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Longitudinal Mode Competition in Chirped
Grating Distributed Feedback Lasers

Kim A. Winick, Senior Member, IEEE

Abstract—Gain competition often inhibits the simultaneous las-
ing of multiple longitudinal modes in homogeneously broadened
laser systems. A stability analysis is developed to demonstrate that
the two lowest order degenerate longitudinal modes in an index-
coupled distributed feedback (DFB) laser will lase simultaneously
when the index grating is chirped asymmetrically along the
axis of the device. This chirped grating structure is shown
to decrease gain competition by reducing the spatial overlap
between the degenerate modes. Stable mode beating between
the two lowest order lasing modes results, and this beating
produces high-frequency output self-pulsations which can be
used for millimeter-wave and soliton pulse train generation.
An exact closed-form expression for the output intensity of an
antisymmetrically chirped index-coupled DFB laser, as a function
of the unsaturated gain, is also derived. The expression is valid
for arbitrary levels of gain saturation.

Index Terms—Chirped grating, distributed feedback (DFB)
laser, mode competition, waveguide laser.

I. INTRODUCTION

I T IS WELL known that the two lowest order modes of
a uniform index-coupled distributed feedback (DFB) laser

are degenerate and symmetrically located about the grating
stopband [1]. Experimental results indicate that single-mode
operation of these devices is possible, though multimode
behavior is often observed. Zhanget al. explained these
observations by numerically solving the time-dependent DFB
laser coupled-mode equations in the presence of envelope
gain saturation and population-dependent refractive index vari-
ations [2]. Using a similar approach, Liao and Winful [3]
and Wake [4] recently predicted, theoretically, that an anti-
symmetrically chirped single-section DFB laser can undergo
sustained high-frequency self-pulsations of the output beam
intensity. These are not true monomode pulsations [5] but
rather the beating between two degenerate modes supported
simultaneously by the chirped-grating DFB structure. Fes-
sent also observed, numerically, that multimode behavior can
occur in some corrugation-pitch-modulated DFB lasers [6].
Dual-frequency optical sources have a number of potentially
important applications, including millimeter-wave [7]–[9] and
soliton pulse train generation [10]. It is the purpose of this
paper to demonstrate,analytically, that an antisymmetrically-
chirped DFB laser can operate stably, above threshold, in two
degenerate modes.
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DFB lasers have been studied extensively since the first
such devices were experimentally demonstrated in 1971 [11],
[12]. In their classic paper, Kogelnik and Shank analyzed the
thresholdbehavior of these devices using steady-state coupled-
mode theory [1]. Their analysis yielded formulas for the
lasing thresholds, lasing frequencies, and longitudinal mode
intensity profiles. Analytic expressions for above-threshold
operation, however, are difficult to obtain, because envelope
gain saturation results in nonlinear behavior. Hill and Watan-
abe determined the steady-state performance of DFB lasers
operating above threshold by numerically solving the coupled-
mode equations [13]. Single-frequency operation was assumed
and spatial and spectral hole burning were neglected. Haus
obtained similar results, but did so using an approximate
analytic technique [14]. Szczepanski later modified Haus’s
basic approach to improve its accuracy [15], [16]. Solimeno
and Mastrocinque also developed some analytic results for
gain-coupled DFB lasers operating at low levels of envelope
gain saturation [17].

Equations describing the above-threshold steady-state oper-
ation of DFB lasers in the presence of spatial hole burning,
due to cavity standing waves, were derived starting in the mid-
1970’s [18]–[21]. In [21], Rabinovichet al. combined these
equations with Haus’s analytic approach to get approximate
closed-form solutions for the laser’s output power versus
unsaturated gain. Rabinovich also studied the degree to which
spatial hole burning effects the suppression of higher order
longitudinal modes. None of these papers, however, addressed
the issue of multimode stability in DFB lasers.

The remainder of this paper is organized as follows. In
Section II, the properties of the degenerate modes of an
antisymmetrically chirped index-coupled DFB laser operating
at threshold are described. In Section III, a stability analysis is
presented to show that stable dual-mode operation is possible
for these lasers. In Section IV, the time-dependent coupled
mode equations for chirped-grating index-coupled DFB lasers
are solved numerically. The results are shown to support,
quantitatively, our previously derived analytic results. Finally,
our conclusions are presented in Section V.

II. M ODE PROPERTIES INASYMMETRICALLY

CHIRPED, INDEX-COUPLED DFB LASERS

In this section, we will demonstrate that: 1) the lowest
order modes of a linearly chirped index-coupled DFB laser
are degenerate and symmetrically located, in frequency, about
the grating stopband; 2) the mode intensity profiles of these
two modes are mirror images of one another with respect to a
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Fig. 1. Grating with antisymmetric linear chirp.

plane located at the center of the cavity; 3) the spatial overlap
integral between the two modes is less than the self-overlap
integral of either mode individually; and 4) the cavityis the
same for both modes. We start our analysis by considering an
index-coupled DFB laser having a refractive index variation

of the following form:

(2.1)

with . We will assume that the mode profile trans-
verse to the direction of propagation is uniform with a
cross-sectional area of. The time-independent coupled-mode
equations can then be written as [1]

(2.2)

(2.3)

(2.4)

(2.5)

where and are the electric field amplitudes of
the forward and backward propagating beams of
frequency , respectively, is the strength of the spatially
varying coupling coefficient, is the phase of the grating
chirp, is the nominal period of the grating, is the net
saturated amplitude gain,is the vacuum speed of light, and
is the deviation from the nominal Bragg condition. In general,

will be a function of , due to nonuniform pumping and gain
saturation. In this section, we will assume that the pumping is
uniform and that gain saturation is weak. Therefore,will be
taken to be a constant independent of. The laser is assumed to
be of length , with perfectly antireflection-coated end facets
located at and . Thus, the boundary conditions
for lasing become

(2.6)

The normalized mode frequency and the corresponding
gain threshold of the th mode can be found numeri-
cally using (2.2)–(2.6). We will number the modes according
to the convention and

. If the grating chirp is
antisymmetric (see Fig. 1), i.e.,

(2.7)

or equivalently

and the laser is operating near threshold (i.e., net
unsaturated gain), then (2.2), (2.3), and (2.7) can be combined
to yield

(2.8)

(2.9)

Comparing (2.2) and (2.3) with (2.8) and (2.9) and invoking
the boundary conditions (2.6), we see that, if and
correspond to the forward and backward propagating beams of
laser mode , then and correspond to
the forward and backward propagating beams of laser mode

, where . Thus

(2.10)

(2.11)

(2.12)

For purposes of illustration, the normalized lasing mode fre-
quencies and the corresponding threshold amplitude
gain–length product were found numerically using
(2.2)–(2.6). DFB lasers with unapodized coupling strengths
(i.e., constant independent of) and antisymmetric
linear chirps described by

(2.13)

were assumed. The chirp parameter is a constant which
determines the amount of chirp present. The results are shown
in Fig. 2 for the cases , (i.e., no chirp), and

, , respectively. Note that in both cases, pairs
of degenerate modes are located symmetrically with respect to
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Fig. 2. Lasing frequency and threshold amplitude gain. (a)x: j�Lj = 2,
gc = 2. (b) �: j�Lj = 2, gc = 0.

Fig. 3. Normalized mode intensities at threshold. (a)j�Lj = 2, gc = 0,
�L = �3:37, �L = 0:98. (b) j�Lj = 2, gc = 2, �L = 2:92, �L = 1:31.
(c) j�Lj = 2, gc = 2, �L = �2:92, �L = 1:31.

the stopband . In Fig. 3, the envelope intensity profiles
of the lowest order pair of degenerate

modes (i.e., ) are plotted for the cases shown in Fig. 2.
If the two degenerate 1 and 1 modes lase simultaneously,

then the beat frequency in hertz is found from
(2.4) to be

(2.14)

Furthermore, the output power will be proportional to

(2.15)

TABLE I
LASING FREQUENCY, THRESHOLD, AND

MODULATION DEPTH VERSUSCHIRP (j�Lj = 2)

chirp coefficient
gc

(�L)thresh (�L)thresh
modulation depth

md

0.0 3.37 0.98 100%
0.5 3.34 1.0 96.9%
1.0 3.26 1.06 88.3%
2.0 2.92 1.31 69.6%
3.0 2.39 1.63 52.4%
4.0 1.73 1.95 56.4%
5.0 1.09 2.25 74%

where the plus sign in (2.15) indicates the power emitted from
the laser end facet located at , while the minus sign
corresponds to that emitted from the end facet at . Note
that the oscillating terms in (2.15) are 180out of phase at the
two end facets. It also follows from (2.15) that the modulation
depth of the beat frequency is given by

(2.16)

Equation (2.16) and Fig. 3 indicate that the modulation depth
for the linearly chirped case and is
approximately 70%. In general, for fixed , numerical
calculations show that the beat frequency decreases while the
threshold gain increases as the chirpgets larger. Initially,
the modulation depth also decreases. This general trend is
illustrated in Table I.

We now consider the spatial overlap integral between the
two lowest order degenerate modes. Two separate cases will
be examined, one with spatial hole burning and the other
without. In the absence of spatial hole burning, the cavity
beam intensities of the +1 and1 modes are proportional to

and , respectively, given as

(2.17)

(2.18)

Thus, the beam intensities of the1 and 1 degenerate modes
are mirror images of one another as seen from the midpoint

of the laser cavity.
Note that forany real valued functions and

(2.19)

Combining (2.18) and (2.19) now yields

(2.20)

where the second inequality in (2.20) is satisfied with equality
if and only if . Equation (2.20) implies that
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the spatial overlap between the1 and 1 modes is less than
the self overlap of either of these modes individually. Next
we show that (2.20) remains valid in the presence of spatial
hole burning. For this case, the1 and 1 mode intensities
are proportional to and , respectively, given as

Re (2.21)

Re (2.22)

The third terms on the right-hand sides of (2.21) and (2.22)
are quasi-periodic with a period much less than. Thus,

Re (2.23)

Combining (2.19) and (2.21)–(2.23) once again yields (2.20).
Equation (2.20) will be used in Section III to show that the
simultaneous stable lasing of the1 and 1 degenerate laser
modes is possible for any antisymmetrically chirped index-
coupled DFB laser.

The photon decay rate in a laser cavity is inversely
proportional to the of the cavity and depends on the cavity
losses and the stored cavity energy. In particular,

(output power) (power lost through parasitic effects)
stored cavity energy

(2.24)

The three terms appearing on the right-hand side of (2.24) are
given by

output power (2.25)

parasitic loss (2.26)

stored energy (2.27)

where is the power loss propagation coefficient,
is the characteristic impedance of the laser material,is the
permittivity of the laser material, and is the cross-sectional
area of the mode. We will define the function to be
a normalized unit-less quantity, which is proportional to the
mode intensity in the cavity. Thus,

(2.28)

(2.29)

Combining (2.24)–(2.29) yields

(2.30)

where is the phase velocity in the laser material. Since the
frequency spacing between the1 and 1 degenerate modes
is relatively small, we will assume that

and (2.31)

Combining (2.10), (2.11), (2.28), (2.30), and (2.31) yields

(2.32)

Note that the results of this section were derived assum-
ing laser operation near threshold and, therefore, small gain
saturation. It has been observed elsewhere, however, that the
longitudinal mode profiles do not change appreciably from
their threshold values as output power is increased provided

[15]. In semiconductor lasers, the refractive
index and, hence, the effective grating period depends on the
population inversion. Thus, in the presence of gain saturation,
where the population inversion depends on the longitudinal
position along the cavity length, the grating phase profile
will depend on both the pitch of the index corrugation and
the mode intensities. If the chirp of the corrugation pitch is
sufficiently large, however, we expect that the mode intensity
dependency will be a second-order effect. Finally, we note that
spatial hole burning effects are only significant in solid-state
lasers, since in semiconductor lasers carrier diffusion tends to
smear out rapid spatial variations in gain.

III. STABILITY ANALYSIS

In this section, we will demonstrate that the two lowest
order degenerate modes of any antisymmetrically chirped DFB
laser can lase simultaneously. Our results will be obtained
by modifying the stability analysis first proposed by Lamb
to study gain competition in Doppler broadened lasers [22],
[23]. We will make a number of simplifying assumptions
in our analysis in order to make the problem tractable. We
will assume that: 1) the laser is a solid-state device; 2) the
mode profile is uniform in a plane transverse to the direction
of propagation; 3) the emission corresponds to a four-level
purely homogeneously broadened transition; 4) the unsaturated
population inversion is uniform along the length of the cavity;
5) the population inversion is only weakly to moderately
saturated; and 6) the beat frequency is sufficiently high that
the population inversion is unresponsive to it. In practice, this
last assumption is almost always satisfied.

The rate equation for the cavity photon density (photons/unit
volume) corresponding to the th mode
can be written as

(3.1)

where is the phase velocity , is the emission
cross section, is the cavity decay rate, and is the
population inversion per unit volume. If denotes the total
number of cavity photons in modeand the cross-section
area of the mode, then we can write

(3.2)

where is proportional to the longitudinal dependence
of the intensity of the th mode and is given by (2.28) and
(2.29). Since the frequency spacing between the1 and 1
degenerate modes is relatively small, we will assume that the
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emission cross sections and phase velocities do not depend on
. Thus, we will write

(3.3)

(3.4)

Integrating both sides of (3.1) with respect toand using
(3.2) yields

(3.5)

For an ideal four-level system, the population inversion
is described by the following rate equation:

(3.6)

where is the pump rate into the upper lasing level and
is the fluorescence lifetime of this level. The number of cavity
photons in each mode and the population inversion will be
written as

(3.7)

(3.8)

(3.9)

where , , and denote deviations from
the steady-state values , , and . Combining
(3.6)–(3.9) yields

(3.10)

and

(3.11)

where

(3.12)

and is the unsaturated population inversion. Taking the
Laplace transform of (3.10) yields

(3.13)

where we have neglected the saturation terms and
, which to first order are assumed to be small. Under

the same assumption, (3.11) can be written as

(3.14)

Combining (3.5), (3.7)–(3.9), and (3.14) yields

(3.15)

(3.16)

At steady state, the right-hand sides of (3.15) and (3.16) are
zero as are the terms , , and . Thus, we
obtain the following two simultaneous equations for and

:

(3.17)

(3.18)

where

(3.19)

(3.20)

From (2.20), we conclude that

(3.21)

for any antisymmetrically chirped index-coupled DFB laser.
Note that lasing requires that the unsaturated gain exceeds the
cavity losses, and thus

(3.22)

It follows from (3.17) and (3.18) that the steady-state number
of cavity photons in each of the two degenerate1 and 1
modes, denoted ( , ), can assume only one of three
possible pairs of values as shown in Fig. 4:

and (3.23)

and (3.24)

(3.25)
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Fig. 4. Steady-state solutions (�).

Equations (3.23) and (3.24) represent single-mode or bistable
operation, whereas (3.25) represents dual-mode lasing. We
will now determine whether single-mode and/or dual-mode
operation is stable under perturbations [23]. We consider first
the dual-mode case and substitute (3.7)–(3.9) and (3.25) into
(3.15) and (3.16). Taking the Laplace transform of the two
resulting equations and using (3.13) yields

(3.26)

(3.27)

where

(3.28)

(3.29)

The roots , , , and of the characteristic equation

(3.30)

associated with (3.26) and (3.27) are given by

(3.31)

Thus,

(3.32)

(3.33)

where the ’s and ’s are constants. Since for any
antisymmetrically chirped grating by (3.21), (3.22), (3.28), and
(3.29), the poles , , , and lie strictly in the left half
plane. Thus, and must decay to zero as ;
therefore, simultaneous stable operation of the1 and 1
modes is possible. As the value ofapproaches, a pair of

poles moves closer to the axis. Thus, the system becomes
less stable as the spatial overlap between the1 and 1 modes
increases. Similarly, we can analyze the stability of single-
mode operation. Substituting (3.7)–(3.9) and (3.23) into (3.15)
and (3.16) and taking the Laplace transform yields

(3.34)

(3.35)

It is clear that this system will be stable when
if and only if . Thus, single-mode operation of any
antisymmetrically chirped index-coupled DFB laser is not
stable. An ideal uniform (i.e., unchirped) index-coupled DFB
laser will have . Therefore, neither single- nor dual-
mode operation will be strictly stable for this type of device.
In this section, we developed results for any antisymmetrically
chirped index-coupled DFB laser. The analysis technique
presented, however, is valid for any four-level laser system
having a pair of degenerate modes.

We can also use our results to derive anexactexpression
for the total average output power of the laser as a
function of the unsaturated amplitude gain .
By symmetry,

(3.36)

Thus,

(3.37)

where is the nominal lasing frequency. In steady state, the
derivative in (3.5) is zero, and thus this equation reduces to

(3.38)

Combining (3.11) and (3.38) yields

(3.39)

From (3.37) and (3.12), we have

(3.40)

Combining (3.39), (3.40), and (2.30) yields our final result

(3.41)

This expression gives the unsaturated amplitude gain
as a function of the output power of the laser.

Note that (3.41) is valid for arbitrarily high levels of gain
saturation. Evaluation of (3.41) requires knowledge of the
mode intensity profile . This profile, however, is not
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a strong function of the unsaturated gain, and thus it can
be approximated by the mode intensity profile at threshold.
Equation (3.14) is an extension to two-mode operation of a
result first reported by Haus [13].

IV. TIME-DEPENDENT COUPLED-MODE EQUATIONS

In the previous section, we demonstrated that an anti-
symmetrically chirped index-coupled DFB laser can support
the simultaneous stable lasing of two degenerate modes.
We derived an expression for the resulting beat frequency,
(2.14), and modulation depth, (2.16), of the beat. In principle,
the results of our analysis could be verified by numerical
simulations [3], [24]. If population dynamics are to be included
in the simulation, however, the computational load becomes
very high. This is especially true for solid-state lasers, because
upper level lifetimes may be long, and, thus, long time
histories must be simulated before steady-state conditions are
reached. Spatial hole burning effects can also be included
in the simulations, if desired, using the technique described
by Rabinovich [21]. In this section, we will neglect spatial
hole burning effects due to cavity standing waves and will
assume relatively short upper state lifetimes in order to make
the simulations less time-consuming. The simulation results
will be shown to support our earlier analytic results.

Consider an index-coupled DFB laser with refractive index
variation given by (2.1). We express the total time-
dependent electric field in the laser as

(4.1)

where

(4.2)

In (4.1), is the nominal laser oscillation frequency,
is the electric field of the forward propagating beam

in the cavity, and is the electric field of the backward
propagating beam. In the absence of spatial hole burning, the
time-dependent coupled-mode equations for a chirped-grating
index-coupled DFB laser can be written as [25]

(4.3)

(4.4)

where

(4.5)

(4.6)

(4.7)

The net saturated amplitude gain coefficient is given by

(4.8)

The population inversion in the absence of spatial hole
burning is described by the following rate equation:

(4.9)

where is the pump rate into the upper lasing level and
is the fluorescence lifetime of this level. The coupled-

mode equations (4.3), (4.4), and (4.9) can be easily solved
numerically using the methods of characteristics [23]. By
making the following change of variables:

(4.10)

(4.11)

the mixed derivative coupled-mode equations become the
following ordinary differential equations:

(4.12)

(4.13)

Note that the net saturated amplitude gainis a function of
the population inversion , and this dependence is included in
(4.12) and (4.13) by the term . We have solved the three
coupled equations (4.9), (4.12), and (4.13) numerically for a
linearly chirped antisymmetric grating described by (2.13). A
uniform coupling coefficient, , was assumed along
with three different values of chirp (i.e., no chirp),

, and . Parasitic losses were set to zero, i.e.,
. The time it takes to make one transit of the cavity

is given by

(4.14)

Thus, it follows from Table I and (2.14) that the beat frequency
is approximately equal to for . Our analysis
in this paper is predicated on the assumption that changes of
the population inversion occur too slowly to follow the rapid
time variations of the cavity intensity caused by mode beating.
Thus, in our simulations, we must choose in order
to satisfy this constraint. Larger values of , however,
require longer simulation runs before steady-state conditions
are reached. Thus, as a compromise, we have chosen the
value of to be 1. This choice allows the saturation of
the population inversion to vary rapidly, but not fast enough
to follow the beat frequency. Finally, a constant complex
number, whose real and imaginary parts are Gaussian and
independently distributed with mean zero and variance 10,
is added to the right-hand sides of both (4.12) and (4.13) for
the first ten or so cavity transits time. This noise process is
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Fig. 5. Normalized output beam intensity from front facet(j�Lj = 2,
gc = 2, (�L)unsat = 1:4).

Fig. 6. Normalized output beam intensity from front facet(j�Lj = 2,
gc = 2, (�L)unsat = 1:4).

used to “seed” the fields and allow lasing action to build up,
much as spontaneous emission noise does in an actual laser.

In Figs. 5 and 6, the output beam intensity at the
end facet is plotted as a function of time, measured in

units of cavity transits. The plotted intensity is normalized to
the saturation intensity, . An unsaturated amplitude
gain–length product of 1.4 was assumed together with

and a chirp factor . Note that the unsat-
urated gain–length product is only slightly above threshold,
as indicated in Table I. We observe that after approximately
100 cavity transits stable oscillations are observed with a
modulation depth of approximately 68%. A spectral analysis
of the field amplitude indicates the presence of two frequency
components located at in agreement with theory
(see Table I). The observed modulation depth is also in close
agreement with theory as Table I indicates. Fig. 7 shows the
time evolution of the saturated amplitude gain–length product

Fig. 7. Saturated gain–length product at front facet(j�Lj = 2, gc = 2,
(�L)unsat = 1:4).

Fig. 8. Normalized output beam intensity from front facet(j�Lj = 2,
gc = 2, (�L)unsat = 2:0).

at the end facet. Note the presence of a slight
ringing, which we have observed disappears when the value
of is increased. Simulation results are shown in Fig. 8
under identical conditions, but with an unsaturated gain–length
product that is considerably above threshold. Note that similar
results are obtained for this case, even though our analysis,
which was developed for the weakly to moderately saturated
case, does not strictly apply. Fig. 9 shows simulation results
for a grating with a very weak chirp, i.e., . Mode
beating commences after approximately 20 cavity transit times.
The modulation depth is initially small and increases slowly.
In steady state, our theory predicts that a modulation depth
of close to 1 will result. The slow increase in the modulation
depth is consistent with our theory, since for this case the
mode overlap between the1 and 1 modes is large. This
gives rise to poles in our stability analysis which lie close to
the axis and, hence, indicates a slow response time. Finally,
Fig. 10 show simulation results for an ideal unchirped grating,
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Fig. 9. Normalized output beam intensity from front facet(j�Lj = 2,
gc = 0:5, (�L)unsat = 1:4).

Fig. 10. Normalized output beam intensity from front facet(j�Lj = 2,
gc = 0, (�L)unsat = 1:4).

i.e., . Consistent with our theoretical predictions,
simultaneous operation of the1 and 1 degenerate modes
is not observed.

V. SUMMARY

We have analyzed the multimode stability of antisymmetri-
cally chirped index-coupled solid-state DFB lasers operating
above threshold with weak to moderate gain saturation. We
have demonstrated analytically that such lasers support the
simultaneous lasing of their two lowest order modes. These
modes are degenerate and have intensity profiles which are
mirror images of one another with respect to the center of
the laser cavity. Lasing of either degenerate mode by itself is
unstable. The two degenerate modes beat together, producing
high-frequency oscillations of the laser’s output intensity.
Multimode stability can be directly related to the degree
by which the spatial mode profiles of the two degenerate

modes overlap. A large chirp factor yields a smaller spatial
overlap and a correspondingly higher degree of stability. A
large chirp factor, however, also tends to reduce the modu-
lation depth of the high-frequency oscillations. For an ideal
uniform index-coupled DFB laser, neither single-mode nor
dual-mode operation are stable operating regimes. A numerical
simulation, based on a pair of time-dependent coupled-mode
equations, quantitatively verified our analytic predictions. Fi-
nally, an exact closed-form expression for the output intensity
of an antisymmetrically chirped index-coupled DFB laser, as a
function of the unsaturated gain, was derived. This expression
is valid for arbitrary levels of gain saturation. Work is currently
underway to fabricate antisymmetrically chirped DFB lasers
in rare earth-doped glass using the bent waveguide technique
developed by Hillmer [26]. It follows from (2.14) and Table I
that a 2-cm-long device with and should yield
a beat frequency of approximately 20 GHz. If the nominal
grating period is chosen to support lasing in the vicinity of
1.5 m, then a grating chirp parameter of corresponds
to a variation of the grating period of about 1.2 10 %
measured from the front to the rear facet. Much higher beat
frequencies, on the order of hundreds of gigahertz, should be
achievable using semiconductor chirped-grating DFB lasers,
which have much shorter cavity lengths [3].
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