What Have We Done So Far?

- Scheduling a set of tasks with various constraints on a *single* processor.

- What should we do if schedulability condition for the given task set can’t be met?

- Question: which tasks should be assigned to which processors and why?

- Ideally, *combined* task assignment and scheduling is desirable, but this is *very hard*.

- *Common approach*: assign tasks and then schedule them on each processor.
Task Assignment

• What should we consider for task assignment?

• NP-Complete ⇒ Use heuristics

Examples:

• Utilization-balancing algorithm: assign tasks one-by-one selecting the least utilized processor

\[
\frac{\sum_{i=1}^{p} (u_i^B)^2}{\sum_{i=1}^{p} (u_i^*)^2} \leq \frac{9}{8}
\]

where \(u_i^*\) = \(P_i\)’s utilization under an optimal alg. that minimizes \(\sum\) utilization\(^2\)

\(u_i^B\) = \(P_i\)’s utilization under best-fit alg.
Next-fit alg for RM scheduling

- Homogeneous multiprocessor systems

- There are m classes of tasks such that
 - T_i belongs to class $j < m$ if $\frac{1}{2^{j+1}} - 1 < \frac{e_i}{p_i} \leq 2^{\frac{1}{j}} - 1$.
 - T_i belongs to class m otherwise.

- Each class of tasks are assigned to a corresponding set of processors.
Example

There are $m = 4$ task classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Untilization bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$(0.41, 1.00]$</td>
</tr>
<tr>
<td>C_2</td>
<td>$(0.26, 0.41]$</td>
</tr>
<tr>
<td>C_3</td>
<td>$(0.19, 0.26]$</td>
</tr>
<tr>
<td>C_4</td>
<td>$(0.00, 0.19]$</td>
</tr>
</tbody>
</table>

Task set

<table>
<thead>
<tr>
<th>Task set</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
<th>T_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_i</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>P_i</td>
<td>10</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>$u(i)$</td>
<td>0.50</td>
<td>0.33</td>
<td>0.14</td>
<td>0.04</td>
<td>0.33</td>
<td>0.40</td>
<td>0.02</td>
</tr>
<tr>
<td>Class</td>
<td>C_1</td>
<td>C_2</td>
<td>C_4</td>
<td>C_4</td>
<td>C_2</td>
<td>C_2</td>
<td>C_4</td>
</tr>
<tr>
<td>Processor</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task set</th>
<th>T_8</th>
<th>T_9</th>
<th>T_{10}</th>
<th>T_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_i</td>
<td>3</td>
<td>9</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>P_i</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>$u(i)$</td>
<td>0.05</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>Class</td>
<td>C_4</td>
<td>C_4</td>
<td>C_4</td>
<td>C_3</td>
</tr>
<tr>
<td>Processor</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Kang Shin (kgshin@eecs.umich.edu)
Bin-packing assignment for EDF

• Same assumptions on tasks and processors as Next-fit alg.

• Task set is EDF-schedulable if $U \leq 1$.

• Assign tasks such that $U \leq 1$ for all processors.
Myopic offline scheduling alg

- Can consider resources other than CPU

- Given: set of tasks, their arrival times, execution times, deadlines.

- Allocation tree:
 - Root: null allocation
 - Node: an assignment and scheduling of a subset of tasks.
 - Child node: parent’s allocation + a task
 - Leaf: “complete” allocation.
 - How many levels for an n-task system?
 - A level-i node means?
 - Very expensive to generate a complete allocation tree \Rightarrow heuristics.
Combined Assignment and Scheduling

- *Static* (offline) assignment of periodic and/or critical tasks: myopic scheduling, B&B alg.

- *Dynamic* (online) load sharing of aperiodics and/or non-criticals
 - Bidding
 - Focused addressing
 - Drafting
 - Buddy

Kang Shin (kgshin@eecs.umich.edu)
Offline Allocation of Periodics

- **Task allocation**: combined task assignment and scheduling of periodics
 - Derive an “optimal” assignment that yields feasible schedules for all processors. How?

- Main features:
 - Inter-task communications \Rightarrow precedence constraints hence task structure.
 - Tasks are periodic and time-critical \Rightarrow allocation objective function.

- Want allocation x of communicating periodic tasks in a *heterogeneous* distributed system that minimizes *system hazard*, $\Theta(x)$, or maximum *normalized task response time*.

Kang Shin (kgshin@eecs.umich.edu)
System Model

- Tasks $T = \{T_i : i = 1, 2, \ldots, m\}$;

Heterogeneous PNs
$N = \{N_k : k = 1, 2, \ldots, n\}$.

- Allocation constraints:
 - Co-location of T_i and T_j on same PN.
 - Location of T_i and T_j on different PNs.
 - Location of T_i on a special PN.

- Task invocations and release times, precedence constraints, planning cycle.

- Execution times of computation and communication modules.
Example Task Graph

L=40
T1 (P1 = 40)

T2 (P2 = 40)

T3 (P3 = 20)

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20
M21
M22
M23
M24

Kang Shin (kgshin@eecs.umich.edu)
Problem Formulation

- Normalized task response time of the v-th invocation of T_i:
 \[
 \bar{c}_{iv} = \frac{c_{iv} - r_{iv}}{d_{iv} - r_{iv}}
 \]

- System hazard under allocation x:
 \[
 \Theta^x = \max_{T_i \in T} \bar{c}_{iv}
 \]

- **Problem**: find an optimal x^* that minimizes the system hazard.

- Both \bar{c}_{iv} and Θ^x depend on:
 - how tasks are assigned under x and
 - how assigned tasks are scheduled on each PN.

Kang Shin (kgshin@eecs.umich.edu)
Task Allocation Algorithm

- Consists of two branch-and-bound algorithms, one for assignment (B&BA) and the other for scheduling (B&BS).

- Same as traversing a tree

- Vertex = allocation

- Complete allocation = leaf node; B&BS alg

- Partial allocation = intermediate vertex; B&BS is too expensive, so compute and use a lower bound of optimal system hazard
Branch and Bound Algorithm

1 let active set \(A = \{ \text{Root} \} \)
2 let vertex cost \(\Theta(\text{Root}) = 0 \)
3 let best solution cost, \(\Theta_{\text{min}} = \infty \)

4 while true do
5 let \(V_{\text{best}} = \) minimum cost vertex in \(A \)
6 if \(V_{\text{best}} \) is a leaf vertex then
7 prune all vertices \(V \in A \) except \(V_{\text{best}} \)
8 return \(V_{\text{best}} \) as optimal solution
9 else
10 generate (task assignments of) all children of \(V_{\text{best}} \)
11 remove \(V_{\text{best}} \) from active set \(A \)
12 for each child \(x \) of \(V_{\text{best}} \) do
13 if assignment constraints in set \(AC \) are not satisfied then prune \(x \)
14 else
15 compute vertex cost \(\Theta(x) \)
16 add \(x \) to active set \(A \)
17 if \(x \) is a leaf vertex then
18 if \(\Theta(x) < \Theta_{\text{min}} \) then
19 \(\Theta_{\text{min}} = \Theta(x) \)
20 prune all vertices \(V \in A \) for which \(V \neq x \) and \(\Theta(V) \geq \Theta_{\text{min}} \)
21 else prune \(x \)
22 end if
23 end if
24 end for
25 end if
26 end while
Search Tree

Root of the Search Tree

Allocating T1

Allocating T2

Allocating T3
B&BA Algorithm

- A terminal vertex or complete assignment: B&BS alg based on dominance properties.

- For each non-terminal vertex or partial assignment x:
 - B&BS is too expensive
 - As long as a lower-bound, Θ^x_{lb} of the optimal cost for x is used, B&BA will find an optimal assignment.
 - Θ^x_{lb} is obtained by relaxing task invocation times, precedence constraints, etc.
Computing Lower-Bound Vertex Cost

1. Compute the minimum computational load imposed on each processor by tasks already assigned to PNs at search vertex x.

2. Estimate the minimum additional load to be imposed on each PN due to those tasks not yet assigned at x.

3. Schedule the combined load at each PN and compute the system hazard. We ensure that the system hazard of the resulting schedule is a lower bound on the system hazard of any leaf vertex descending from x, i.e., it represents $\Theta(x) = \Theta_{lb}(x)$.

Kang Shin (kgshin@eecs.umich.edu)
B&BS Algorithms

Scheduling tasks w.r.t. Θ for a given complete assignment is NP-Hard \Rightarrow Dominance properties are derived to guide search for an optimal schedule.

- Preemptions which do not reduce Θ must be disallowed.

- A PN is not allowed to idle when there are ready (uncompleted) modules on the PN.

- Always advantageous to reduce the completion time of a task without increasing others’.
Example

The same as before: 3 tasks and 2 PNs
Module execution times on N_1

<table>
<thead>
<tr>
<th>M_j</th>
<th>e_{j1}</th>
<th>M_j</th>
<th>e_{j1}</th>
<th>M_j</th>
<th>e_{j1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>4</td>
<td>M_9</td>
<td>1:3</td>
<td>M_{17}</td>
<td>1:3</td>
</tr>
<tr>
<td>M_2</td>
<td>1:4</td>
<td>M_{10}</td>
<td>1:4</td>
<td>M_{18}</td>
<td>1</td>
</tr>
<tr>
<td>M_3</td>
<td>2</td>
<td>M_{11}</td>
<td>1</td>
<td>M_{19}</td>
<td>2</td>
</tr>
<tr>
<td>M_4</td>
<td>2</td>
<td>M_{12}</td>
<td>2:4</td>
<td>M_{20}</td>
<td>0:1</td>
</tr>
<tr>
<td>M_5</td>
<td>2:6</td>
<td>M_{13}</td>
<td>2</td>
<td>M_{21}</td>
<td>1:3</td>
</tr>
<tr>
<td>M_6</td>
<td>2</td>
<td>M_{14}</td>
<td>0:2</td>
<td>M_{22}</td>
<td>1</td>
</tr>
<tr>
<td>M_7</td>
<td>1</td>
<td>M_{15}</td>
<td>2:3</td>
<td>M_{23}</td>
<td>2</td>
</tr>
<tr>
<td>M_8</td>
<td>1:2</td>
<td>M_{16}</td>
<td>3</td>
<td>M_{24}</td>
<td>1:2</td>
</tr>
</tbody>
</table>
Search Tree Generated and Optimal Schedule

Kang Shin (kgshin@eecs.umich.edu)
Task Graph at Vertex 5

L = 40

T_1 (P_1 = 40)

\[d_{2,10} = 8 \]

T_2 (P_2 = 40)

\[d_{8,20} \]

T_3 (P_3 = 20)

\[\rho_1 = 0 \]

\[\rho_2 = \min \{4, 0.5\} = 0.5 \]

\[
\begin{align*}
e_1 &= 4 \\
e_2 &= 4 \\
e_3 &= 2 \\
e_4 &= 2 \\
e_5 &= 6 \\
e_6 &= 1.5 \\
e_7 &= 0.5 \\
e_8 &= 0.5 \\
e_9 &= 0.5 \\
e_{10} &= 2 \\
e_{11} &= 0.5 \\
e_{12} &= 2 \\
e_{13} &= 1 \\
e_{14} &= 0 \\
e_{15} &= 1 \\end{align*}
\]

\[
\begin{align*}
d_{17,9} \\
d_{12,5} = 10 \\
d_{14,24} \\
d_{21,15} \\
\end{align*}
\]

Kang Shin (kgshin@eecs.umich.edu)
Computational Experiences

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Expanded Vertices</th>
<th>Total Space</th>
<th>% Expanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>18</td>
<td>4096</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>65536</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>1048576</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>133</td>
<td>16777216</td>
<td>0.0008</td>
</tr>
<tr>
<td>14</td>
<td>274</td>
<td>268435456</td>
<td>0.0000004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Expanded Vertices</th>
<th>Coef of Variation</th>
<th>Total Space</th>
<th>% Expanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>0.35</td>
<td>256</td>
<td>6.17</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>0.8</td>
<td>65536</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>0.8</td>
<td>1679616</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Kang Shin (kgshin@eecs.umich.edu)