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Abstract. Maintenance is a dominant component of software cost, and
localizing reported defects so that they can be fixed is a significant com-
ponent of maintenance. The size and complexity of contemporary sys-
tems makes such fault localization difficult, however. In addition, defect
reports often contain incomplete information provided by users who may
be unfamiliar with the code base.

We propose a lightweight and scalable approach that leverages the nat-
ural language present in both defect reports and source code to identify
portions of the program that are potentially related to the bug in ques-
tion. Our technique is language independent and does not require test
cases. The approach represents defect reports and source files as separate
structured document forms and ranks source files of interest based on a
document similarity metric that leverages inter-document relationships.

We evaluate the fault-localization accuracy of our method against
both lightweight baseline techniques and also reported results from state-
of-the-art tools. Similar tools have been evaluated using a metric that
quantifies the reduction of the overall search space when trying to locate
faults. Given information from actual bug reports and their real-world
fixes, we utilize a similar metric to gauge the effectiveness of our tool.

In an empirical evaluation of 5345 historical defects from three real-
world programs totaling 6.5 million lines of code, our approach reduced
the number of files inspected per defect by 88%. Additionally, we quali-
tatively and quantitatively examine the utility of the textual and surface
features used by our approach and their implications on conventional
defect reporting.

1 Introduction

Maintenance tasks can account for up to 90% of the overall cost of software
projects [8, 13]. A significant portion of that cost is incurred while dealing with
software defects [24]. Large software projects typically use bug reporting sys-
tems that allow users to submit reports directly; this has been shown to improve
overall software quality [2, 25]. User-submitted bug reports vary widely in util-
ity [16]; reports go through triage to allow developers to focus on those reports
that are most likely to lead to a resolution. We propose a system to make the
maintenance process more efficient by reducing the cost of localizing faults.

Fault localization is the process of mapping a fault (i.e., observed erroneous
behavior) back to the code that may have caused it. Performing fault localization
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is relatively time consuming [30] and thus costly. For this reason, many existing
techniques attempt to facilitate this process. In general, such techniques rely
on test cases [1, 18, 10, 26], model checking [5, 6], or remote monitoring [22, 23].
These approaches may not be directly applicable to user-submitted bug reports,
since reports rarely provide a full test case or program trace [16].

For this thesis, we address the cost of fault localization for user-submitted
bug reports. We present a lightweight approach that maps defect reports to
source code locations. Our approach relies primarily on textual features of both
source code and bug report descriptions, although it takes advantage of certain
additional information (e.g., stack traces, version control histories) when they
are available. Notably, it does not require test cases, execution traces, or re-
mote sampling, all of which can potentially limit the applicability of other fault
localization strategies.

Our approach is based on several underlying assumptions about the textual
features of both source code and bug reports. With respect to code, we assume
that developers choose identifier and file names that are representative of ob-
servable program behavior. For bug reports, we assume that the reporters use
a vocabulary based on their observations of program behavior — a vocabulary
that will thus be in some ways similar to developers’ in spite of the fact that
reporters may not have access to the source. Finally, we hypothesize that a bug
report and a code location are more likely to pertain to the same fault if they
are similar in terms of word usage; we formally describe our distance metric in
Section 3.

The Thesis Statement of this work comprises two main claims:

– We can construct a static fault localization model that is at least as accurate
as existing run-time approaches without requiring program executions.

– Our model’s success is explained by primarily natural language information
and not by additional features, as measured by its performance reduction as
human-chosen words are replaced by random words in its input.

The main contributions of this research project are thus:

– A lightweight, language-independent model that statically measures similar-
ity between defect reports and source files for the purpose of locating faults.
This comparison is based on a structured textual analysis of the natural
language in both documents.

– A large empirical evaluation of our technique including 5345 real-world de-
fects from three large programs totaling 6.5 million lines of code — over an
order of magnitude larger than the evaluations in previous work [10, 18, 26].

The structure of this document is as follows. In Section 2, we motivate our
approach by presenting an example fault with its associated bug report and
source code. Section 3 outlines our approach and formally defines how we mea-
sure the relative similarity between code and bug report text. Next, Section 4
presents a detailed empirical evaluation of our approach. Section 5 places our
work in context. Finally, Section 6 concludes.
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2 Motivating Example

In this section, we present an example bug report taken from the Eclipse project.
This example illustrates the potential benefit of matching the natural language
in a bug description with keywords from the source code for the purpose of
identifying the bug’s location.

User-submitted bug reports typically consist of a free-form textual descrip-
tion of the fault. When presented with such a bug report, it is up to the developer
to derive and locate the cause of the undesirable behavior. This requires thor-
ough familiarity with the code base; for large projects, an important part of the
triage process is finding which developer is most likely to be able to resolve a
given bug report [3]. There are significant differences among developers in terms
of how quickly they can locate a given fault [30]. Our goal is to significantly nar-
row the source code search space that the developer needs to consider, thereby
decreasing the software maintenance cost overall.

Consider the following defect report from the Eclipse project, Bug #91543,
entitled “Exception when placing a breakpoint (double click on ruler).” The
description is as follows:

With M6 and also with build I20050414-1107 i get the stacktrace

below now and then when wanting the place a breakpoint when double

clicking in the editor bar. if i close the editor and reopen it

again it goes ok.

!MESSAGE Error within Debug UI:

!STACK 0

org.eclipse.jface.text.BadLocationException

at

org.eclipse.jface.text.AbstractLineTracker.getLineInformation(

AbstractLineTracker.java:251)

...

Initially, a developer might be inclined to inspect code implicated directly.
In this case, one might check the AbstractLineTracker file and other files in the
stack trace, or search the list of all files that reference a BadLocationException.
Additionally, one might scan the files that were changed prior to either of the
particular builds mentioned. Finally, based on basic searching one might uncover
any of the following files: Breakpoint.java, MethodBreakpointTypeChange.java,
BreakpointsLocation.java, and TaskRulerAction.java among hundreds of others.
This example illustrates that the search space is large, even when a programmer
uses the defect report’s specific information.

In the actual patch for this bug, developers edited only two source files. Tog-
gleBreakpointAction.java contained the majority of changes that addressed this
defect report, with one minor change to a call-site in RulerToggleBreakpointAc-
tionDelegate.java. Some of the methods in those files include:

ToggleBreakpointAction(..., IVerticalRulerInfo rulerInfo)

ToggleBreakpointAction.reportException(Exception e)
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RulerToggleBreakpointActionDelegatecreateAction(ITextEditor editor,

IVerticalRulerInfo rulerInfo)

The identifier names associated with these two files show clear language over-
lap with the report above. For example, even when only the report title and the
method names are considered, key words such as breakpoint, exception and ruler
occur in both sets. When examining the overall word similarity, the two files
that were changed for the fix are among those files most similar to the text in
the defect report. Using textual similarity not only avoids unrelated methods
considered by traditional search techniques, but further limits the fault localiza-
tion search space by trimming files with coincidental or narrow language overlap.
Aggregating overall word similarity ensures that only documents with consider-
able and meaningful similarity are favored. We hypothesize that prioritizing the
search space by ranking files of interest in this manner can greatly facilitate fault
localization — using only the defect report in question and the current source
code. In the next section, we present a model to take advantage of this intuition.

3 Methodology

Our goal is to reduce the cost of the fault localization process. Given only a bug
report describing a fault and the project source code, we desire an ordered list
of source files that are likely to contain the cause of that fault. To do this, we
map both defect reports and source code text to respective structured document
intermediate representations based on the conceptual parts of each unstructured
document. We then build a model based on relationships between subparts of
each document, and rank each source file accordingly.

3.1 Structured Document Representation

Both defect reports and source files are represented as structured documents. For
our purposes, a structured document consists primarily of several term frequency
vectors. A term frequency vector is a mapping from terms (i.e., words) to the
frequencies with which they appear in a given document. Structured documents
may also contain significant categorical or non-natural language data, such as
stack traces, which we model as ordered sequences of strings.

We map defect reports to our intermediate form directly. Defect reports are
structured natural language files containing multiple parts, such as title, de-
scription, optional stack trace, project versions affected, and operating systems
affected [16]. We first focus on the natural language title and description. We
break the text into a list of terms by splitting on whitespace and punctuation
and converting each term to all lowercase characters; we then construct term fre-
quency vectors from the resulting multiset of words. Additionally, we also parse
and record categorical data, such as the operating system and software version,
representing them as discrete features in the structured document. Finally, we
parse any stack traces into ordered sequences of strings.
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Fig. 1. Example Representation of our structured document comparison technique.

Source code, which is not expressly written in natural language, is handled
similarly, but with a few extensions that have been shown to be effective in
previous work involving textual analysis [28]. We obtain an initial list of terms
by splitting on whitespace and punctuation. However, we obtain further terms
by taking advantage of paradigms such as Hungarian notation, camel case cap-
italization, and the use of underscores to separate terms in a single string. For
example, given the string “nextAvailableToken” we increment frequencies for
the following terms: “next”, “available”, “token”, and “nextAvailableToken”.
Source files are also structured and can also be decomposed into substructures.
Substructures include method signatures, method bodies, comments, and string
literals, among others. In addition to the overall term frequency vector for the
entire file, each substructure is processed separately into its own term frequency
vector. Thus our intermediate representation for a source file will include an
term frequency vector, a term frequency vector for words in comments, one for
words in method bodies, and so on.

Intuitively, the similarity between a defect report and a source file is built up
from the similarities between their intermediate representations (i.e., their term
frequency vectors). We wish to empirically determine which vectors are the most
predictive of fault localization when the two structured documents in question
are compared. For instance, previous work has shown that defect titles are highly
significant when searching for duplicate reports [17]; we hypothesize that they
may be similarly significant when attempting to locate defects. Section 3.3 goes
into more detail on this subject.

3.2 Textual Document Similarity

Intuitively, two documents are similar when they have a large fraction of their
terms in common. The formal basis of the main similarity metric we employ is
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the standard cosine similarity between two vectors v1 and v2 (here v1•v2 denotes
the dot product):

cos(θ) =
v1 • v2
|v1| × |v2|

The more terms the two corresponding documents share, the closer the vectors
are to collinear and, we assume, the more related concepts they both describe.

In practice, some terms are more indicative of underlying similarity than
others. For example, terms such as “int”, “class” or “the” may occur frequently
in two unrelated documents. We wish to limit the impact of such terms on our
similarity metric. However, since we desire a language-independent approach,
rather than hand-crafting an a priori stop-list of common words to discount, we
will derive that information from the set of available defect reports and source
code. Intuitively, two documents that share a rarer term, such as “VerticalRuler”
should be measured more similar than two documents that share a common term
such as “int”.

To formalize this intuition we use the TF-IDF measure [19], which is common
in information retrieval tasks. We want to measure how strongly any given term
describes a document with respect to a set of context documents. Given a docu-
ment d and a term t, the TF-IDF weighting weight(d, t) is high if t occurs rarely
in other documents, but relatively frequently in d. Conversely, a low weight cor-
responds to a term that is frequent globally and/or relatively infrequent in d.
The weight for a document d and term t is computed as follows:

tf(t, d) =
# occurrences of t in d

size of d
idf(t) =

# of documents
# of docs that contain t

weight(t, d) = tf(t, d)× idf(t)

Here tf is “term frequency” and idf is the “inverse document frequency”. With
the background formalisms thus described, we now explain how we combine them
to aid fault localization.

3.3 Our Technique

We combine portions of the cosine similarity metric and the TF-IDF weighting
to form an overall similarity metric:

similarity(v1, v2) =
∑

t∈ v1∩v2

v1[t]× v2[t]× idf(t)

For each term contained in both documents, we multiply the product of its fre-
quencies in both documents by that term’s idf weight. The aggregate sum over
all words’ values then serves as the similarity measure for those two documents.
The major distinction between this metric and standard approaches is that we
do not normalize for the size of the documents. While normalization is natural
in many information retrieval tasks, we claim that the special structure of source
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code and the fault localization task make it undesirable here. For example, con-
sider a defect report that mentions the term “VerticalRuler” in a project where
the only source code mention of that term occurs inside one very large source
file. In such a case, we would like to report the single source file as very similar
to the defect report. However, if the file’s size were normalized, it would appear
to be less similar to the defect report than smaller files that share more common
terms (e.g., “mouse”).

In general, other works apply size-based normalization when large documents
increase false positive rates or otherwise degrade the accuracy of a given method.
We claim that the loss of precision associated with normalization outweighed
the benefits it provided. This is in line with previous claims [28] that traditional
information retrieval search techniques used for documents do not map perfectly
to code- based textual analysis.

While the above technique is intended for use with two term frequency vec-
tors, we require certain adaptations for other types of structured data. Categor-
ical data, such as operating system flavors or program versions, are treated as a
vector with a single term and the metric can be used in the standard fashion.
Stack trace vectors — sequences of strings representing method names — can
be compared as word vectors by using the positional index of a method in the
call trace name as its frequency.

Given a defect report D and set of source files f1 . . . fn, our goal is to produce
a rank-ordered list of the files, weighted such that files likely to contain the defect
are at the top. Human developers then inspect the files on the ranked list in order
until the fault has been localized. The rank of a file fi is given as follows:

rank(D, fi) =
∑

vj∈D

∑
vk∈fi

cjksimilarity(vj , vk)

where vj ranges over all of the term frequency vectors in the defect report’s in-
termediate representation, vk ranges over all of the term frequency vectors in the
source file’s intermediate representation, and each cjk is a weighting constant for
that particular vector pair. The cjk constants are the formal model: a high value
indicates that similarity in the associated pair of sub-substructures (e.g., defect
report title paired with source code comments) is relevant to fault localization.

One approach would be to use machine learning or regression to determine
the values for the cjk weightings. The size of our dataset, which includes tens
of millions of datapoints, precludes such a direct approach, however. Attempts
to apply linear regression to the dataset exhausted memory on a 36 GB, 64-
bit machine. We instead use several common statistics as a starting point for a
parameter space optimization to obtain a precise model (see Section 4.2.

4 Evaluation

We conducted two main experiments to evaluate our approach. The first directly
compares the accuracy of our technique to other lightweight baselines at file-
level localization and indirectly compares to state-of-the-art techniques. The
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Program Defects Files Lines of Language(s) Avg. report Avg. report
Used Used Code Used length (lines) title (words)

Eclipse 1,272 23,601 3,476,794 Java 172.535 8.642

Mozilla 3,033 14,651 2,262,877 Java, C++ 316.811 9.428

OpenOffice 1,040 9,992 815,473 Java, C++ 60.547 5.623

Total 5,365 48,244 6,555,144 - - -

Fig. 2. Subject programs used in our evaluations. “Defects” counts reports that could
be linked to a particular set of changes. “Files” counts retrieved source files in the
project branch, including those not involved in defect reports. “Lines of Code” measures
the size of those source files, while “Languages” lists their programming languages. The
last two columns measure aspects of the defect reports used.

second experiment quantitatively verifies our hypothesis that fault localization
via textual analysis depends significantly on human word choice.

4.1 Subject applications and defects

The experiments were conducted using 3 large, mature open source programs
and 5345 total bug reports, shown in Figure 2.

We chose these projects for several reasons. First, they are relatively indica-
tive of substantial, long-term real-world development in terms of size (6.5 million
lines of code total) and maturity (each is 8 to 11 years old). Additionally, each
project has both bug report and source code repositories.

For each program, we obtained the subset of the available defect reports for
which we could establish a definitive link between the report and a corresponding
set of changes to source files. We thus restricted attention to those defect reports
that were mentioned by number in source control log messages. We additionally
restricted attention to reports of actual faults, omitting feature requests and
other invalid reports filed using the bug report system. Also, we only considered
defects for which all corresponding changes took place in source files in the
main branch of each project (e.g., omitting changes to minor branches, testing
branches, or data files).1 Finally, we excluded files or reports that could not be
processed (e.g., from CVS or parsing errors).

4.2 Model Coefficients

Our first step is to build a model relating similarity comparisons between defect
report and source code structures to fault localization. In the terminology of
Section 3.3, this involves determining values for the 28 distinct cjk weights.

To build such a model we first performed an analysis of variance (ANOVA)
on a subset of the data to estimate the predictive power of each possible doc-
ument comparison. For each defect report we consider all of the files that were
eventually fixed by the developers and also 150 files, chosen at random, that were
1 Eclipse’s /cvsroot/eclipse; Mozilla’s /cvsroot; OpenOffice’s /trunk.
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Report Substructure Code Substructure Relative Weight (cjk)
in Model

Report title Method bodies 23.06
Report body Method signatures 21.48
Report title Comments 10.53
Report body Class name 9.46
Report body Comments 7.89
Stack trace Class name 7.79
Report body Method bodies 5.72
Component Method bodies 4.30
Operating system Comments 3.48
Component Comments 3.03
Product String literals 1.94
Report title Method signatures 1.32

Fig. 3. The coefficients associated with our model. Since we are interested in relative
rankings rather than an absolute value, the coefficients have been normalized so that
their aggregate sum is 100.

not.2 We pair each such file fi with the original defect report D to produce one
datapoint. Each datapoint has multiple associated features (i.e., the explanatory
variables): there is one feature for each each of the 28 〈vj , vk〉 vector pairs, with
the measured similarity serving as the feature value. The response variable for a
given datapoint is set to 1 if the file was modified by developers and 0 otherwise.

The ANOVA measures the ratio of the variance explained by each feature
(i.e., each 〈vj , vk〉 similarity) over the variance not explained. We use this ratio
as a starting point for cjk. These values may not be optimal because our final
model goal is to rank order the final and not to minimize the error with the
artificial 0 and 1 response variables.

Our second step was to perform a principle component analysis (PCA) to
determine the number of components that were relevant to the task of detecting
the location of a fault in source code. Given our 28 possible document substruc-
ture comparisons, this analysis showed that a combination of 12 accounted for
more than 99% of the overall variance in the data. The final cjk values obtained
via a gradient ascent parameter space optimization. In each iteration, the best
model available was compared to similar models, each constructed by increasing
or decreasing the value of a single cjk by 10%. The comparison was conducted
using the score metric detailed in Section 4.3. We terminated the process when
the improvement between one iteration and the next was less than 0,01%; this
took 5 iterations. We used the final cjk values as our formal model. Figure 3
shows the final document substructures selected for the model and their respec-
tive coefficients.

The report title and body, as well as the method bodies and comments, are
involved in many of the most useful relationships in our fault localization model.

2 The inclusion of 150 files was chosen to be as large as possible while allowing the
problem to be tractable on available hardware.
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Test Set of Defects Defects Our approach Stack trace Code churn
Used Baseline Baseline

OpenOffice only 1040 67.918% 57.979% 72.755%

Eclipse only 1272 86.909% 56.295% 73.131%

Mozilla only 3033 92.159% 50.152% 93.860%

Stack traces only 325 86.175% 65.060% 76.442%

Complete set 5345 88.193% 53.137% 84.820%

Fig. 4. Score values for selected techniques. The “Test Set” column lists examined
subsets of the 5345 defects from three programs. “Our Approach” measures the score
obtained by our technique. The “Stack trace” baseline favors files mentioned in user-
provided stack traces, and the “Code churn” baseline favors frequently-changed files.

With respect to defect reports, the titles and bodies contain the majority of
the natural language information chosen by the reporter and, as such, are more
helpful than extraneous categorical data and stack traces. Comparatively, we
believe that code comments are effective when matching terms from bug reports
because they are written explicitly in natural language and often encapsulate
code specifications in a manner complementary to the language inherent in the
code’s identifiers. Method bodies contain most of the text associated within code
files and thus also serve as effective predictors. Notably, more obscure categorical
information and string literals found in code were less useful to the model.

4.3 Experiment 1 — Ability to localize faults

Our first experiment measures the accuracy of our technique when localizing
faults. We compare two versions of our technique against two baseline approaches
directly. We also indirectly compare against the published results of three state-
of-the-art tools using a common metric.

Score metric We adopt the score metric for measuring the accuracy of a fault
localization technique. The score metric is commonly used in fault localization
research [10, 18, 26]. A score value represents how much of a given code base
one would not have to examine to find a fault. For example, a ranking for an
OpenOffice defect report that requires the user to inspect 2,000 of the 9992 files
before finding the right file has a score of (9992 − 2000)/9992 = 80%. Higher
score values indicate better accuracy. We apply the score metric at the file level
of granularity. We report the average score over all defects available.

Figure 4 shows the results. A lower baseline of 50% represents inspecting
files in random order. Our approach outperforms all baselines over the entire
test set (highlighted in boldface in Figure 4) and is generally better than other
approaches in most subsets. The “Stack traces only” subset includes all defect
reports that featured stack traces. Note that of these 5345 defect reports, only
325 (6%) contained stack traces.
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Over the entire test set, we outperform the stack trace and code churn base-
lines by around 35% and 3% respectively. While the performance gain over a
stack trace baseline is immediate, the lower performance gain over code churn
requires more of an explanation. First, note that code churn is particularly ef-
fective on Mozilla defect reports: if they are excluded, our approach outperforms
it by 10%. Second, since code churn obtains a score of over 84% overall, only
a 16-point score increase is possible. In that regard, our 4-point increase con-
stitutes 20% of the remaining room for improvement. Finally, on large projects,
even small gains are significant: a 3% score increase prevents an average of 1,929
source files (or 262,205 lines of code) from being considered during the fault
localization search for an average subject bug.

Our technique performed most poorly on OpenOffice defects: if only Eclipse
and Mozilla are considered, our performance is 90%. This can be explained by
a particular quirk of the OpenOffice project: their bug reports contain less-
descriptive titles, thus reducing our primary source of textual similarity (see
Section 3.1).

The results presented in Figure 4 show that our tool outperforms lightweight
baselines. We also suggest that our technique may perform better than more
heavyweight techniques. Several state-of-the-art fault localization techniques re-
port accuracy values for their tools in terms of the distribution of subject faults
over the scale of possible score measures. For comparison purposes we use a
weighted average of each score interval to calculate an overall accuracy measure
for each approach. The tools of Jones et al. [18], Cleve et al. [10], and Renieris
et al. [26] achieved aggregate score measures of 77.797%, 63.415%, and 56%
respectively. The largest of these projects evaluated on 132 defects over seven
files containing at most 560 lines of code each. While these results are measured
on different test sets and are therefore not directly comparable, we note that
our technique obtains a score result 9 points higher than previous work and is
evaluated on an order-of-magnitude more defects and files.

Finally, our technique is lightweight in terms of execution time. Assuming
code files are kept indexed as word vectors, our tool always runs in under 10
seconds per defect report and generally takes less than 1 second.

4.4 Experiment 2 — Evaluation of human word choice

Our second experiment tests our hypothesis that our score accuracy is mainly
due to correctly extracting and comparing the natural language chosen by hu-
mans in defect reports and source files. We first demonstrate that our technique’s
accuracy is not dominated by other features, such as length, bug priority, or bug
lifespan. Secondly we alter the natural language of the subject reports system-
atically, showing that performance degrades in a proportional manner.

We hypothesize that human-chosen natural language in defect reports and
source code is a critical factor in our fault localization approach. We first discount
several potentially-prominent other features in terms of predictive power with
respect to the score accuracy of our technique. The features examined cover
both defect reports and source code: the Flesch-Kincaid readability level of the
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Document feature Correlation
with score

Average report length 0.15

Rate of commenting in edited source 0.15

Maximum report length 0.13

Number of duplicate reports 0.12

Reported priority 0.12

Bug lifespan 0.11

Report readability 0.07

Number of edited source files 0.07

Fig. 5. Pearson correlation between surface features and our technique’s score.

Fig. 6. The effect of replacing human-chosen words with various random words on our
technique’s score over all 5345 defects.

report in question [14], the assigned bug priority, the number of total reports
for a bug when considering all duplicates, the maximum report length for a bug,
the average report length for a bug, the overall lifespan of the bug from reported
defect to reported patch, the number of source files edited as part of the patch,
and the rate of commenting in the edited source code.

We calculated the Pearson correlation of all 5345 total bugs’ score measures
with these features. The correlations can be found in Figure 5. It is generally
accepted that correlations below 0.3 are not statistically significant [15]. All ob-
served correlations fell well within these bounds and therefore we conclude that
these features do not significantly affect our model. However, of all correlations,
report length and rate of commenting had the highest relative values. This sup-
ports our claim that natural language is key to our technique’s success, since
these features typically relate directly to the natural language present.
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Next, we demonstrate that our model is greatly affected by the users’ choice of
language in defect reports and the developers’ choice of language in source code.
To evaluate this, we measure our score accuracy as more and more human-chosen
words are replaced by random words. We used three different random techniques
to replace human-chose words: replacing terms with words of comparable length
from the same general set (e.g., the set of all report description words), replacing
terms with words of comparable lengths from a different set (in this case, an
English dictionary), and finally, replacing terms with strings of the same length
made up of randomly selected characters (i.e., random noise). In each case, we
altered the natural language in increments until the entire frequency vector had
been changed, using the unaltered reports as a baseline. The results of this
experiment can be found in Figure 6. Each datapoint represents the score of our
algorithm running on the entire 5345-defect dataset with some fraction of each
defect report’s text altered.

As the natural language in defect reports is changed, and thus the useful
information in the report is reduced, the performance of our technique degrades.
The reduction in score is not strictly proportional, as is expected from the pres-
ence of common words and our use of the idf weighting: a few words account for
much of the relevant document similarity in a given comparison and thus chang-
ing even a few of these important words to random characters degrades the
performance of our tool significantly and immediately. However, when replacing
the human-chosen words with terms from the same or different corpus, the per-
formance degrades more slowly. Words from the same corpus are still related to
the overall system and thus this result follows naturally. Comparatively, words
from a different corpus, while not as distracting as random useless characters,
aren’t as related to the underlying natural language and thus degrade perfor-
mance more than the previous technique. Ultimately, when all words in defect
reports have been randomly replaced by other words from defect reports, the
score of our technique drops to a level between the code churn and stack trace
baselines. This supports our hypothesis that the natural language in reports and
code is critical to our technique’s score at fault localization.

4.5 Threats to validity

Although our experiments are designed to demonstrate that our technique per-
forms well over a large number of defects and files, our results may not generalize
to industrial practice. First, our benchmark programs may not be indicative. The
programs we chose are all large, mature, open-source projects. While they span
three individual domains, they may not generalize to all potential domains. Our
results may not apply to younger, smaller projects, but we claim that fault lo-
calization becomes less interesting as the project shrinks (e.g., in the limit, fault
localization is not a large concern for a project with only one or two source files).
We view an evaluation on large datasets (e.g., ten times larger than previously-
published evaluations [18, 10, 26]) as an advantage.

Bird et al. note that sampling bug reports for the purpose of experimentation
may lead to biased results [7]. As a result, our technique may only be good at
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localizing certain types of faults (i.e., those that open source developers deign
to mention in version control logs). Lacking a project with a linked version
control and defect repository, we cannot mitigate this threat beyond our claim
that manual inspection of the reports found the faults to be a relatively even
cross-section of each project’s repository over the history of that project (see
Section 4.1).

Our code churn baseline may not be indicative because it relies on eight to
ten years of version control information. For example, it may perform particu-
larly well on the larger and older Mozilla project, correctly giving low rankings
to the many files that have been stable for years. In practice, a development
organization may not have such rich version history information, or such stable
files may be manually excluded by developers.

Finally, when comparing our results with that of established fault localization
techniques using the score metric, we may be forced to estimate previous results
to compare the approaches as directly as possible. Previous publications have
reported score value distributions over intervals from 0% to 100%. We propose to
estimate based on a weighted average of the medians of each interval. Ideally we
will discover that even when we estimate previous score values using the upper
end of each range (i.e., giving each previous approach the maximum value it
could possibly have had), our technique’s score values will still be higher overall.

5 Related Work

Related research to our work falls into two main categories: prior work in fault
localization, and prior work in reverse engineering.

5.1 Fault Localization

Ashok et al. propose a similar natural language search technique in which users
can match an incoming report to previous reports, programmers and source
code [4]. By comparison, our technique is more lightweight and focuses only on
searching the code and the defect report.

Jones et al. developed Tarantula, a technique that performs fault localization
based on the insight that statements executed often during failed test cases
likely account for potential fault locations [18]. Their approach is quite effective
when a rich, indicative test suite is available and can be run as part of the
fault localization process. It thus requires the fault-inducing input but not any
natural language defect report. By contrast, our approach is lightweight, does not
require an indicative test suite or fault-inducing input, but does require a natural
language defect report. Both approaches will yield comparable performance, and
could even be used in tandem.

Cleve and Zeller localize faults by finding differences between correct and
failing program execution states, limiting the scope of their search to only vari-
ables and values of interest to the fault in question [10]. Notably, they focus on
those variable and values that are relevant to the failure and to those program
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execution points where transitions occur and those variables become causes of
failure. Their approach is in a strong sense finer-grained than ours: while noth-
ing prevents our technique from being applied at the level of methods instead
of files, their technique can give very precise information such as “the transition
to failure happened when x became 2.” Our approach is lighter-weight and does
not require that the program be run, but it does require defect reports.

Renieris and Rice use a “nearest neighbor” technique in their Whither tool
to identify faults based on exposing differences in faulty and non-faulty runs that
take very similar executions paths [26]. They assume a large number of correct
runs (e.g., normal test cases) and one failing run. Their approach uses a distance
criterion to select the correct run that is closest to the failing run and produces
a report of “suspicious” parts of the program. By comparison, we chose to limit
the programmatic information used by our technique to only that which was
reported by users: we do not use test case runs but do need natural language.

Liblit et al. use Cooperative Bug Isolation, a statistical approach to isolate
multiple bugs within a program given a deployed user base. By analyzing large
amounts of collected execution data from real users, they can successfully differ-
entiate between different causes of faults in failing software [23]. Their technique
produces a ranked list of very specific fault localizations (e.g., “the fault occurs
when i > arrayLen on line 57”). In general, their technique can produce more
precise results than ours, but it requires a set of deployed users and works best
on those bugs experienced by many users. By contrast, we do not require that
the program be runnable, much less deployed, and use only natural language
defect report text.

Jalbert et al. [17] and Runeson et al. [27] have successfully detected duplicate
bug reports by utilizing natural language processing techniques. We share with
these techniques a common natural language architecture (e.g., frequency vec-
tors, TF-IDF, etc.). We differ from these approaches by adapting the overall idea
of document similarity to work across document formats (i.e., both structured
defect reports and also program source code) and by tackling fault localization.

5.2 Reverse Engineering

Syst et al. have developed an interactive reverse engineering tool called Shimba
that allows users to explore different states of Objects within Java systems. The
tool relies on both static and dynamic runtime information and stresses visu-
alization capabilities for the goal of program understanding. In contrast, our
approach uses strictly static information and contains no interface capabilities.
We instead focus specifically on fault localization while keeping the overall pro-
cess as lightweight as possible for the purpose of scalability.

D’Ambros et al. propose several analyses for mining artifacts from software
repositories to aid program understanding especially related to long term evolu-
tion [11]. Our work also uses latent semantic information, but we focus specifi-
cally on the task of fault localization with overall program understanding as an
implicit secondary goal.
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Li et al. have examined the problem of extracting information from structured
documents in addition to categorizing that information [21]. They focus on user
queries in particular, which is similar to the bug reports we study in this thesis.
They also note that tailoring analyses to specific corpora is particularly helpful,
which we confirm with the use of inverse document frequency for weighting
individual terms.

Shepherd et al. focused on both proving that the natural language in source
code is meaningful and also on attempting to extract those language artifacts in
a meaningful and useful manner [28]. They studied natural language use in code
for the purpose of developing a specialized code-search technique specifically fo-
cused on identifying distributed concepts throughout a system. Similarly, Lawrie
et al. have examined the quality of source code identifiers in terms of code com-
prehension [20]. They show that insightful and carefully chosen natural language
identifiers make for more understandable and maintainable code. We build upon
such work by leveraging these facts in the domain of fault localization.

Work has been done to measure the quality of natural language choices made
by developers [9, 12, 20, 29]. Additionally, some of this work looks at restructur-
ing or refactoring natural language artifacts in an attempt to reverse engineer
the original developers’ intentions and aid program understanding. We assert
that measuring the quality of natural language is orthogonal to the work we
present in this thesis. We are more concerned with the ability of the natural
language in both defect reports and source code to localize faults, regardless of
the language’s quality. While higher quality information may allow our tool to
compare documents more accurately, our tool currently achieves higher accu-
racy than state-of-the-art techniques without accounting for the quality of the
underlying natural language.

6 Conclusion

We present a lightweight, scalable technique for localizing faults based on docu-
ment similarities. We hypothesize that human-chosen natural language present
in both defect reports and source code can be compared to identify potential
fault locations based on natural-language descriptions. Our technique is entirely
static and is language independent.

An empirical evaluation shows that our technique not only performs better
than several baseline approaches, but is comparable to the state-of-the-art tech-
niques without requiring significant overhead or a runnable program and a test
suite. We also demonstrated that the word choice in natural language artifacts
was truly the dominant factor in our approach.

A large empirical evaluation of our program on 5345 historical defects from
three real-world programs totaling 6.5 million lines of code showed that we can
reduce the search space for finding a fault by over 88% on average. We believe
that this approach has the potential to significantly decrease the cost of fault
localization, and thus software maintenance overall.
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