Designing Scalable and Effective Decision Support for
Mitigating Attacks in Large Enterprise Networks

Zhiyun Qian', Z. Morley Mao', Ammar Rayes?, David Jaffe?

LUniversity of Michigan, Ann Arbor, Ml 48105, USA.
{zhiyung,zmao}@umich.edu
2Cisco Systems, Inc. San Jose, CA 95134, USA.
{rayes,djaffe} @cisco.com

Abstract. Managing numerous security vulnerabilities has long bediffiault
and daunting task especially due to the complexity, hetveiyy, and various
operational constraints of the network. In this paper, weu$oon the task of
mitigating and managing network-device-specific vulnéitéds automatically
and intelligently. We achieve the goal by a scalable, imtire, topology-aware
framework that can provide mitigation actions at seletyiehosen devices. The
intuition behind our work is that more and more network desiare becoming
security-capable so that they can be collectively used lhiese security goals
while satisfying certain network policies.

The intelligence utilizes integer programming to optimazguantifiable objective
conforming to the policy of a given network. An example woublel to find the
minimum number of network devices to install filters to effeely protect the
entire network against potential attacks from externaiustéd sources. The con-
straints of the integer programming are mainly based oné¢hgark topology and
settings of vulnerable devices and untrusted sources. @ual implementation
uses an iterative algorithm to scale to networks of tens ofishnds of nodes,
and we demonstrate the effectiveness of our framework umitig synthetic and
realistic network topologies. Besides scalability, ounlts also operationally
easy to use by enabling interactivity to input additionahstoaints during run-
time.

Key words: vulnerability management, optimization, integer pragnaing.

1 Introduction

With the increasing complexity of the Internet, enterprisévorks have grown in both
size and complexity, so have associated network devicegwriat only perform packet
routing and forwarding but are also equipped with networkatgement and security
functionalities such as packet filtering. These devicesacaas firewalls to partition the
network into distinct groups and prevent intrusions by flittg unwanted traffic based
on attributes such as source/destination IP address,eddastination port, TTL values,
etc. These can provide intermediate or temporary solutions tendithe network, for
instance, by limiting access to potentially vulnerablesges only to trusted/valid IPs
through the use of ACLs (Access Control List).

2 Qianet al.

Given the broad range of security vulnerabilities in erigthetworks ranging from
buffer overflow, code injection [1] to denial of service [#]may not be sufficient to
rely on simple firewalls. However, many of such vulneraigiitcan be mitigated at the
network level due to significant advance in network secugghnology manifested in
devices such as Network Intrusion Detection System (NID®) ldetwork Intrusion
Prevention System (NIPS).

If a network devicege.g.,Cisco Intrusion Prevention System (IPS) device [3], has
advanced Deep Packet Inspection (DPI) capability, packetsican be set up based
on payload. They are capable of detecting and preventingietyaf intrusions. For
example, thédNS Implementations Insufficient Entropy Vulnerabitign be mitigated
by installing a signature on the DPI-capable device to deteDNS flood possibly
leading to DNS cache poisoning, reflection, or amplificatittacks [4].

Note that network level defense suffers from the shortcgnbiy assuming where
attacks can enter the network. Thus our proposed framewnaries the same assump-
tion, revealing the difficulties of fully defending againisternal attacks. Nevertheless,
network level defense complements well other types of defesuch as host-based
intrusion detection system. The alternative of applyingeip to fully fix the vulnera-
bility may not be immediately adopted because of severabms First, a patch for the
vulnerable software may not be available. Second, the pa&ghnot be fully tested and
may introduce unwanted side-effects. Finally, applyirgghtch may require rebooting
the device, introducing network disruption. Since the béisewall capability is built-in
for virtually every modern router and switcé.§.,Access Control List), various choices
with different tradeoffs exist in terms of how to temporamlrotect the network.

For those vulnerabilities that cannot be prevented at thear& level, applying the
patch directly to the vulnerable software is preferred sipatching only incurs one-
time overhead and provides the best protection. Howevessidering the number of
devices in the network that are potentially very diversestasvn in the next section),
knowing what to patch first without causing much disruptian de very challenging,
let alone consider the case when the options of patchingetaiank-level defense are
both available. Finding the best strategy consideringuertradeoffs can be a daunting
task. For that purpose, we have developeffamework using integer programming
that considers various tradeoffs and makes optimal suggesbn which routers to
reconfigure/patch to prevent intrusions based on the tapolof the network and
policies/preference of network/sys admimwhat follows, we will use the terffilter as
a general term for network-level defense.

Our work is quite applicable as large networks today ofteplale DPI capable
security systems not only at a few external gateways buiatemally to defend against
internal threats. Furthermore, it is the trend that morevaek devices will have such
security capabilities built-in. There is however no pria@mnkto thoroughly analyze how
to plan or utilize these resources wisely. More specificalgcision has to be made to
determine which devices and what operations are to be peefto address known
vulnerabilities while minimizing overhead without comprising security protection.
The overhead includes management complexity, as well dsrpgnce penalty intro-
duced by the size of DPI signatures or firewall rules [5].

We develop a prototype framework to help network/sys admamage security
vulnerabilities at the network level by integrating two mairimitive operations —

Decision Support for Mitigating Attacks in Large Entergridetworks 3

filter and patch. Our novel iterative implementation allalve system to easily scale
to networks of thousands of network devices. Furthermoeehwuild operational inter-
activity into the design to facilitate constraint modificet during run time. As with any
model-based approach, the guarantees offered depend orotled accuracy. Despite
the simplicity of the abstraction used in our model, it isfisignt for our purpose as
shown later. Furthermore, our approach has the benefit afjkiedependent of low-
level implementationsg.g.,how to configure the filtering rules. Our framework also
complements existing work in formal analysis [6] to ensure torrectness of rule
configurations.

The paper is organized as followg2 motivates our work by revealing the hetero-
geneity and complexity of real networks introduces our framework4 then focuses
on how we translate the security management problem intgpéimization problem
illustrated using a simple example. We evaluate our tooiresgjgeveral real networks
to demonstrate its effectiveness§B. §7 describes several related work. Finally we
conclude with discussions §8 andg9.

2 Network Device Diversity in Real Networks

To motivate the need for a framework to deal with complex ekngoals and con-
straints, we first want to understand how diverse real nétsvare. We leverage the
inventory data from Cisco’s remote router management sygtermally known as
Cisco Inventory and Reporting or IR [7]). In a nutshell, @GsiiR allows Cisco to
remotely manage the network of a company that chooses tdhassetvice (many big
companies from different industrials use the service).

Interestingly, from these real networks, we found therenaaay different versions
of operating systems running on their network devieeg.(shown in Figure 1). The Y-
axis is % Ogﬁdgﬁl@eﬁﬁ;ﬁ‘;faggsswn which indicates the degree of variety of the network
devices. The X-axis is different organizations whose netware managed by Cisco’s
Inventory Reporting application. The number of devicesdach of the organizations
range from hundreds to a thousand. Surprisingly, the mestsk network has more
than 180 different OS versions. This many different OS wasicause complex many-
to-many relationships between OS versions and correspgrdinerabilities as shown
in Table 1, securing the entire network taking into accollf®& versions and device
vulnerabilities in an optimized fashion is quite challemyi Furthermore, some of
the vulnerability may be more critical than others, somaiinmore overheade(g.,
downtime). The surprisingly diverse and complex networkicks motivate the need
to mitigate and manage their vulnerabilities automatjcaiid intelligently. To ensure
practical relevance, we design our framework to handleipialvulnerabilities, allow-
ing users to specify these in a quantifiable metric.

3 The Framework

In this section, we first describe the high-level framewankl ghe building blocks to
support our objective of providing intelligent attack rgdtion decision support. As

4 Qianet al.

Bar graph for No. of I0S version per chassis

o
3

o
o

o
o

o
S

o
w

No. of I0S version per chassis
o
N

o
i

0 10 20 30 40 50 60
Index

Fig. 1: The number of unique OS version per chassis in differeal networks

Table 1: An example of multiple vulnerabilities on variowesions of Cisco 10S

Vulnerability ID
10S version 1234
11.0(11)BT X X
12.0(10)ST X X X X
12.0(11)s4 X X

example mitigation support of interest to network/sys adiewuld be “finding the
minimum number of network devices to install filters to pnatvattack X”. This work
is based on the observation that many of the security managtepnoblems can be
modeled as optimization problems. We present our simpleetgghnt method based
on integer programming to help solve this class of problems.

Our framework is designed to be built on top of existing netwmformation
including network topology, configuration files of the netldevices, the security alert
data and the network/sys admin’s objective and requiresn& describe the inputs
below, also illustrated in Figure 2.

Inventory and vulnerability information contains data such as device type and
running services (including PCs and routers/switches)ydépartments in companies
often track a subset, if not all, of such information alredelyr instance, Cisco offers
remote router management that tracks the inventory ancvathility information of all
the routers. The information can be automatically colléaising both open source
and commercial tools [8, 9]. As an open standard, Open Vability Assessment
Language (OVAL) [9] is an XML-based language for specifyingchine configuration
tests. OVAL-compatible scanners can be used to gatherrallitiéy information of the
devices given OVAL definitions. For network devices, thenak/sys admin typically
runs the scanner via SNMP to collect the device info as wetha©S version and its
patch level. We ran the similar test on our local network \Hties several hundreds of
network devices and it takes only less than a minute to finish.

Security alerts contain vulnerability information for software on differeplat-
forms (both PCs and routers/switches) and provides the Ipasvention or detection
recommendations. For example, the alerts may discloseh@hat patch is available
for a particular piece of software. Such information or ggis published by various
vendors such as Cisco Intellishield [10]. For instance, areaasily tell, according to the

Decision Support for Mitigating Attacks in Large Entergridetworks 5

security alert service, that thdultiple SNMPv3 Implementations Hash-Based Message
Authentication Code Manipulation Vulnerabiligan be mitigated by either applying
patches, configuring ACLs, or installing IPS signatures &1i-Bapable devices.

Network topology. Typically, this information is maintained by IT departnien
already. If not, there are techniques to reconstruct l#tyexe topology based on their
IP addresses [11] from router configuration files. The togpiaformation can also be
obtained by probing the network [8, 11], typically, by reatwork management tools
such as NetMRI [12].

Objective is used to describe the network-dependent properties #maeither be
specified by the network/sys admin or inferred automatiadifcussed later.

Inventory data gm [
(e.g. OS version, u
running service)

- A set of network devices

to be sefected to be

ora i configured (ACLs / Upgrade)
ble devices & e ps

Security \ i suggestions

alerts . Topology-

aware attack
mitigation
Engine

Config files Tope L
E §ACLs Model as

optimization
problem

Customer AR
)
requirements @
& objectives

Fig. 2: Our framework for making attack mitigation suggess.

Here we assume that different kinds of attack mitigatiotdaug blocks can be used
on each network device depending on its unique capability:

— Configure the ACL (Access Control List) to guard againstaier(untrusted) IP range
and/or ports.

— Configure the firewall to stop unwanted traffic.

— Install an appropriate packet filter based on signaturesdintifying malicious
payload if the device is IDS or IPS-enabled.

— Apply the patch on the devices or the end-hosts.

— Other network device built-in capabilities such as IP $eutuard enabled on many
Cisco devices.

4 Problem formulation - Optimization

From the input of the framework, we can extract the netwotkregs, the vulnerable
nodes (PCs or routers/switches), and more importantlygtiaés and constraints. For
example, network/sys admin may want to balance the numbgitexing rules on a

particular router (due to processing overhead) and theativarmber of interfaces to
be reconfigured (due to management overhead). The consteairbe, for example,

6 Qianet al.

to protect all of vulnerable nodes or to protect only nodeth e most severe vul-
nerability. Based on the problem requirement, it is nattgalast it as an optimization
problem which we can model using integer programming. Theag for this choice is
that integer programming is not only very simple and intaitio use, but also provides
a small and well-defined interface, thus allowing variousder Programming Solvers
to be optimized separately. We will illustrate how thesdalales are defined and how
to use different objective functions and constraints towesaeveral types of realistic
security management problems.

Note that our framework aims to provide intelligent sugpest for various security
management problems. More specifically, the framework stipfiltering and patch-
ing decisions based on various constraints/tradeoffs fdtipte vulnerabilities.

4.1 Overview

Variables. For each interface in the network, we define a binary integeiablez;,
which can either be 0 or 1 indicating whether this interfaceinfigured with a filter (for
normal switch/router) or a signature (for NIDS/NIPS). Aitatively, a variable can be
defined for each node (PC or switch/router) rather than amfatte indicating whether
a node has filters installed (regardless of the interfa&s)ilarly, for each node, we
define a binary integer variablg which indicates whether this particular node is to be
patched.

Note here we can omit a variable or always assign the vartatdero if a network
device or interface does not support the basic mitigatigpstt €.g.,an older version
of router without ACL support). To address multiple vulrtgtéies, we define different

sets of variablea:z(.k), ng?l etc. for the £, vulnerability. In comparison, we also
define a special patch variable. Since patching one node usually eliminate all the
vulnerabilities under consideration, either/alfulnerabilities are protected by filters or
the node is patched suffices the security requirement. Ifotloeving discussions, any
variables defined will be a binary integer variable unlesetise specified.

Objective function can express many different goals but with the limitatiort tha
has to be linear function of the variables of the fopr) a;x;. Despite this apparent
limitation, it is sufficient to solve many of the security nsyement problems. For
example, the objective function could b€, ; which is the total number of interfaces
that are configured to install filters or NIDS/NIPS signasur€he goal would be to
minimize this value.

Constraint is of the form} ", a;z; <= b wherea; andb are constants. A sample
constraint would be defined as + z2 + z3 + y1 >= 1 wherexz; is an untrusted
interface andrs is an interface that belongs to a vulnerable deviceThis constraint
means that there has to be at least one filter along this paitotect the vulnerable
device or the device can be patched by assigning varigble 1. If there is no patch
available yet for the vulnerability or due to other businesssonsé.g.,downtime), we
can simply remove the variablg.

4.2 An example

A simple example that illustrates how integer programmiag be set up is shown
in Figure 3. We do not consider patch in this example for sioityl The topology

Decision Support for Mitigating Attacks in Large Entergridetworks 7

\ I
untrusted untrusted

i
untrusted

Vulnerablevylnerable Vulnerable Vulnerable Vulnerable

Fig. 3: Example 1 - topology

consists of a set of routers (from to x7) and a set of servers that are vulnerable to
a newly discovered vulnerability in an enterprise netwérksuming that the operator
prefers not to simply patch these servers due to reasonsasusbssible downtime to
their customers, so we remove all the patch variapleShe alternative is to install

a corresponding signature for this vulnerability to filteallnious incoming packets
on the routers (or any other mitigation building blocks sashACLs), assuming the
signature is available. The question is where to instalhdilters. A simple solution
would be to install it on every gateway(, x> andxs), but it is not an optimal solution
in terms of the number of devices involved (assuming a delgrgoal is minimal
complexity).

A better strategy is to install the filters an andx; only. This optimal solution can
be found by solving the corresponding integer programmiofplem that is translated
from the current network setting (network topology, untegssource interfaces and
vulnerable nodes). Below are the definitions of objectivecfions and constraints for
this example.

Objective function. Since we are trying to minimize the number of nodes that are
installed with filters, the objective function is defined@i1 ;.

Constraints:

1+ x4 +26 >=1

1+ Ty +x7 >= 1

To+ x4+ 26 >=1

To+ x4 +27 >=1

To + T >= 1

T3+ x5 >=1

r; >=0foreachl <=i<=7

We can easily get the answer from this integer programmitygpse, = =5 = 1,

x; = 0fori # 4 andi # 5. Sometimes, however, the number of filtersaonand s
may be too large so that the network/sys admin may want tadavsing them. This
can either be solved by setting a different objective fuorc{t4.3) or allow the user to
interact with the tool and provide feedback to the t¢6l.8).

8 Qianet al.
4.3 Objectives

Network/sys admins may specify different kinds of objeefunctions that they want to
optimize based on a given set of constraints. Here we dessoilne common objective
functions of interest:

Minimal involvement - minimum number of network device configuration changes.
The objective function is defined 8s, z; wherez; is the variable for each node
indicating whether a particular node has been configurefilfiers as discussed before.
Note here once the node is configured, then it can be appledtoumber of interfaces
on that device without additional cost in our formulatiomelreason for this policy is
that network operators may want to involve smallest numbeéewvices to defend their
network for simplicity or management overhead considenssti

Minimal management complexity- minimum amount of management complexity
imposed. The objective function is defined@as(((n; + 1)? — n;%) x x;) where(n; +
1)2 — n,;? is the amount of management complexity increased by addimeneACL
entry on an interface;; as the number of ACL entries for the corresponding interface
andn? is the management complexity of a given interface wheis the number of
entries of ACLs configured. The incentive for this policy et due to complex ACL
matching rules, a large number of ACL entries are known toiffiedt to manage.

Minimal number of devices involved - minimum number of devices that are
either to be configured for filters or patches. The objectivecfion is defined as
> i 29+ ay,. Ym, Where 2) is the variable for node and vulnerability j
indicating whether this node has been configured for filterprevent vulnerability
J,» ym is the variable for node: indicating whether this node is to be patched (multiple
real patches for different vulnerabilities are combindd this single variable)x is the
constant coefficient which balances the choice betweeallimg} filtering and patching.
Normally it is larger than the cost of installing filters. Hever, as previously stated,
if patching one node can eliminate the need for filters on maoges, then it may
be a preferred choice. This is the case given multiple valpiéties in one or more
nodes, patching them obviates any other filters. In fact, enodouters tend to have
multiple vulnerabilities due to their complexities [13R describes how to set up the
constraints for multiple vulnerabilities and patch opierat We can also define the
objective function in terms of interfaces instead of nodes.

Minimal network performance overhead - minimize possible throughput and
latency performance overhead imposed by installing filt€re idea is that although
most network devices support ACL or firewall rules, they cowith a cost. Even
for modern devices where hardware support has been wideliedpo optimize the
ACL or firewall rules, for example, by using Content-addedds memory (CAM),
the throughput can drop significantly [14] when the numbeiutéset exceeds certain
threshold (depending on vendors and models). The same gdiesto DPI devices.
As a result, the objective function can be defined ask; wherek; is defined based on
the number of existing filters (denoted hy) on interface. k; = 0 whenn; <= s and
k; = 27 +n; — s whenn; > s.

Intuitively, the objective function captures the perfonna penalty imposed on each
interface due to filters and the overall impact. Note that= 0 whenn; <= s is
approximated becauseis relatively larger than the number of filters to be placed

Decision Support for Mitigating Attacks in Large Entergridetworks 9

on a single interface. Typical for modern routers is in the order of hundreds. An
alternative objective function would be to minimizeax (k;) because usually the
overall network performance is determined by the bottlerm@mponent. This policy is
to help eliminate the scenario where filters are installdg on few core routers which
may deeply impact the network performance.

Note that these objective functions can be combined to eelddalance between
different goals. Here in many cases the cost of placing fitdp be set identically
for simplicity. However, we do offer some simple heurist@s how the cost can be
selected. For example, a network device with high capghalitd low overhead for
installing filters should generally be considered low césiother example is that when
the number of existing filters on the device is already laigshould be considered
high cost. Further, we allow the users to tune the result imgmactive fashion which
provides much better usability as showrif.3.

4.4 Constraints

Below are some examples of useful constraints.

Installing filters to protect vulnerable nodes. For each vulnerable nodgand
untrusted node, enumerate all possible paths frano ;. For each path, consider the
constraintz; + .. + x; >= 1 where each variable can be the variable for the node
or the interface, depending on the problem setup. If thisstamt is satisfied, then a
vulnerable node is guaranteed to be protected on this pkatipath (since at least one
interface/router along the way will be configured to filterlitiaus packets). Similarly,
we can apply this for every vulnerable node and untrustea mpadt to ensure global
safety. There are variants where one can specify the camsvdez; + .. + z; >=2
to increase defense redundancy.

Filters or Patch. Given a particular vulnerability for which a patch is avail, a
vulnerable nodg and an untrusted nodgenumerate all possible paths fraro ;. For
each path, consider the constraigt+ .. + z; + y; >= 1 wherez; to x; can be the
variables for the node or the interfagg.is the additional variable (defined in objective
functions) indicating whether this node will be patchedisdonstraint will be satisfied
either when there is a filter along the path or it is patchedelat in practice, we might
need several different patches to be installed for divetdeerabilities, but generally
we consider them logically as one aggregate patch in ouraadisin. Exceptions are
made when some vulnerabilities have corresponding patmtesome do not. We can
also support this case by partitioning the vulnerabilitrgs patchable ones and un-
patchable ones, as discussed4mi3 and§4.4.

Latency constraint. For simplicity, we can model the latency constraint using fil
tering rules. Intuitively, with more rules, the router ne¢o spend more time processing
them. For a beginning nodeand an ending nodgon a path, consider the constraint
2V 4+ 4 a:§1) +eP 4+t a:§2) Fotal™ 4t x§") <= ¢, where each" is the
variable defined for each interface along the path, assurh'at@l(k) = 1is equivalent

of adding one filtering rule on an interfaceis a constant describing the maximum
number of increased filtering rules aIIowe(j{“) + o+ x§.k) is the number of filtering
rules added fork,;, vulnerability along the path from nodeto node;. Obviously,
>k a:z(.k) + ...+ x;k) is the overall filtering rules added for the path.

10 Qianet al.
5 Implementation

The Integer Programming Solver we use is CPLEX-11.0 [15]fivéeimplement our
tool in a brute-force, naive manner, by calculating all dassconstraints through the
enumeration of all paths between untrusted node and vidleenade. The problem is
that when the graph is dense enough, the number of paths dretwe nodes could
be exponential with respect to the number of nodes. We mayeatigat most real
topologies are usually not dense graphs, but many largeonketwsually have redun-
dant links/backup nodes to provide availability and faluesilience. To address this
problem, we have proposed the novel implementation thatarsierative approacho
incrementally add constraints to reduce the search spaed fmssible paths between
two nodes. Further, the iterative implementation produbessame optimal result as
the naive implementation.

Formally, our problem isnin ¢” x, under a set of constrainfs Note that the size of
I can be very large. We propose to iteratively add a subseantl generate a temporary
result for the subset of constraints. The hope is that theoou¢ computed based on
the subset of will satisfy the ultimate constraint that all of the vulnbla nodes are
protected before all of the constraints/imre added. It is illustrated in Figure 4.

This approach is based on the following observations:

Network topology Constraints Outcome

Problem input YES
—)| Input Parser |._-)| Constraint Generation I___)| IP Solver I_—)l Verifier I___>

Network setting A

NO

Fig. 4: Logic flow of iterative implementation

<
- =X
<
Fig. 5: An example topology that shares common path

1. We may not need all the constraintgito compute the optimal solution because
there are many redundant constraints. It is unnecessany tiorgugh all of them. For
example,xz; + x2 + x3 >= 1 is redundant if there is a constraint + zo >= 1.
These cases should be handled automatically by standeed [inogramming or integer
programming solver. However, there are many other comésrtiat can share common
variables while neither one of them is redundant. See Figagan example, there are
two paths frome; to 24 whose corresponding constraints look like+ xo + x3 + 24 +
x¢ >= 1l andxy + z2 + x5 + x5 + x4 >= 1. They share four common variables. It
is highly likely, although not always the case, that ones§iatil constraint will lead to
others being satisfied as well. In real networks, it is notammmon that several paths
share common devices or links. By iteratively adding caists (in a certain order),
we are able to take advantage of such properties.

Decision Support for Mitigating Attacks in Large Entergridetworks 11

2. Itisrelatively easy to verify whether a given set of fit@nd patch operations will
protect all vulnerable devices. This allows us to quickdyatte several times. To check
if all vulnerable devices are protected, we perform a biedidst search in the graph
from the untrusted nodes to the vulnerable nodes. The sstph when it encounters
a filter or the reached vulnerable node on the edge will bengaitc

3. The ordering of added constraints can be determinedvalaeasily — first add
the ones that are less likely to be redundant. Specificaflypiek those shortest attack
paths to be the constraints. In general, fewer variablagdtresless redundancy. If a
constraint with fewer variables is satisfied, the constsaiith more variables that share
common variables are also likely satisfied.

Algorithm 1 The iterative algorithm

Initialization : I’ = {},
filter setFy = {},
patch sethy = {},
objective functionf.
repeat {iteration: from 0 to ..}
1. GivenF; and P;, compute the set of shortest attack paths and its corresppnd
1; based on the topology.
2.I'=T'U 1.
3. Run the IP solver for objective functighunder constraintg’, get the solution
Fiy1andPy .
until F;; andP,,, protects all vulnerable nodes

Formally, the algorithm works as shown in Algorithm 1. It esg to see that when
we select a set of constraints, it limits the search spackeofR solver. The complete
set of constraintd will produce the smallest search space. Given a subsét vk
essentially enlarge the search space for the IP solver.

We illustrate the iterative algorithm in Figure 6. The ovat@represents the search
space of corresponding constraint set. Initially, the de@pace of the constraint set
I" is generated for the first iteration and thEnis generated in the second iteration.
Suppose the initial search space BYyis too large and causes an incorrect solution
(i.e., some nodes will not be protected), while the search spacE ks/smaller and
the solution can be found within the same range, then thene iseed to go to the
next iteration and use constraintdo re-compute. The reasoning is that if we found
a minimum value in a larger search space (suppose the ofgjdstio minimize), it
is guaranteed that we can only find the same minimum or biggkerevin a smaller
search space too. Since we also check if the result in laegeck space satisfies all the
constraints, a satisfying result can guarantee that the saimimum value can be found
in the final smaller search space.

Note that we are able to approach a good subset quickly arelyiy adding the
constraints that are represented by shortest attack paticiniteration. It is essentially
an optimistic method by assuming a smaller number of coingtrare needed to find
the optimal solution which in reality is often the case. Bdueing the exponentially

12 Qianet al.

large number of constraints, the execution time is sigmifigamproved shown ir6
where most cases take 2 to 5 iterations only.

5.1 Correctness verification

Note that by the above reasoning, the iterative algorithragsivalent to the naive
approach. To further verify the correctness of our impletagon, we ran more than
100 tests up to hundreds of nodes to check that the resulesafed by naive imple-
mentation indeed matches the results generated by th&vieeaggorithm.

t iteration
2nd iteration

Last iteration

Fig. 6: lllustrating why results computed under a subsehefdomplete constraint set
I are the same as the one under

6 Evaluation

We describe the evaluation of our framework using both séaland synthetic network
data.

6.1 Real network based evaluation

We have evaluated our tool for a small real network, as shav#igure 7. The problem
setting is as follows (based on a real topology and vulnétials): In this network,
each node is a router. Node 15 - 18 and 19 - 22 are the untrustid iFor simplicity,
we do not consider internal nodes as potentially untrustea) nodes 1 and 2 are the
vulnerable nodes. These two vulnerable nodes are instalteddifferent OS versions
on the router with a different set of vulnerabilities. Nodéds vulnerability 1 while
Node 2 has vulnerability 1 and 2. All of the vulnerabilitiesnceither be patched or
temporarily protected by installing filters. The cost of gfabperation is set to be 3
here. The variables are defined in terms of the interfac@deim the figure.

Our first attempt to set up the problem is to only consideniltiag filters. Thus the
objective function can be setup as:

(M (2)
S 4>

where two vulnerabilities are considered together in theailve function.

Decision Support for Mitigating Attacks in Large Entergridetworks 13

Alternatively, we can examine each vulnerability indepamity. These two ap-
proaches yield the same solution since the variables ieréifit set of constraints for
each vulnerability happen to be disjoint. We first considénerability 1.

The goal is to minimize the objective function definedz.‘;§x§1). The constraints
are to protect every possible attack path and the solutiardudoe 3 according to the
integer programming solver which means only three intedareed to be configured
for filters. Similarly we can obtain the solution for vulnbitity 2, which is 2. So it takes
3 + 2 = 5 interfaces to be configured in order to protect from all oftbierabilities.

Our next step is to set up the problem by allowing patch opmraénd the objective
function is slightly tuned to include the patch variablestfee two nodes:

St + Y a? +2 % (1 + 92)

The2 x (y1 + y2) is added to include the cost of patching vulnerable nogieand
1o indicate whether Node 1 and 2 will be patched respectively.

The constraints are similar as before, namely to protecyguassible attack paths.
The difference is that the patch variahje and y, are added respectively into each
previous constraint depending on the destination nodeekampley; will be added
to the original constraintss + x34 + w23 + X24 + 22 + 21 >= 1 such thatrss + x34 +
Tog + Xog + 22 + 21 + y1 >= 1 forms a new constraint. Since, belongs to Node
1, this means that if the vulnerable node is patched, all timstcaints associated with
protecting this node can be automatically satisfied.

2)

We obtain the value 4 as the optimal solution Wheffé = xgl) = :cg
with every other variable equals to zero.

:y2:1

Fig. 7: A small real network for evaluation.

6.2 Simulation-based evaluation

To illustrate the performance of our tool, we simulate vasicandom topologies
using the transit-stub model in GT-ITM [16] and randomlyes¢imalicious nodes and
vulnerable nodes for the problem setup.

In the simulation, we first measure the average running tifneuo tool against
various topologies using our iterative implementation paned with the naive imple-
mentation. Then, we measure the number of paths generadezbarpare with that of
the naive implementation. The parameters can be found iteTalnd Table 3. The
sizes of the topologies are approximately 100, 500, 1000038000, 7000 and 10000
respectively.

14 Qianet al.
Table 2: Parameter in the topology generation

Parameters Variable Values
stubs domains per trans nogeF; 4,4,5,7,8,10
of transit domains N; 4,5,6,8,8,8
of nodes in each transit domain n; 5,8,10,10,10,1|1
Edge prob. between transit nodesP; 0.6
of nodes in each stub domain N, 6,6,10,10,11,1|1
Edge prob. between stub nodes P; 0.42

Table 3: Parameter in the problem setup

Parameters Variable Valug
of untrusted/malicious noge N,, 10
of vulnerable node N, 10
of vulnerability v 3

It can be seen from Figure 8 that the running time (averagéeforuns) for naive
implementation increases much more quickly with netwode stompared with the
iterative approach. We also verified that they indeed prediue same optimal value. It
is quite evident that our iterative approach scales very. \Behilarly, Figure 9 shows
the overall number of paths for the naive implementation iglmlarger. This clearly
implies much information in the complete constraint 5ét quite redundant.

We also illustrate how performance changes when the prolblecomes more
complex €.g.,with increasing number of untrusted devices and vulnateds). We fix
a topology with 200 nodes and set up the problem so that théauof untrusted nodes
grows together with the number of vulnerable nodes and thestyf vulnerabilities.
We execute our tool 10 times to measure the average runmiregatnd the number of
paths/constraints generated. In Figure 10, we can seeuhtda can efficiently handle

networks of large size.

100 T T T T
“ —Naive implementation | — Naive implementation
| ——Iterative implementation 3500r | —e—|terative implementation

80r |
3000
60

40¢

201 1000y
5001

o

0 2000 Numbae?oo? nemosrg%oevices 8000 10000 00 2000 4000 6000 8000 10000
Number of network devices

Fig. 8: Execution time for networks &iig. 9: Total number of paths/constraints
for networks of different sizes

Time (second)
Number of constraints
N
o
o
o

different sizes

Decision Support for Mitigating Attacks in Large Entergridetworks 15

4

,x 10
3 T T
g —
K] —e—Execution time
Z o5t —=—Number of constraints
8
ks}
8 2
£
5
z
215
&
o
£
£ g}
°
E
<
£0.5
3 e
£ e
w — L L L
%0 40 60 80 100

Number of vulnerable nodes with 10 untrusted nodes

Fig. 10: Number of vulnerable nodes vs. Execution time andnler of
paths/constraints for size of 1000 network devices

6.3 Enabling user interactivity

From the large simulation result, we know that the executiime increases with the
problem size i(e., network size, the number of untrusted/vulnerable noded,the
number of vulnerability). To understand the bottleneckhs iterative algorithm, we
compare the time spent on calculating constraints vs. thtit@solver, and observe that
the former consumes more than 90% of the execution time.l&&ds us to develop the
heuristic of reusing already calculated constraints. (@@ interesting applications
it enables is allowing network/sys admin to modify the coaist after he/she sees the
result. This effectively turns the tool into anteractiveone, which is very useful in
operational settings. Although theoretically the resolnputed is the global optimal
in terms of the objective function and constraints, the oekisys admin may not have
given sufficient input to the tool initially. So allowing chges to the initial result in an
interactive fashion is useful to further tune based on the/oik/sys admin’s domain
knowledge of the network. For example, the network/sys admay want to manually
tune the result slightlyd.g.,remove filters from some network devices and/or give
preference to other devices).

We implemented two types of primitives to allow interactaleanges and evaluate
their performance. The first primitive is removing a filtesigmed on an interface,
and the second one is giving preference to a network devicentalling filters.
The implementation of the first one is straightforward — addanother constraint
> mgj) == 0 where:vf.” is the variable indicating whether there should be a filter
for vulnerability 5 on interfacexr;. The implementation of second primitive is also
simple,i.e., reducing the cost of installing a filter on the specified nekadevice in
the objective functiond.g.,halving the cost). Given such simplicity, the performance
overhead is minimal for supporting interactivity.

7 Related work

There is a significant amount of research focusing on ddagrilanalyzing and verify-
ing firewall rules [17, 18, 19, 6] to achieve specific globalipo Work on developing

16 Qianet al.

a higher level language to describe the firewall rules candeéul; but orthogonal to
our work. Investigating issues after the rules are set isptementary to our goal of
designing the rules in advance.

Several related work tries to enforce the global policy bstrihuting policies at
different places in the network. An extreme is to distribthie policy to end-hosts
instead of to network nodes [20, 21]. This method is topolmmorant and can be easy
to deploy since end-host is easier to change. However, iiygyaicy is to be checked
at the end-host (for each packet), it could incur non-ttimieerhead. There is additional
complexity and security measure introduced to ensure estlidentity, which can
potentially lead to another set of security holes; Whilesmluation is leveraging existing
security measures and does not introduce new mechanisntbeFuheir solution
focuses on the access control policy issues rather thaeqtitog vulnerable nodes in
general. For example, routers may also be vulnerable aniregoyotection.

There are many reasoning systems specific to firewall or NHdSexample, filter-
ing Postures [22] uses heuristics to automatically comihétset of filters for individual
routers to enforce a particular global policy. The solutioely found, however, may not
be optimal. Further, they are only limited to the problem efwork access control,
rather than our broader goal of leveraging both filter andtpaperations to mitigate
network vulnerabilities. A follow-up work in [23] includeNIDS behavior into the
reasoning system and differ from our work by neither comsidgpatch operation nor
trade-offs among various defense strategies.

Similar but more powerful, MulVal [24] uses formal methodsreéason about the
security properties which can easily enable what-if angisisch as verifying “if router
A is patched, machine B will be free of attack.” Our proposeaihrfework tackles a
different problem by going a step further that not only vesfthat machine B is free
of attack, but also computes the optimal way to stop suclclatia fact, our work
complements theirs in the sense that once they finish reggabout the vulnerabilities
and identify the available options to fix the network, it cadistracted into our model
which performs the subsequent optimization.

Other works including [25, 26, 11] have somewhat similarlgdhough without
considering patch operation either. For example, one af ¢foals is to find thevirtual
border- minimum number of filters or nodes to install filters. We casity capture this
goal by ourMinimal disruptionobjective function. Further, we can also express other
goals by using different objective functions as those distet4.3. The use of integer
programming allows us to easily accommodate new objeativetions and constraints.
As a result, our framework is more general and extensiblepeoed to previous work,
as it can solve not only one particular problem but also mahgrgroblems by tuning
the objective functions and taking various constraints adcount.

8 Discussion

Different types of network-level defense Different types of network defense have
different capabilities (some may be able to defend agaimsersophisticated attacks).
It is possible to distinguish different network-level de$se €.g., ACL and NIDS)

in our framework by assigning different cost for differeppés of network defense.

Decision Support for Mitigating Attacks in Large Entergridetworks 17

Alternatively, we can simply always choose the most powetkfense mechanism
available.

Incremental deployment.While it is easy to use our tool to provide a new protection
suggestion, our tool also fits in the scenario where the nétWas been partially
protected and we can provide incremental suggestionsrimstef additional protection
based on existing setups.

Appropriate abstraction? Note that the abstraction we have still support many of the
existing abstractions. For example, to solve similar pgofd a human expert may use
abstractions such dke network of departmentos the unsecured wireless netwark
the group of servers holding financial record§e can easily support these abstractions
by understanding the mapping between the group and a nurhhetweork devices or

IP addresses.

Path selection.Currently we are conservatively assuming that any pathdcdel
traversed from untrusted devices to the vulnerable devhiikewt may not be the case
in reality. One may desire to pick only paths that are in greated of protection by
ranking each path by the probability that it is selected asatttual forwarding path.
This can be done by enumerating all possible failures in #teork and simulate the
routing algorithm to find the path [25].

9 Conclusions and Future work

We have presented a simple and novel way of modeling the rabiligy mitigation
and management problem using integer programming. We hesa gxamples about
how to model the problem. More specifically, our frameworloyides intelligent
suggestions in terms of where to deploy filtering or wheredteip which are the two
main mechanisms in network defense. Further, optimal ismisitcan be computed by
considering multiple vulnerabilities jointly which is ofactical need. Our prototype
suggestion tool has been evaluated using several examasesl lon real network
topologies with demonstrated efficiency and effectiveness

For future work, we plan to consider other objective funesi@nd constraints. Our
framework is fairly easy to extend since integer prograngiias a plain and clean
interface. We plan to add more objective functions and cairgs into our framework
based on real user needs. In addition, we also plan to eeatuatool more extensively
with real usage scenarios.

References

1. “Cisco 10S HTTP Server Code Injection Vulnerability,"tf/tools.cisco.com/security/
center/viewAlert.x?alertld=10102.

2. “Cisco 10S Software UDP Packet Processing Denial of $erVulnerability,” http://tools.
cisco.com/security/center/viewAlert.x?alertld=17765

3. “Cisco Intrusion Prevention System,” http://www.cismam/en/US/products/sw/secursw/
ps2113/index.html.

4. “Multiple Vendor DNS Implementations Insufficient Enpso Vulnerability,” http://tools.
cisco.com/security/center/viewAlert.x?alertld=16183

Qianet al.

. A. Grote, R. Funke, and H.-U. Heiss, “Performance evanatof firewalls in
gigabit-networks,” inProc. 1999 Symposium on Performance Evaluation of Computer

(o2}

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

and Telecommunication SystemfOnline]. Available: http://www.kbs.cs.tu-berlin.de/
publications/fulltext/GFH99.pdf

V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formairectness of conflict detection
for firewalls,” in FMSE '07: Proceedings of the 2007 ACM workshop on Formal odthn
security engineering2007, pp. 22—-30.

. “Introduction to Cisco Inventory and Reporting,” htfpavw.cisco.com/en/US/docs/

netmgmt/inventoryandreporting/UserGuides/Introductiorto_Cisca Inventory.and
Reporting.html.

. “David System, a network management system (nms),”/hityyw.hadden.pl/en/index.php.
. “Introduction to OVAL: A new language to determine thegarce of software vulnerabili-

ties,” http://oval.mitre.org/documents/docs03/inimtro.html, 2003.

“Cisco Intellishield,” http://www.cisco.com/sectyri.

B. Todtmann and E. P. Rathgeb, “Integrated managemertistfibuted packet filter
configurations in carrier-grade ip networkBjternational Conference on Networking 44,
2007.

“NetMRI,” http://www.netcordia.com/.

“Cisco Multiple Vulnerabilities,” http://secunia.cdadvisories/23867/.

J. L. Old, W. Buchanan, J. Graves, and L. Saliou, “Peréme analysis of network
based forensic systems for in-line and out-of-line detectind logging,” in5th European
Conference on Information Warfare and Security (ECI2006.

“CPLEX, High-performance software for mathematicabggemming and optimization,”
http://www.ilog.com/products/cplex/.

“GTITM, Modeling Topology of Large Internetworks,” ptf//www.cc.gatech.edu/projects/
gtitm/.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A wel firewall management
toolkit,” ACM Trans. Comput. Systol. 22, no. 4, pp. 381-420, 2004.

A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall anailysengine,” in SP '00:
Proceedings of the 2000 IEEE Symposium on Security and &3¢i2800, p. 177.

E. Al-shaer, H. Hamed, R. Boutaba, and M. Hasan, “Cortdlagsification and analysis of
distributed firewall policies,in IEEE Journal on Selected Areas in Communicatjoas. 23,
pp. 2069-2084, 2005.

S. M. Bellovin, “Distributed firewalls,” inlogin:, 1999, pp. 37-39.

S. loannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Bm“Implementing a distributed
firewall,” in CCS "00: Proceedings of the 7th ACM conference on Computgrcammuni-
cations security2000, pp. 190-199.

J. D. Guttman, “Filtering postures: local enforcememt @lobal policies,” inSP '97:
Proceedings of the 1997 IEEE Symposium on Security and @riva IEEE Computer
Society, 1997, p. 120.

T. E. Uribe and S. Cheung, “Automatic analysis of firevaatl network intrusion detection
system configurations,” ifFMSE '04: Proceedings of the 2004 ACM workshop on Formal
methods in security engineerin2g004, pp. 66—74.

X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: a lodiased network security
analyzer,” inSSYM’'05: Proceedings of the 14th conference on USENIX Be8ymposium
B. Todtmann and E. P. Rathgeb, “Anticipatory distrdslipacket filter configurations for
carrier-grade ip networksComput. Netwwvol. 51, no. 10, pp. 2565-2579, 2007.

B. Todtmann and E. P. Rathgeb, “Advanced packet filtezgpieent strategies for carrier-
grade ip-networks,”AINAW '07: Proceedings of the 21st International Confersran
Advanced Information Networking and Applications Worlshwol. 1, pp. 415-423, 2007.

