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Cramer-Rao lower bounds on the performance
of charge-coupled-device optical position estimators
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The problem of optically estimating an object's position by using a charge-coupled device (CCD) array composed of
square pixels Ax on a side is analyzed. The object's image spot at the CCD is assumed to have a Gaussian intensity
profile with a le point at a radial distance of 42 a, from the peak, and the CCD noise is modeled as Poisson-
distributed, dark-current shot noise. A two-dimensional Cram6r-Rao bound is developed and used to determine a
lower limit for the mean-squared error of any unbiased position estimator, and the maximum-likelihood estimator is
also derived. For the one-dimensional position-estimation problem the lower bound is shown to be minimum for a
pixel-to-image size ratio Ax/a, of between 1 and 2 over a wide range of signal-to-noise ratios. Similarly for the two-
dimensional problem, the optimum ratio is shown to lie between 1.5 and 2.5. As is customary in direct detection
systems, it is also observed that the lower bound is a function of both the signal power and noise power separately
and not just of their ratio. Finally, the maximum-likelihood estimator is shown to be independent of the signal and
noise powers at high signal-to-noise ratios.

INTRODUCTION

There are many applications that require the precise estima-
tion of an object's position as viewed through an optical
system. Examples include star trackers for celestial naviga-
tion and spatial acquisition systems for optical links. The
development of low-noise charge-coupled device (CCD) im-
aging arrays in the early 1970's has made it possible to
perform accurate position estimates and has provided an
impetus for building high-resolution tracking systems.
This fact is clearly illustrated by the first Astro mission,
which was to be launched in March 1986 to observe Halley's
comet and several other astronomical bodies. The shuttle
disaster, however, has postponed the program. The Astro
payload, when launched, will, include a new generation of
star trackers that use CCD arrays. Star positions will be
determined to accuracies of 0.2 seconds of arc over a 2.2 X
2.50 field of view.'

The performance of CCD position-estimation systems has
been an area of recent interest, and the ability to achieve
subpixel resolution has been demonstrated.1'7 Most of the
systems investigated to date are sophisticated peak or cen-
troid trackers. The performance of any tracker will depend
on a host of system parameters, which include signal
strength, CCD noise, and image-spot size. For various sub-
optimum tracking algorithms, Dennison and Stanton 4 along
with others3' 7 have investigated tracking performance as a
function of the ratio of image-spot size to the CCD pixel size.

This paper uses classical estimation theory to determine a
lower bound (i.e., a two-dimensional Cram6r-Rao bound)
for the mean-squared error of any unbiased position-estima-
tion system that uses a CCD array. Furthermore, for a given
CCD array, the spot-size to pixel-size ratio that yields the
smallest lower bound will be derived along with the maxi-
mum-likelihood estimator.

In the analysis to follow, the CCD array will be assumed to
be composed of identical square pixels without dead space,
and the image spot will be represented by a Gaussian-shaped
intensity profile. A Gaussian intensity distribution is as-
sumed rather than a diffraction-limited Airy disk because it

is mathematically more tractable. Furthermore, a Gaussian
profile is an excellent approximation to an Airy distribution
in its central region, and if the link includes part of the
atmosphere, turbulence will tend to produce a Gaussian-
shaped spot in any case.

Both the one-dimensional (1-D) and two-dimensional (2-:
D) position-estimation problems will be analyzed below. In
each case, the CCD noise will be assumed to be Poisson-
distributed shot noise generated by both the image spot and
the detector dark current. Background-generated shot
noise will be neglected under the assumption of either night-
time operation or the use of a narrow-wavelength selective
filter preceding the CCD detector. This restriction, howev-
er, can be removed easily.

The analysis presented below differs in several important
respects from previously published theoretical work. This
can be most clearly observed by noting that previous theo-
retical work generally falls into one of two categories. In the
first category, Poisson-distributed shot noise is assumed to,
be generated only by the image spot or the image spot plus
background, and the detector is assumed to have noiseless
pixels (i.e., no dark current) of infinitely small size.8-11 The
optimum or suboptimum position estimator and its perfor-
mance bounds are then derived. In the second category a
fixed spot size and detector structure such as a 2 X 2 quad
array are assumed along with signal and dark-current shot
noise. A lower bound on the performance of any unbiased
estimator that uses this detector structure is then derived.12-
19

Chen20 and Chen and Snyder 2
1 also investigated optical

position estimation but in terms of a general stochastic
tracking problem. Their papers, however, do not address
the issue of optimum spot size for a CCD array having fixed
dark-current values and pixel widths.

HEURISTIC ARGUMENT

Below, a simple intuitive argument is presented for why
there should be a pixel-to-image spot-size ratio that mini-
mizes the position-estimation error. First, assume that a
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CCD array with a fixed pixel size and a fixed amount of dark-
current shot noise per pixel is given. This is generally the
case since one buys the "best" CCD array available and then
must live with its characteristics. We are now free to adjust
the focal length of the optical system in order to control the
image-spot size at the CCD detector. To perform the most
accurate estimate of position, it is best to maximize the
signal energy collected and at the same time minimize the
noise. Note that when the pixels are much smaller than the
image-spot size this is not possible, because we must "look"
at many noisy pixels in order to collect most of the signal
energy in the spot. Thus the image-spot size should not be
too large. On the other hand, if the spot size is very small,
then it will be contained almost entirely within one pixel,
and the estimator will be unable to produce subpixel resolu-
tion. Consequently, for a given CCD array there should
exist some intermediate image-spot size that minimizes the
position-estimation error.

TWO-DIMENSIONAL CRAMWR-RAO BOUND

In this section a 2-D version of the Cram6r-Rao bound (Ref.
19, pp. 79-81) will be derived. Suppose that c is some
observed vector quantity that is statistically related to e, and
EY. Furthermore, let ex(c) denote an unbiased estimator of
e,. Then we can write

J [6(c) - e.Jp(cIEe ey)dc = 0, (1)

f [E(c) - Ip(cle, ey)dc = 0, (2)

J [,(C) - Ex] a Y dc - p(clex, e)dc = 0, (3)

f [f(C) - EI 0 dlnP(c|, ) p(cle, EY)dc = J p(cIE, eO)dc,

(4)

[ , (C)-E 1
Z a lnp(clE, ey)I'

[ a~c E., 1

a lnp(C I , y)

WA hEx

a lnp(CtI , Ey)

ay

(8)

(9)

(10)

(11)

(12)

alA [-(C) - EJ,

a lnp(clex, ey)

a2 A dex

a3A lnp(cf, Ey)
a3 a fy

From Eqs. (5) and (7) and expressions (11) and (12) one gets

E[alad = 1,

E[a la3d = 0,

(13)

(14)

where E denotes the expectation operator. Furthermore,
because a covariance matrix is always nonnegative definite it
follows from expressions (8) and (9) and Eqs. (13) and (14)
that

det E[ZZ7 1 = E[a1
2

1

E[a 1
2 ]

detE[WWT = 1

0

1Ela22 ] >_0

1 0

E[a 2
2 ] E[a 2 a3 ] > o,

E[a 3 a2 ] E[a 3
2 ]

(15)

(16)

| [ex~c) ]aIn P (cI E, EY)
f If(c - E af, ~'p(cle CY)d& = 1.

Similarly,

de [(C) - EJP(CIE, )dc = 0,

| [E,(c)-eJ a Cy dc = 0,
f ~~~aEY

J [I (c E)] d lnp(clfE, Ey) p(c~, E)dc = 0.

Let Z, W, al, a12, a21 , and a22 be defined as follows:

where det denotes the matrix determinant operator.
(5) It immediately follows from expressions (10) and (11) and

Eq. (15) that

E[al 2]E[a 2
2 ] > 1,

(6)

(7)

ffc)- E )2] > 1 (17)
E ( IE., y) 21

ER aE, )
Equation (17) is the standard Cram6r-Rao bound. Simi-
larly from expressions (10)-(12) and Eq. (16) we have

'a21E[a22] E[a 2a.] _ Ea 21 > 0
E[a12] E a 3a2 E[% 2

] E[%

and

E Ilnp(CIE EY)2}

aE~~~~~~~~~~~~~~~~~ Q

E [a lnp(cE Ey)121 [a E lnp(cIle, Ey)12 _ r' lnp(cIfx, Ey) lnp(cele, ey) 2 (8

a E . L aey J' [ I L x a EI

E[((c)- EX)2] >
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Expression (18) is a 2-D version of the standard Cramer-
Rao bound. Note that, in general, the Cramer-Rao bound is
not the greatest lower bound.' 9 It is, however, one of the few
bounds that is mathematically tractable, and consequently
it is used throughout the literature.

IMAGE SPOT AT THE CHARGE-COUPLED
DEVICE

The image spot at the CCD is assumed to have a Gaussian-
shaped intensity profile S(x, y) and thus can be written as
follows:

S(x, ye exy e) = (27ar2) 1 exp 2 ] exp -

L 2,2 2 s2

(19)

where (r, Ey) A x and y coordinates of the center of the image
spot at the CCD. For the 1-D case, Eq. (19) reduces to

S(x, Ex) = (2rao, exp[ ( ]

S(Y, Ey) = (2raY)1 2 expt -2 ]

Note that

(20)

(21)

In p(clex) = In fl P(Ci EX)

=-E [Xsgi(ex) + XN]

-EIn ci! + ci n [sgi(X) + N].

From Eq. (20) and expression (24) we have

gi(,x) = 1,

and therefore

0 lnp(cfx) Ax'(ex)
r- = v Z

EA Xg (E.) + XN

where

i(ex) Agi(,Ex).

From Eq. (29) it follows that

E[F 2 ] = ] E[c2]
i Xsgi(Ex) + N

S(X, Y. "Ex Ey) = S(x, ex)S(Y, eY)- (22)

Let the center of the i-jth pixel be given by xi, yj, and let
this pixel be of size Ax by Ax. Then the average number of
photoelectrons gj produced by this pixel because of the
image spot is given by

gif(Ex, EY) = ie'g(E) (23)

where

Ax

2

Ax
i+ 2 S(y .E)dy

X
Yj -

+ X'(<;EX) Xsg)(Ex) E[ci]E[cj].

+jE Asgi1e) + XN XAgj(fx) + XN

j?i
(30)

Because ci is Poisson distributed with mean Xsgi(Ex) + XN we
have

E[ci] = Xgi(ex) + XN,.

E[C,2 = [Xgi(Ex) + XN[1 + Xgi(Ex) + N].

(31)

(32)

(24) Combining expression (29) and Eqs. (30) and (31) yields

(25)

E[F2 ] = [ '(x) + [Xgi() (33)
[rom Eqj + a Xege(ei) + N 

From Eq. (20) and expression (24) it is easy to show that

X A average number of photoelectrons produced by the
entire CCD array during the CCD integration time because
of the image spot.

ONE-DIMENSIONAL ESTIMATOR

The probability density of the output c of the ith pixel can
be written in this case as

p(cilEx) = exp[-Xgj(Ex) - XN] C + , (26)

where XN A average number of dark-current photoelectrons
produced by each CCD pixel during the CCD integration
time.

It follows from Eq. (26) that

and therefore by expressions (17) and (29) and Eqs. (33) and
(34) it follows that

E[((C) - Ex)2] > 1

1

[XAgi(ex)]

E Asgi(Ex) + N

(35)

Expression (35) represents the Cram6r-Rao lower bound
for an unbiased estimator of Ex. Also note that the maxi-
mum-likelihood estimate of position is that value of Ex for

(27)

(28)

(29)

(34)gi(Ex) = 0,
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Fig. 1. Lower bound on performance of 1-D CCD optical position
estimator.

which r .= 0 [see expression (29)], and at large signal-to-noise
ratios (i.e., As/AN >> 1) this estimator is independent of A, and

AN. Because the center of the image spot (i.e., ex) is un-
known and equally likely to lie anywhere on the array, ex-
pression (35) can be averaged over the entire array region,
thus yielding a lower bound on the average mean-squared
error. It is necessary, however, to perform the averaging
over only the following one-pixel region:

-Ax < Ax
2 •ex< 2

because the array has a periodic structure. This fact can be
understood by noting that for a CCD of infinite extent an
observer cannot distinguish the physical difference when the
center of the spot is translated by an integer number of
pixels. Therefore

1 1

[Asgi(Ex)]
2 ~ [A g.(e + nAx)] 2

A Sgj(eX) + AN L4 Asgi(e + nAx) + AN

for all integers n.

Thus, averaging the left-hand side of the above equation
over -a to + is equivalent to averaging it over -Ax/2 to
+Ax/2. That is,

1 L/2 1lim - de
L-N L I-L/2

A gi(ex) + AN

Ax

Ax Ax [ASg'((X)]2 x
2 \'

L Ai(Ex) + AN

Of course if the CCD array is of finite extent then the equali-

ty above is not strictly true but is nearly so, provided that (1)
the spot size is small compared with the total size of the CCD
and (2) the spot does not lie at the edge of the array. Note
that if condition (1) is met (and it usually is in practice), then
condition (2) will also be met with high probability.

The normalized rms position error is defined below:

normalized rms errorl-D

fAx/ E[(:(c) - Ex)2 ]dEx1

By using expression (35) and Eq. (36), Fig. 1 plots a lower
bound for the normalized rms error (1-D case) versus the
pixel-to-image size ratio Ax/a. We note from Fig.1 that the
pixel-to-image size ratio at which the lower bound is mini-
mum lies between 1 and 2 for a wide range of signal-to-noise
ratios. Furthermore, the lower bound does not vary signifi-
cantly for ratios between 1 and 2. Finally, we note that the
rms error is a function of both the signal power and noise
power separately and not just their ratio As/AN. This type of
behavior is characteristic of systems whose performance is
governed by Poisson statistics.

TWO-DIMENSIONAL- ESTIMATOR

The probability density of the ouptut cij of the i-jth pixel
can be written in this case as

p(cijlex, e) = exp[-AXgj(ex)g(ey) - AN]
[Xgi(j(Ex)gj(Ey) + AN]'ij

c *TLJo

(37)

It follows from Eq. (37) that

ln P(clex, e) = n Hp(CijlEx, ey)

ii

= - E [Asgj(Ex)gj(ey) + AN] - In cij!
ii ii

(38)+ E cij ln[Agj(Ex)gj(Ey) + AN].

ii

From Eqs. (19)-(23) and expressions (24) and (25) we have

I
ii

gj(ex)gj(ey) = 1, (39)

and therefore

a In p(cEx, y) A5 g(Ex)gj(ey)
Qx A afx :cij

j \' Agi(ex)gj(E) + AN

a In p(cIEx, EY) AXgj(EX)g'(EY)

Qy- 'ey AE j 9i(ex)9j(Ey) + AN

where

.(EX) / gi(EX)

(40)

(41)
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and

;(e ) A g.((ey).

From Eqs. (40) and (41) it follows that

E[Qx
2] = E [A )g( 1 (ej)) lE[2

E X~~LA~g(fx)gj(ey) + ANJEc,

+ X Agi(Ex)gj(ey)
ij nm AXji(ex)gj(ey) + AN

nm # ij

Agn(ex)gm(ey) + AN

Combining Eqs. (42)-(46) yields

[Agi(Ex)gj(ey)] 2

I A gi(ex)gi(ey) + AN

(47)

E[QxQy] = E Asgi(Ex)gj(Ey) E Agn(x)g' (Ey)
ii nm

+z Ag(E)gj(Ey)gi(Ex)g(ey)
ij 9sgi(Ex)gj(ey) + AN

(48)

(42)

E[QxQy] I Ag'(ex)g(ey) Aji(ex)g(Ey) E[c 2 ]

E Q A=ji(Ex)gj(Ey) + AN Aji(Ex)gj(Ey) + AN E ]

+ A i(Ex)gj(ey)

iJ nm Asi(ex)g(ey) + ANC nm

nm ! ij

E[Q2] = i(ej)g'(E]) + Ag(ex)g(Ey)+YJ , Ai(e.x)gj(ey) + AN
(49)

From Eqs. (20) and (21) and expressions (24) and (25) it is
easy to show that

(50)g~i(e.x)g (e,) = ~gi(ex)g(eY) = 0,
Vi Vi

An(09g(ey) + AN

E[(ex(c) - x)2]

(43) and therefore by expressions (18), (40), and (41) and Eqs.
(47)-(50) it follows that

> E[Qy2 ]

E[Qx 2]E[Qy 2] - (E[QxQyI) 2

= [Agi(Ex)g(Ey)]2 hf
{2 Asgi(ex)gi(ey) + ANI/;1

ij U~~~~~~~~~~~~C

[AXg(ex)gj(Ey)]2 [AXgj(Ex)g;(Ey)]2

A(Ex)gj(Ey) A -Iy +Asi>~je) + N /; Vsi(ex)gj(ey) + N _ u

As2 gi(Ex)gj(Ey)gi(Ex)g;(Ey) 1
Agi(ex)gj(ey) + AN J J

(51)

1 gi(Ex)gj(E')gj(Ex')g(ey' 12

ij gi(ex)gj(ey) + (As/AN)-
L5ikcx/5jk.y/J

j gi(ex)gj(Cy) + (S/AN)'

Ii gj(fx)gj(eY)

E[Qy 21 = [ g(e)g() 2E ] [Cij]

Ag (ex)gg'j(ey)

ij nm As9(Ex)gj(ey) + AN
nm e ij

X An(Ex)g',n(EY) E[cij]E[cnn]. (44)
A,9n(E)9gn(E) + AN

Since cij is Poisson distributed with mean Asgi(Ex)gj(Ey) + AN
we have

E[cgj] = Asgi(Ex)gj(Ey) + AN, (45)

E[Cij2] = [Agj(Ex)gj(ey) + AN][1 + Asgi(Ex)gj(ey) + AN]. (46)

Expression (51) represents a 2-D Cramr-Rao lower
bound for an unbiased estimate of ex. Also note that the
values of x and for which Qx and QY are zero [see expres-
sions (40) and (41)] are the maximum-likelihood estimates
of position, and at large signal-to-noise ratios (i.e., AS/AN >>
1) these estimates are independent of A and AN. Because
the center of the image spot (i.e., ex, cQ) is unknown and
equally likely to lie anywhere on the CCD, expression (51)
will now be averaged over the uncertainty region, thus yield-
ing a lower bound on the average mean-squared error. As in
the 1-D case, the averaging will be performed over a one-
pixel region:

- x <e < 
2 x 2

Ax 22
The normalized rms position error obtained from this aver-
age is defined below:

E[Q 2 ] = [z Asg(Ex)gj(eY)] +

+ (As/ANf'
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Fig. 2. Lower bound on performance of 2-D CCD optical position
estimator.

normalized rms error2 -D

[ x fAX/2 A/2

(AX)2 J-AX/2 J-Ax/2
E[ex(c) -ex)]dcxdey

I1/2

(52)
os

By using expression (51) and Eq. (52), Fig. 2 plots a lower
bound for the normalized rms error (2-D case) versus the
pixel-to-image size ratio Ax/o. We note from Fig.2 that the
pixel-to-image size ratio at which the lower bound is mini-
mum lies between 1.5 and 2.5 for a wide range of signal-to-
noise ratios. Furthermore, the lower bound does not vary
significantly between 1.5 and 2.5. Finally, note that al-
though the normalized rms error in the x direction was
derived above, an identical result is easily obtained for the y
direction.

CONCLUSIONS

The problem of optically estimating an object's position by
using a CCD array composed of square pixels Ax on a side
has been analyzed. The object's image spot at the CCD was
assumed to have a Gaussian intensity profile with the 1/e
point at a radial distance of Ads- from the peak, and the CCD
noise was modeled as Poisson-distributed dark-current shot
noise. A 2-D Cram6r-Rao bound was developed and used to
determine a lower limit for the mean-squared error of any
unbiased position estimator, and the maximum-likelihood
estimator was also derived. For the 1-D position-estimation
problem the lower bound was minimum, over a wide range of
signal-to-noise ratios, for a pixel-to-image spot size ratio
(i.e., Ax/or) of between 1 and 2. Similarly for the 2-D prob-
lem, the lower bound was minimum for a pixel-to-image spot
size ratio of between 1.5 and 2.5. In both cases the lower
bound was relatively insensitive to Ax/ua in the region of its

minimum. It was also observed that the lower bound is a
function of both the signal power and noise power separately
and not just of their ratio. It was noted that this type of
behavior is characteristic of systems whose performance is
governed by Poisson statistics. Finally, at high signal-to-
noise ratios the maximum-likelihood estimator was shown to
be independent of the signal and noise powers.
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