‘ﬂ Springer




Formalism Comprehension

Are students learning and retaining effective strategies for
reasoning about computer science formalisms?




Formalism Comprehension

Are students learning and retaining effective strategies for
reasoning about computer science formalisms?

Sadly, not as much as we would like. :-(

m



Enter: Eye-Tracking

® Objective measure for participant problem
solving strategies
e Cheap and non-invasive

® Approximates dynamics of visual attention (e.g.,
where participants focus, and for how long)

® Serves as a proxy for cognitive load (i.e., strain on
working memory) and task difficulty

m



Formalism Comprehension:
Experiments and Metrics

Output: The algorithm moves n disks from A to C using B if necessary such that i
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

Algorithm Towers of Hanoi: Toll(n, A, B,C) é | A

Input: n: number of disks. [:> é :> m—

Input: A, B,C: pegs A through C. = 4 . n =
A ] A []

1: if n =1 then Figure: The Towers of Hanoi problem. All disks on

2: move disk n from A to C . . 1
peg A need to be moved to C, usin B if

3: ToH(n—1,A,C, B) > Move n — 1 disks from A to B using C. pe.g 9 Peg é

£ Miove disk 5 from At @ necessary, such that only one disk can be moved at =

5: ToH(n — 1, B, A, C) > Move n — 1 disks from B to C using A. a time and no large disk may be put on top of a <

smaller disk.

Theorem. The Towers of Hanoi (ToH) algorithm correctly moves n disks
from pegs A to C using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Q. What mistake, if any, is present in the proof of this theorem?

. . . . . : (1) No mistake.
Proof. We prove this claim by induction on n, the number of disks.

Base Case (n = 0): Trivially true since no disks need to be moved. (2) The base case is not correctly set up, which causes the
Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks induction to fail.

from pegs A to C using peg B such that our requirements hold. (3) In the inductive step, the second recursive call alone is not
Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly - % . .

moves n + 1 disks from pegs A to C using peg B. Note that the first recursive sufficient to move all disks except the largest disk directly from peg

call correctly moves n disks from peg A to B using peg C. The next move step B to C. We need to break this step down into sub-steps and use

move.::-j the largcsl dliisk fromtlA to C, wliilu Sll OSIQL d}sks are unB tower B.C:I‘he peg A as a placeholder for disks.
:tfp":)‘r l;?ii:;:{:;:iskfo"“ L L oo ot Rt PR (4) The proof should perform induction on the number of steps

- required to moved all disks from peg A to C, instead of performing
induction on the number of disks.




Formalism Comprehension:
Experiments and MEtrics Pre-defined Areas

of Interest (AOls)

Output: The algorithm moves n disks from A to C using B if necessary such that i
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

Algorithm Towers of Hanoi: Toll(n, A, B,C) é I |

Input: n: number of disks. [:> é :> a

Input: A, B,C: pegs A through C. a 4 . n =
A 8 A []

1: if n =1 then Figure: The Towers of Hanoi problem. All disks on
2: move disk n from A to C . . 1
A need to be moved to C, usin B if
3: ToH(n—1,A,C, B) > Move n — 1 disks from A to B using C. Peg pe.g 9 Peg é
£ Miove disk 5 from At @ necessary, such that only one disk can be moved at =
5: ToH(n — 1, B, A,C) > Move n — 1 disks from B to C using A. a time and no large disk may be put on top of a -
smaller disk.
Theorem. The Towers of Hanoi (ToH) algorithm correctly moves n disks Q. What mistake, if any, is present in the proof of this theorem?

from pegs A to C using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

A, . . . (1) No mistake.
Proof. We prove this claim by induction on n, the number of disks. " N
Base Case (n = 0): Trivially true since no disks need to be moved. (2) The base case is not correctly set up, which causes the

Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks induction to fail.
from pegs A to C using peg B such that our requirements hold. (3) In the inductive step, the second recursive call alone is not

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly fici Il disk hel isk di Iy fr
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive sufficient to move all disks except the largest disk directly from peg

call correctly moves n disks from peg A to B using peg C. The next move step B to C. We need to break this step down into sub-steps and use
moves the lm-gcsl disk from A to C, while all ollger disks are on tower B. The peg A as a placeholder for disks.

second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk. O

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.




Formalism Comprehension:
Experiments and Metrics

Output: The algorithm moves n disks from A to C using B if necessary such that i
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

Algorithm Towers of Hanoi: Toll(n, A, B,C) é I |

Input: n: number of disks. [:> é :> a

Input: A, B,C: pegs A through C. a 4 . n =
A 8 A []

1: if n =1 then Figure: The Towers of Hanoi problem. All disks on
2: move disk n from A to C . . '
A need to be moved to C, usin B if
3: ToH(n—1,A,C, B) > Move n — 1 disks from A to B using C. Peg pe.g 9 Peg é
£ Miove disk 5 from At @ necessary, such that only one disk can be moved at =
5: ToH(n — 1, B, A,C) > Move n — 1 disks from B to C using A. a time and no large disk may be put on top of a -
smaller disk.
. . T . The Towers of Hanoi (ToH) algorithm correctly moves n disks Q. What mistake, if any, is present in the proof of this theorem?
leatlo n from to C using peg B if necessary such that only one disk can be moved

at a time and a large disk cannot be put on top of a smaller disk.

A, . . . (1) No mistake.
Proof. We prove this claim by induction on n, the number of disks. " N
Base Case (n = 0): Trivially true since no disks need to be moved. (2) The base case is not correctly set up, which causes the

Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks induction to fail.
from pegs A to C using peg B such that our requirements hold. (3) In the inductive step, the second recursive call alone is not

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly fici Il disk hel isk di Iy fr
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive sufficient to move all disks except the largest disk directly from peg

call correctly moves n disks from peg A to B using peg C. The next move step B to C. We need to break this step down into sub-steps and use
moves the lm-gcsl disk from A to C, while all ollger disks are on tower B. The peg A as a placeholder for disks.

second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk. O

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.




Formalism Com
Experiments an

Saccade

prehension:
d Metrics

Algorithm Towers of Hanoi: Toll(n, A, B,C)
Input: n: number of disks.

Input: A, B,C: pegs A through C.
Output: The algorithm moves n disks from A to C using B if necessary such that
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

1: if n =1 then
move disk n from A to C

: ToH(n — 1, A,C, B)

> Move n — 1 disks from A to B using C.

: Move disk n from A to C
: ToH(n - 1, B, A,C)

oo W

> Move n — 1 disks from B to C

T

from

s of Hanoi (ToH) algorithm correctly moves n disks
0 C' using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Proof. We prove this claim by induction on n, the number of disks.
Base Case (n = 0): Trivially true since no disks need to be moved.
Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks

from pegs A to C using peg B such that our requirements hold.

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive
call correctly moves n disks from peg A to B using peg C. The next move step
moves the largest disk from A to C, while all other disks are on tower B. The
second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk.

All=1A

Figure: The Towers of Hanoi problem. All disks on
peg A need to be moved to peg C, using peg B if
necessary, such that only one disk can be moved at
a time and no large disk may be put on top of a
smaller disk.

| =]

3

A
—

Q. What mistake, if any, is present in the proof of this theorem?

(1) No mistake.

(2) The base case is not correctly set up, which causes the
induction to fail.

(3) In the inductive step, the second recursive call alone is not
sufficient to move all disks except the largest disk directly from peg
B to C. We need to break this step down into sub-steps and use
peg A as a placeholder for disks.

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.
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Experiments an

Attention
Switching

prehension:
d Metrics

Algorithm Towers of Hanoi: Toll(n, A, B,C)
Input: n: number of disks.

Input: A, B,C: pegs A through C.
Output: The algorithm moves n disks from A to C using B if necessary such that
only one disk can be moved at a time and a large disk cannot be put on top of a
smaller disk.

1: if n =1 then
move disk n from A to C

: ToH(n — 1, A,C, B)

> Move n — 1 disks from A to B using C.

: Move disk n from A to C
: ToH(n - 1, B, A,C)

oo W

> Move n — 1 disks from B to C

All=1A

Figure: The Towers of Hanoi problem. All disks on
peg A need to be moved to peg C, using peg B if i
‘sary. such that only one disk can be moved at é
ime and no large disk may be put on top of a =
smaller disk.

| =]

3

T

from

s of Hanoi (ToH) algorithm correctly moves n disks
0 C' using peg B if necessary such that only one disk can be moved
at a time and a large disk cannot be put on top of a smaller disk.

Proof. We prove this claim by induction on n, the number of disks.
Base Case (n = 0): Trivially true since no disks need to be moved.
Inductive Hypothesis: Assume that ToH(n, A, B, C') correctly moves n disks

from pegs A to C using peg B such that our requirements hold.

Inductive Step: We need to show that ToH(n + 1, A, B,C) also correctly
moves n + 1 disks from pegs A to C using peg B. Note that the first recursive
call correctly moves n disks from peg A to B using peg C. The next move step
moves the largest disk from A to C, while all other disks are on tower B. The
second recursive call correctly moves all other disks from peg B to peg C on
top of the largest disk.

Q. What mistake, if any, is present in the proof of this theorem?

(1) No mistake.

(2) The base case is not correctly set up, which causes the
induction to fail.

(3) In the inductive step, the second recursive call alone is not
sufficient to move all disks except the largest disk directly from peg
B to C. We need to break this step down into sub-steps and use
peg A as a placeholder for disks.

(4) The proof should perform induction on the number of steps
required to moved all disks from peg A to C, instead of performing
induction on the number of disks.




Formalism Comprehension:
Controlled Human Study

e Conducted under IRB HUMO00204278
® n =34 participants in the study

® Participants shown a series of algorithmic proofs from an
undergraduate textbook, each with an associated figure and possible
logical / arithmetic mistake

® Participants asked to identify the presence of mistakes in each proof

e Individual performance assessed by evaluating response accuracy
and time, response strategy assessed by evaluating gaze data

® Preliminary results in ICSE’23

m



RQ1: Experiments and Metrics

RQ1: What is the effect of incoming preparation on student outcomes
for formalism comprehension?

Problem: Incoming preparation is hard to measure!

How do we determine if someone is more- or
less-prepared for formal reasoning?

m



RQ1: Experiments and Metrics

Problem: Incoming preparation is hard to measure!
Use both coursework count and performance as a proxy for preparation

e Coursework count: The number of CS theory courses covering
formalisms a participant has completed with passing grades or is
currently enrolled in

® Performance: Whether or not a participant correctly identifies the
mistake in a pre-screening proof from an undergraduate textbook

Participants who have course count > the median value and pass the
pre-screening classified as more-prepared (16/34 participants)

m



RQ1: Preliminary Results

RQ1: What is the effect of incoming preparation on student outcomes for
formalism comprehension?

e No statistically significant difference in response times and
accuracies between more- and less-prepared participants (p = 0.93,
p = 0.96; two-tailed Mann-Whitney U-test)

e No correlation between # theory courses and response accuracy
(Pearson’s r =0.036, p = 0.84)

= Students with more incoming preparation perform no better on
formalism comprehension tasks, on average, than students with lower
incoming preparation!



RQ1: Preliminary Results

RQ1: What is the effect of incoming preparation on student outcomes for
formalism comprehension?

e More-prepared students fixate longer on the proof text (p = 0.005),
correct answer (p = 0.038), and distractor choices (p = 0.03)

= Students with more incoming preparation may be better trained to

read the proof and answer choices more thoroughly, yet do not achieve
better outcomes than students with less preparation!
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RQ2: Preliminary Results

RQ2: How do student performance self-reports align with more empirical
task outcomes?

® No correlation between
o Response accuracy and self-reported expertise with formalisms

(Kendall’s T test, T=0.21, p = 0.18)
o Response accuracy and self-perceived task difficulty (T=0.14, p

= 0.35)
o Response accuracy and self-perceived proof readability (T = -0.14,

p =0.32)

= Students may not be accurate at self-reporting their experience or
familiarity with formalism comprehension tasks!

m



RQ3: Preliminary Results

RQ3: What distinguishes higher-performing students from lower
performing ones?

Participants with above median response accuracy classified as
higher-performing (15/34 participants)

e Higher-performing participants more likely to spot mistakes in

inductive proofs ([ 1° test, p = 0.01)
e Higher-performing participants more likely to spot mistakes in

proofs for recursive algorithms (p = 0.006)

= Lower-performing students may benefit from more practice with
inductive proofs and recursive algorithms.

m



RQ3: Preliminary Results

e Higher-performing participants display more attention switching
behavior, i.e., frequently go back and forth between AOIs (p = 0.002)
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RQ3: Preliminary Results

e Higher-performing participants display more attention switching
behavior, i.e., frequently go back and forth between AOIs (p = 0.002)

Algorithm Change-Making
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= Students may benefit from teaching materials that facilitate perusal
with ease (e.g., without requiring multiple page flips).




Formalism Comprehension:
Wrapping it Up

Can we use objective measures to investigate how students read
and understand computer science formalisms (i.e., mathematical

logic)?




Formalism Comprehension:
Wrapping it Up

Can we use objective measures to investigate how students read
and understand computer science formalisms (i.e., mathematical

logic)?

ﬂ
an Yes, we can!
"_'
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Proposal Overview

Three components:

Using TMS to codify the relationship between spatial reasoning and
‘}v programming



fv TMS for Programming

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?



Programming and Spatial Reasoning
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Programming and Spatial Reasoning

Brain activity for spatial reasoning correlates with that for programming

tasks
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Programming and Spatial Reasoning

Is brain activity for spatial reasoning causally related to that

for programming tasks?




Enter: Transcranial Magnetic Stimulation

e Safe and non-invasive
® C(linically used as a treatment for

depression, smoking cessation, OCD, etc.
e Well-established research tool




Enter: Transcranial Magnetic Stimulation

e Safe and non-invasive

® C(linically used as a treatment for
depression, smoking cessation, OCD, etc.

e Well-established research tool

e Time-efficient way to investigate causal
relationships (e.g., compared to
longitudinal studies)




How does TMS work?

Magnetic
fields

TMS pulses produce a magnetic field
around the TMS coil

TMS Coil




How does TMS work?

TMS pulses produce a magnetic field
around the TMS coil

The magnetic field induces a current in the
neurons of the brain region of interest

The induced current excites or inhibits
brain activity in the region
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How does TMS work?

Magnetic
fields

TMS pulses produce a magnetic field
around the TMS coil

TMS Coil

Electric
current

The magnetic field induces a current in the

neurons of the brain region of interest Skull

The induced current excites or inhibits
brain activity in the region

By altering activity in certain brain regions, we can investigate causal
relationships between tasks and brain activity!
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Localization for TMS

Problem: Identifying the location for TMS coil
placement is a challenging task (e.g., due to
anatomical differences in individual brains)

How do identify and precisely target brain
regions for TMS treatment?




Localization for TMS

Problem: Identifying the precise location for TMS coil placement is a
challenging task

Solution: High-resolution, per-participant brain scans with
widely-accepted, anatomical landmark-based localization approaches

from the scientific community




TMS for Programming: Experiments
and Metrics

e Two phase experimental process: fMRI session to obtain anatomical
brain scan, followed by 2-4 TMS sessions (each on a different day)

e Each TMS session can correspond to treatment or control conditions
o Treatment conditions: supplementary motor area (SMA) or

primary motor cortex (M1), both responsible for motor actions
and associated with spatial reasoning

o Control condition: cranial vertex region, not associated with
spatial reasoning

m



TMS for Programming: Brain Regions

Vertex

M1

SMA / pre-motor




TMS for Programming: Protocol

® Per-participant active motor threshold (AMT) to obtain the “lowest
stimulation intensity” that still influences brain activity

® Each TMS session conducted using an off-the-shelf, widely-used
continuous theta-burst stimulation (cTBS) protocol
o 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a

total of 600 pulses in[40 seconds
o cTBS applied at 80% AMT to comply with commonly-accepted

safety standards

m



TMS for Programming: Stimuli Design

Data structure manipulation (including arrays, linked lists, trees)

Given the top array, after performing the first bubble in bubble sort, which
candidate array will be the result?

o 12 3 4 5 6 7 8 9 D 2 o131
nums|1 781 9 (531211163 (98| 1 (82|39|90|54|68|15|13

AL 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14
9 |78]53]21|11]63|98| 1 |82|39|90|54 |68 15|13

B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
9 [53[78|21|11|63|98| 1 |82]39(90|54 |68 15|13
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TMS for Programming: Stimuli Design

Mental rotation

~




TMS for Programming: Stimuli Design

Code comprehension (including tracing code, analyzing complexity)

Consider the snippet of code below:

vector<int> myFunc (vector<int>& nums, int target) {

for (int i = 0; i < nums.size(); i++) {
for (int j =i + 1; j < nums.size(); Jj++) {
if (nums[i] + nums[]j] == target) {

retuern {i, J};
}
}
}

return {-1, -1};

}

What does myFunc return on the input nums=[2,7,11,15] and
target=9?

A: [0,2] B: [0,1]




TMS for Programming: Experiments
and Metrics

e After each cTBS session, participants work on study stimuli in front
of a regular computer (i.e., in a more ecologically valid setting)
o 35 minutes of study stimuli

e Participant performance will be evaluated by looking at changes in
response times and accuracies as a result of TMS treatment

m



TMS for Programming: RQs

Three RQs:

® Does disrupting brain regions associated with spatial reasoning
affect a programmer’s ability to correctly reason about code?

® Does disrupting brain regions associated with spatial reasoning
affect the time taken for a programmer to reason about code?

e How does demographic information (e.g., incoming preparation or
expertise) mediate the effect of TMS on task outcomes?

m



TMS for Programming: Project Status

Internal grant of $17,000 from the University of Michigan Functional
MRI Lab

IRB approval (HUM00216195)

Stimuli design

TMS safety training

Research access to fMRI and TMS equipment




TMS for Programming: Project Status

Internal grant of $17,000 from the University of Michigan Functional
MRI Lab

IRB approval (HUM00216195)

Stimuli design

TMS safety training

Research access to fMRI and TMS equipment

Participant recruitment
Data analyses

o,
Py
o0




TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?




TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning
impact a programmer’s ability to reason about code (i.e.,
programming logic)?

f‘_ ???
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Ph.D. Timeline

2019 2020 2021 2022 2023 2024 2025

Ph.D. Coursework

CirFix [ASPLOS'22] DT
CirFix as a Debugging Tool [TSE'23] [

Eye-tracking for CS Formalisms [ICSE'23] I

TMS for Programming m

Primary Instructor

Undergraduate Mentorship

Research Period ® Publication Delay Other Today Graduation




Relevant Publications

1. CirFix: Automated Hardware Repair and its Real-Word Applications. Priscila
Santiesteban, Yu Huang, Westley Weimer, Hammad Ahmad. TSE (2023).

2. How Do We Read Formal Claims? Eye-Tracking and the Cognition of Proofs about
Algorithms. Hammad Ahmad, Zachary Karas, Kimberly Diaz, Amir Kamil,
Jean-Baptiste Jeannin, Westley Weimer. ICSE (2023).

3. CirFix: Automatically Repairing Defects in Hardware Design Code. Hommad Ahmad,
Yu Huang, Westley Weimer. ASPLOS (2022).

4. Applying Automated Program Repair to Dataflow Programming Languages. Yu
Huang, Hammad Ahmad, Stephanie Forrest, Westley Weimer. G| Workshop @ ICSE
(2021).
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Other Publications

1. LOGI: An Empirical Model of Heat-Induced Disk Drive Data Loss and its
Implications on Data Recovery. Hammad Ahmad, Colton Holoday, lan Bertram,
Kevin Angstadt, Zohreh Sharafi, Westley Weimer. PROMISE (2022).

2. Digging into Semantics: Where Do Search-Based Software Repair Methods Search?
Hammad Ahmad, Padraic Cashin, Stephanie Forrest, Westley Weimer. PPSN (2022).

3. Sift: Using Refinement-Guided Automation to Verify Complex Distributed System:s.
Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jeannin,
Manos Kapritsos, Baris Kasikci. ATC (2022).

4. A Program Logic to Verify Signal Temporal Logic Specifications of Hybrid Systems.
Hammad Ahmad, Jean-Baptiste Jeannon. HSCC (2021).
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Broader Impact

Mentorship

e Undergraduate involvement in research activities (particularly from

groups underrepresented in CS)
o Mentored four undergraduate / non-traditional students on

research activities included in this proposal
o Written text for an NSF REU proposal (that was funded for S8000

total) to fully support an additional undergraduate student



Broader Impact

Pedagogy

e Recommendations for educators and suggestions for pedagogical
intervention studies
o Approached by an educator at the University of Michigan to
deploy a hardware debugging assistant in a classroom setting
o Approached by an educator at the University of Washington to
use preliminary eye-tracking results for undergraduate theory

e Accounting for incoming preparation in proposed research
o Results and suggestions from our research can be applied to a
wider variety of student groups with varying levels of
preparation for the CS major
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Proposal Summary

e Three components:

o Using automated program repair for hardware as a debugging assistant
for designers

o Using eye-tracking to understand cognition for computer science
formalisms

o Using TMS to codify the relationship between spatial reasoning and
programming




Proposal Summary

e Three components:
o Using automated program repair for hardware as a debugging assistant
for designers
o Using eye-tracking to understand cognition for computer science
formalisms
o Using TMS to codify the relationship between spatial reasoning and
programming

e Thesis statement:

o We can use objective measures to obtain mathematical models of
logical cognition, and these models can accurately explain student
behavior.

o Obtaining such an understanding may impact how educators better
teach logical reasoning to students.



