
A Systematic Methodology to Develop
Resilient Cache Coherence Protocols∗

Konstantinos Aisopos
Princeton University
Princeton, NJ, USA

kaisopos@princeton.edu

Li-Shiuan Peh
Massachusetts Institute of Technology

Cambridge, MA, USA
peh@csail.mit.edu

ABSTRACT
Aggressive transistor scaling continues to increase integra-
tion capacity with each new technology node, but technology
downscaling also increases the vulnerability of semiconduc-
tor devices and causes silicon failures. Thus, fault-tolerant
architectures are emerging to guarantee reliable functional-
ity on unreliable silicon. While tolerating faults within a pro-
cessor core has been extensively researched, the many-core
era introduces the challenge of reliable on-chip communica-
tion in Chip Multi-Processors (CMPs). In CMP systems,
an unreliable interconnection network can lose or corrupt
coherence messages, causing the entire chip to deadlock. In
this work, we argue for a system-level resiliency solution to
tolerate an unreliable underlying Network-on-Chip (NoC).
We introduce a systematic methodology to transform a co-
herence protocol to a resilient one, by extending its Finite
State Machine (FSM) with safe states and incorporating ad-
ditional handshaking messages into transactions. The modi-
fied protocol ensures coherent and reliable transactions over
any lossy NoC. Our approach is generic and can be applied
to a wide range of protocols. It requires minimal hardware
modifications and introduces only a slight performance over-
head (an average of 0.8% during fault-free operation, and
1.9% even at an aggressive fault rate of one fault per msec).

Categories and Subject Descriptors
B.4.5 [Hardware]: Input/output and data communications—
Reliability, Testing, and Fault-Tolerance

General Terms
Design, Reliability

Keywords
Coherence Protocol, Resilience, Fault Tolerance

∗The authors acknowledge the support of NSF (grant no.
CPA-0702341) and Gigascale Systems Research Center, a
research center funded under the Focus Center Research
Program, a Semiconductor Research Corporation entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11, December 3-7, 2011, Porto Alegre, Brazil
Copyright c© 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

1. INTRODUCTION
Cache-coherent Chip Multi-Processors (CMPs) have become
mainstream in the marketplace with an ever-increasing core
count and a sophisticated interconnect fabric, often a Network-
on-Chip (NoC). At the same time, aggressive transistor scal-
ing is increasingly threatening the reliability of such chips,
since shrinking the critical dimensions of semiconductor de-
vices raises the probability of occurrence for transient and
permanent faults. Transient (or soft) faults are much more
common than permanent faults [21], especially in caches,
and industry expects a significant increase in their fault rates
at advanced technology nodes, due to higher integration and
lower power consumption. Texas Instruments projects that
the soft error rate will exceed 50,000 FITs1 per chip [6], while
MoSys projects an error rate of 10,000 to 100,000 FITs (per
megabit, in 0.13-micron technology), which brings the fre-
quency of errors down to months or weeks [13].

Though researchers have extensively explored techniques to
protect data in caches and memory, most resilience solutions
assume a NoC that always reliably transfers data among
cores. However, recent work on fault modeling [3] has in-
dicated that NoCs fabricated at advanced technology nodes
become increasingly unreliable, causing a number of faults,
such as loss or corruption of network messages. In order
to mitigate this trend, resilient NoC designs have been pro-
posed to allow correct operation in the face of faults in router
hardware [9, 12] and links [4, 18]. However, no resilient NoC
can guarantee 100% reliable data transfers (see Section 6).
Thus, a subset of network faults is expected to be exposed
to upper layers causing lost coherence messages [3], or cor-
rupted coherence messages that are dropped at the destina-
tion node when the packet checksum is recomputed [3, 7].
Unfortunately, the loss of a single coherence message can
cause the entire system to deadlock. Consequently, a re-
siliency solution that can tolerate an unreliable underlying
NoC is critical for viable future CMP architectures.

Resilience at the coherence protocol level is currently ad-
dressed with checkpointing mechanisms [17, 20] that roll
back to a previous safe state. Checkpointing mechanisms
work in a pro-active manner, by logging all data changes
from a coherent state of the system, to rollback upon loss of
coherence messages. Such approaches result in complexity,
high storage overheads, and often a performance overhead
during error free execution [17]. In light of high expected

1Failures In Time: 1 FIT is equivalent to 1 error per billion
hours of device operation.

fault rates, we suggest exploring re-active approaches, to
lower the overhead of resilience. We propose a re-active
approach that extends a coherence protocol to detect dead-
locks, and retransmit lost messages for recovery. The ben-
efit of such a re-active approach is that no preventive data
replication is required; the protocol can re-read from caches
previously transmitted data and re-generate lost messages.

Recently, two resilient protocols were proposed to maintain
coherence over an unreliable NoC. FTTokenCMP [11] is a
token-based protocol and FTDirCMP [16] is a directory-
based protocol, modified to tolerate loss of coherence mes-
sages. Though these protocols effectively tackle network
faults, they utilize protocol-specific heuristic approaches to
achieve resilient functionality, limiting their applicability to
a wider range of protocols (see Section 6).

In this paper, we take resilient coherence protocols a step
further: we present a systematic methodology to incorpo-
rate resiliency into a wide range of coherence protocols. Our
methodology modifies the coherence protocol’s Finite State
Machine (FSM) by adding safe states, handshake messages,
and a retransmission rule, so that caches always remain co-
herent and all transactions complete, in the face of lost mes-
sages. We also demonstrate how to apply our methodol-
ogy by presenting two case studies on blocking protocols:
one for a directory-based coherence protocol and one for
a broadcast-based coherence protocol. In both studies, we
showcase that the resulting resilient protocols work correctly
across many applications in the face of substantial faults,
while exhibiting negligible performance degradation. Specif-
ically, we measure an average performance overhead of 0.8%
during fault-free operation, and 1.9% for the aggressive fault
rate of 1 fault per millisecond. We believe that our method-
ology is also applicable to non-blocking protocols, such as
token coherence [14] (see Section 5.3).

This paper is organized as follows: Section 2 describes our
methodology and Section 3 presents two case studies of ap-
plying it to specific protocols. Then, Section 4 offers our
experimental results. Section 5 discusses the corner cases of
our approach, its hardware overhead, and its applicability
to non-blocking protocols. Finally, Section 6 presents the
related work, and Section 7 concludes the paper.

2. METHODOLOGY TO DEVELOP A
RESILIENT COHERENCE PROTOCOL

A coherence transaction begins when a data/ownership re-
quest is generated and the requestor (initiator of the trans-
action) transits to a transient state. The initiator returns
to a stable state when its request has been served, while the
transaction completes once all nodes participating in the
transaction have also transitioned back to a stable state.
However, an unreliable NoC may lose messages and prevent
a transaction from completing. We consider a transaction
where at least one node remains indefinitely transient, wait-
ing for a lost message to transit back to stable state, as
“suspended”. In this section, we argue that a “resilient” co-
herence protocol may recover from a suspended transaction
by detecting suspension and replaying the transaction iden-
tically as the first time. Below, we define the properties
that a resilient coherence protocol has to observe, and pro-
vide a sketch of a proof that these properties are sufficient

to recover from suspension. Then, we present a systematic
methodology to modify the states, transitions, and messages
of a protocol, so that these properties are adhered to.

Property1: All initiators of transactions stay in a transient
state till all other nodes involved in the transaction have
completed their part and transitioned back to a stable state.

Property2: Previously transmitted messages can be re-
transmitted: nodes retain sufficient information to regener-
ate any previous message for each outstanding transaction.

Property3: All nodes involved in a transaction can tolerate
duplicate messages and still produce the same outcome, i.e.
transition to the same state and generate the same message.

Sketch of proof. Here, we argue that a resilient coher-
ence protocol can recover from a bounded number of mes-
sage losses by providing an intuition that (i) the initiator
of a transaction can always detect when the transaction is
suspended and resend its request, and (ii) the resulting re-
played transaction progresses identically to the original one
and eventually completes. We assume that timeout counters
are available in each initiating node to trigger the retrans-
mission of a request after a timeout2. We also assume that
only a single transaction per memory address can be served
at each point in time (the protocol is blocking). This restric-
tion guarantees that both original and replayed transactions
do not interfere with other transactions for the same address.

(i) Can the initiating node always detect message loss? Prop-
erty1 requires the node that initiates a transaction to remain
in a transient state throughout the transaction, in other
words to be the last node to transition back to a stable
state. This property ensures that if any coherence message
of the transaction is lost, leading to a number of nodes indef-
initely remaining in transient state (suspended transaction),
the initiator will always be one of these nodes. It can thus
detect that the transaction exceeded the timeout period and
trigger retransmission of its request.

(ii) Will a replayed transaction complete identically as the
original transaction would have completed? Properties 2, 3
force all nodes participating in a transaction to retain any
information required for message regeneration, and exhibit
the same behavior, i.e. produce a unique outcome, when
receiving a message for the first time and anytime there-
after. Thus, upon retransmission of the initiator’s request,
its receiver(s) will produce the same outcome, i.e. transit to
the same state(s) and regenerate the same set of message(s)
as before. Now, the newly generated set of message(s) will
also transit its receiver(s) to the same set of state(s) and
regenerate the same message(s) as before. By induction,
all nodes involved in the transaction will eventually transit
to the exact same state as in the original transaction, and
the transaction will subsequently compete, unless an addi-
tional message is lost. Upon any number of additional mes-
sage losses, the initiator will always replay the transaction
identically as before, until it completes within the timeout.
Since we assume a bounded number of message losses, the
transaction will complete after an arbitrary number of re-
transmissions, identically to the baseline transaction.

2Section 5.1 discusses how the timeout threshold is appro-
priately chosen to prevent the duration of a transaction ex-
ceeding it, and how we resolve this corner case, if it occurs.

St

T1

initiator
other

...

St

T2

St

msg

...

St St

T1

...

St

T2

St

msg

...

St

Td
done

nodeinitiator
other
node

before after

(a) enforcing Property1

invalidate
permission

invalidate
ack

St

before
I

sender receiver

after

sender receiver

unique

I

unique
information

T1 St T2 St T1 St T2

St T3St T3

information

Tp

Ta

(b) enforcing Property2

... ...

...

msg

msg

St

Tx

...

msg msg

...
Ty... ...

...

St

Tx

msg

...

Ty

msg

Tz1 ...

Tz2

nodeX
from

nodeY
from

Tz

...

Tz

before after

...
...

...
St

Tx...

Ty

Tz...
...

...

St

Tx

...

msg msg

...

Ty... ...

(c) enforcing Property3

Figure 1: Violated properties and corresponding transformations.

In the remaining of this section, we present our methodology
as templates for detecting property violations in a protocol,
and a resulting template for transforming the original pro-
tocol to a resilient one that satisfies these properties.

2.1 Property1: Initiating Node Must Remain
Transient Throughout the Transaction

Property description. Property1 requires the initiator of
a transaction to remain in a transient state, as long as any
other nodes participating in the transaction are in transient
state, and be the last node to transition back to a stable
state. Thus, while the transaction is outstanding, the ini-
tiator is always waiting for a coherence message, while the
last message of any transaction is always destined to the
initiating node and enables transition to a stable state.

Property violations. This property is not satisfied in
all coherence protocols. For instance, in directory based-
protocols, transactions typically complete with an unblock
message from the initiator of the transaction to the direc-
tory. This unblock message signifies that the initiator has
received the requested data or ownership, so the directory
may now safely process the next request for this address.
In this example, Property1 is violated because though the
transaction has not been completed (the directory is still in
transient state), the initiator transitions to a stable state.
Consequently, if the unblock message is lost, the initiator
will not be able to detect the suspended transaction.

Property enforcement. To enforce this property, the co-
herence protocol needs to be modified so that the initiator
remains in transient state after its request has been serviced,
until any other nodes that might be in transient state transi-
tion back to stable state. To achieve this, we examine each
outgoing message from the initiator of a transaction that
transitions to a stable state: a violation is committed if the
outgoing message causes other nodes to transition to a sta-
ble state. Figure 1a demonstrates such a violation, since
msg from the initiator causes some node to transition from
T2 (transient) to St (stable). We prevent this violation by
introducing an additional Td transient state into the ini-
tiator’s FSM as shown in Figure 1a. Once the recipient of
msg transitions to a stable state, it sends a done message
to the initiator, signifying the completion of the transaction
and enabling the initiator to transition back to stable state.
Note that if multiple msg messages are sent from the ini-
tiator when transitioning to Td state, then multiple done
responses (one from each recipient of msg) are required to

transition back to a stable state. In practice, once a request
has been serviced, all previous sharers are invalid and only
a directory or coherence manager may remain transient.

2.2 Property2: Previously Transmitted
Messages Can Be Regenerated

Property description. Property2 requires all nodes to
retain sufficient information to regenerate any previously
transmitted message for all pending transactions. So, through-
out a transaction, no information can be discarded after be-
ing transmitted, until it is guaranteed that the correspond-
ing message has been successfully received (thus the same
message will never need to be retransmitted in the future).

Property violations. However, in most coherence proto-
cols, there are data transfers between nodes where the sender
invalidates its data copy right after transmission. For in-
stance, this happens when a sharer caching modified data
receives an exclusive request: it then forwards its unique
data copy to the requestor and marks the cache line as in-
valid. Now, the sharer can no longer regenerate the data
message. Besides discarding unique data, this property can
also be violated when any protocol-specific unique informa-
tion is discarded from the cache line state (or the Miss Status
Holding Register, MSHR, if applicable) after transmission,
such as tokens [14], snoop ordering IDs [1], etc. We note
that there is no automated way to infer which information
is unique from the message tables, thus the protocol designer
needs to manually identify any unique protocol-specific in-
formation/variables, so that messages piggybacking this in-
formation are protected as detailed below.

Property enforcement. To adhere to Property2, we mod-
ify the coherence protocol to incorporate a triple handshake
when transmitting unique information, where the informa-
tion is discarded only after an acknowledgment that the
message has been successfully received. Figure 1b shows
how we transform a generic transaction which is violating
Property2, through new states and messages. First, we in-
sert an additional transient state in the sender’s FSM be-
fore transitioning into invalid state (Tp in Figure 1b). Once
the unique information is received, the receiver transitions
to Ta and sends an invalidate permission message to the
sender, indicating that the information can now be safely
discarded. This permission enables the transition from Tp

to invalid state. Finally, the sender acknowledges the re-
ception of the invalidation permission and the receiver can
proceed to sending succeeding messages.

Baseline L1 states

st
ab

le Modified
Exclusive
Shared
Invalid

tr
an

si
en
t IM (I → M)

IS (I → S)
SM (S → M)
ISI (IS → I)
MI (M → I)

9 baseline states

Resilient states Property #
Md (M, waiting done) P1
Ed (E, waiting done) P1
Sd (S, waiting done) P1
Id (I, waiting done) P1
Sp (S, waiting inv. perm) P2
Ip (I, waiting inv. perm) P2
Ma (M, waiting inv. ack) P2
Sa (S, waiting inv. ack) P2
total 17 states (5 bits)

Baseline L1 states

st
ab

le

Modified
Owned
Exclusive
Shared
Invalid

tr
an

si
en
t

IM (I → M)
IS (I → S)
SM (S → M)
SE (S → E)
SS (S → S)
OM (O → M)
WB (WB req.)

12 baseline states

Resilient states Property #
Md (M, waiting done) P1
Ed (E, waiting done) P1
Sd (S, waiting done) P1
Id (I, waiting done) P1
MIb (MI, waiting done) P1
Sp (S, waiting inv. perm) P2
Ip (I, waiting inv. perm) P2
Ma (M, waiting inv. ack) P2
Ea (E, waiting inv. ack) P2
Sa (S, waiting inv. ack) P2
total 22 states (5 bits)

(a) directory-based coherence protocol (b) broadcast-based coherence protocol

Table 1: Additional resilient states introduced by our methodology.

2.3 Property3: Nodes Can Tolerate Duplicate
Messages and Produce the Same Outcome

Property description. In most coherence transactions,
multiple messages are exchanged between sharers (and po-
tentially a directory or a coherence manager) to reassign the
ownership permissions and transfer data. Though the ini-
tiator of a transaction can detect when the transaction for
a specific cache line is suspended, the actual message that
was lost and the exact state of each node involved in the
transaction is not always known. For example, if the initia-
tor requests a data copy and does not receive any response
within the timeout period, there is a high chance that its
request was not delivered by the underlying NoC. However,
it is also possible that the data response from the sharer
that is caching the modified copy was lost. The initiator
will attempt to replay the transaction from the last known
state, by retransmitting its latest message (its request in this
example). This can lead to duplicate messages received at
multiple nodes involved in the transaction. For instance, if
the sharer caching the modified copy received the initiator’s
request but its data response was lost, a duplicate request
for the same data copy will be received. Property3 requires
that a duplicate request produces the same outcome as the
initial request, i.e. each node will transition to the same
state and potentially generate the same coherence message.
Thus, if the node has proceeded to any later state of the
transaction, once an earlier message is received again, it has
to roll-back to the earlier state it transitioned to when re-
ceiving this message for the first time. In order to identify
the precise state to roll-back to, each earlier message type
should lead to a unique state in every potential path of the
node’s FSM.

Property violations. Any FSM state where a previously
received message type does not lead to a unique state vio-
lates Property3. Thus, FSM branches that contain the same
message violate Property3 upon merging. The first FSM in
Figure 1c depicts two such disallowed branches, merging into
transient state Tz. Note that msg leads to a different tran-
sient state (Tx or Ty) in each branch. Property3 is also
violated when the same message is received multiple times
in the same branch (second FSM in Figure 1c), which oc-
curs when a node receives multiple identical messages (e.g.,
when an exclusive requestor receives invalidation acknowl-
edgments from sharers). In both cases, the node does not

know which preceding state to backtrack to (could be Tx or
Ty) in response to a duplicate msg while in Tz state.

Property enforcement. To enforce Property3, we first
scan the FSM of each node to detect distinct branches which
contain the same message and merge into a transient state.
Then, we replicate the shared branch (from the merging
point to transitioning back to a safe stable state) to dissoci-
ate the branches as shown in Figure 1c. Next, we scan the
FSM of each node to identify branches where an identical
message is received multiple times. In all coherence proto-
cols we are aware of, when a node receives multiple identical
messages during the same transaction, these are sent by dif-
ferent nodes. However, the identity of the sender is not
used as a part of the recipient’s state (which consists of the
cache state and a message counter), resulting in each mes-
sage communicating identical information. To make each
message distinguishable, we modify the recipient’s state: in-
stead of counting the number of received messages, it main-
tains the vector of message senders together with its cache
state. Thus, each message is now distinct, since it also com-
municates the identity of its sender to the recipient. We
note that this modification results in a cleaner and easy-to-
validate protocol, while also protecting the coherence layer
from misrouted messages3. We showcase a detailed example
of implementing this in our case study (Section 3).

3. CASE STUDIES: GENERATING
RESILIENT COHERENCE PROTOCOLS

3.1 A Resilient Directory-Based Protocol
We define as “directory-based”, a coherence protocol with
the following properties: all data/ownership requests are
sent to a directory node (potentially different for each ad-
dress), which caches the vector of sharers for the correspond-
ing cache block. The directory either directly responds to
the requestor providing the data, or forwards the request ap-
pointing this task to a node caching the data (i.e., a sharer).

3When maintaining the vector of expected senders, the re-
cipient can identify messages intended for other nodes but
mistakenly delivered to the recipient (i.e., misrouted), due
to a routing fault in the unreliable underlying NoC. These
messages should be dropped, since the initiator of the corre-
sponding transaction will ensure that they will be eventually
retransmitted to the correct recipient.

requestI
DATA

I
request

IS
DATA unblock

NP

mb

request
memory
request

DATA

requestor directory

memory

DATA

b
unblock

mem req
DATA
unblockS

S E

S v[1000]

(a) data: NP/S, request: S

requestI

M DATA

unblock

I
request

IM
DATA unblock

M

request request 1000

unblock

requestor directory exclusive sharer

M
request

I

DATA

request

M v[0100]

b v[1000]

M v[1000]

(b) data: M, request: M/S

S

requestI

S

ack count

ack
ack

unblockrequest

IM

ack unblock

M

S

I

ack

invalidate

invali
date

I

requestor directory sharer

M

request invalidate

unblock

1000
0100invalidate

ack count (3)

IM, a=1

IM, a=2

ack count (3)

I

ack

3

3

ack S v[1101]

invalidate 0001

b v[1101]

M v[0010]

(c) data: S, request: M

Figure 2: Directory-based coherence protocol: original / baseline transactions.

requestI

S

DATA

I
request

IS
DATA unblock

NP

mb

request
memory
request

DATA

directory

memory

DATA

b
unblock done

Sd
done

mem req
DATA
unblock
done

S E

Ed

requestor
S v[1000]

(a) data: NP/S, request: S

requestI

M

DATA

done
unblock

I
request

IM
DATA

Ma

Md

unblock

M

done request request 1000

unblock done

requestor directory exclusive sharer

invalidate
permission

invalidate
ack

M
request

Ip

I

DATA

invalidate
ack

invalidate
permission

invalidate ack
invalidate permission

request

M v[0100]

b v[1000]

M v[1000]

(b) data: M, request: M/S

S

requestI

S

M

expected acks

ack
ack

done
unblock

expected
acks [1101]

ack [0100] unblock

M

done

S

I

ack
[ID]

invalidate

invali
date

I

requestor sharer

IM, a[1000]

directory

request invalidate

unblock

1000
0100invalidate

S v[1101]

invalidate 0001

b v[1101]

M v[0010]
done

expected

request

IM

I

IM, a[1001]

ack [0001]

ack [1000]

[1101]

[1101]

acks [1101]Md

(c) data: S, request: M

Figure 3: Directory-based coherence protocol: modified (resilient) transactions.

In case of exclusive data requests, the directory also invali-
dates all sharers before the requestor accesses the data. Our
case study assumes a MESI directory-based protocol with
private L1s and a physically distributed shared L2, where
the unique L2 copy piggybacks the directory vector. Figure
3 demonstrates how we modify the transactions and cache
states of the baseline protocol (Figure 2), to produce a re-
silient protocol. Also, Table 1a shows the additional tran-
sient states that need to be encoded in L1 cache (no addi-
tional states required in directory/L2 cache), together with
the properties which prompted their addition. We sepa-
rately consider the following categories of data requests:

• requesting S or NP data for S ownership (Figure 2a)
• requesting M data for M or S ownership (Figure 2b)
• requesting S data for M ownership (Figure 2c)

Property1. Figure 2a shows the simplest coherence trans-
action, where the directory can directly serve a coherence
request (no invalidations nessesary). If the directory does
not cache an up-to-date copy of the data (as shown in the
figure), it first generates a memory request to retrieve the
data from memory. Transient states are shown in white
(e.g., mb and b stand for the directory being blocked, wait-
ing for the memory and requestor respectively to respond),
while stable states are shown in black (e.g., the requestor’s
state is marked as Invalid (I) at the beginning and as Shared
(S) or Exclusive (E) at the end of the transaction). Note
that the directory state piggybacks the vector of sharers v.
Figure 3a shows the corresponding resilient transaction: the
transaction is now completed with a done message destined

to the requestor. That is because, to adhere to Property1,
the requestor should remain in a transient state until all
nodes have transitioned to a stable state, in order to detect
a potential suspension.

The requestor may detect a suspended transaction while in
IS or Sd/Ed state. The recovery mechanism will regenerate
its latest transmitted message (request for IS and unblock for
Sd/Ed). While in IS, any of the following messages might
have been lost: request, mem request, DATA. Independently
of the lost message, request will force the directory to re-
cover the memory data again and send it to the requestor.
Suspension while in Sd/Ed implies that either unblock or
done has been lost. The requestor will regenerate unblock,
which might find the directory in stable state or serving a
succeeding request (if unblock has been previously received).
Since unblock’s sender is not currently served, the directory
identifies this as a duplicate message and responds done,
indicating that this transaction has been previously com-
pleted.

Property2. In Figure 2b, a transaction where Modified
data is requested for Modified ownership is shown: the direc-
tory forwards the request to sharer 1 (1000), which is caching
the Modified copy (exclusive sharer). The sharer invalidates
its copy and forwards the data to the requestor. This trans-
action violates Property2, since a unique data copy is in-
validated during the data transfer, consequently a replicate
request to the sharer (if the message with the unique data
is lost) cannot be served. Figure 3b demonstrates how a
triple handshake is incorporated into the transaction to pro-

tect the unique data copy, as detailed in Section 2.2. We
note that even if the data request is for Shared ownership,
thus the current sharer can retain its data copy (downgraded
in shared S state), this triple handshake is still necessary.
That is because S state can be invalidated without write-
back (during cache replacement). If the downgraded sharer
could invalidate its copy while the unique data copy is in-
transit to the requestor, upon message loss the sharer would
receive a replicate data request, which could not be served.

Property3. Finally, in Figure 2c, a transaction where Shared
data is requested for Modified ownership is shown. The
directory generates an invalidation request for each node
marked as sharer in its sharing bitvector v (1101), i.e. nodes
1, 2, 4 (1000, 0100, 0001). In addition, it responds to the
requestor (message ack count), indicating the number of ex-
pected acknowledgements and providing the shared data.
As shown in the requestor’s FSM, once the expected num-
ber of acks (provided by ack count) matches the number
of received acks (a), the requestor can safely transition to
Modified state. The requestor’s FSM conflicts with Prop-
erty3 for this transaction: a single message type (ack) is
received multiple times and leads to multiple states ({IM,
a=1}, {IM, a=2}, etc.) during the same transaction.

Though each ack message seems identical, it implies that a
different sharer has been invalidated. On the other hand, the
requestor does not exploit the identity of each invalidated
sharer, since it just counts the total number of invalidated
sharers. Consistently with Section 2.3, we modify the re-
questor’s state to maintain the vector of invalidated sharers
instead of their count. This scheme also requires the direc-
tory to communicate to the requestor the vector of expected
acknowledgments (expected acks), instead of ack count. In
Figure 3c, the modified transaction is shown: an ack from
nodeX communicates that nodeX has been invalidated and
transitions to a state where the Xth bit of the acknowledg-
ment bitvector (a) is set. Thus, a replicate ack message
will not affect a, since the corresponding bit is already set.
Similarly, a replicate expected acks message will just over-
write the existing (identical) vector of expected acknowl-
edgements. The requestor will transition to the succeeding
cache state (Md) whenever expected acks equals the acknowl-
edgment vector (a), independently of how many times each
distinct ack (from a specific node) has been received, or how
many times expected acks has been received.

Performance impact of transformations. A key princi-
ple of our methodology is that all additional messages, incor-
porated to make transactions resilient, are only sent after the
requestor has been served. No additional message is intro-
duced into the critical path of transferring data/ownership
between sharers. For instance, in Figure 3a, the requestor
may use the data once received by the directory, though its
state remains transient (Sd or Ed). Note that the data is still
received in 4 hops (or 2 hops if the directory caches an up-
to-date copy) as in baseline (see Figure 2a). Then, in Figure
3b, data becomes available once DATA is received (at which
point the requestor transitions to Ma) which takes 3 hops
as in baseline (see Figure 2b). Similarly, in Figure 3c, data
becomes available once the directory response and the ac-
knowledgements have been received (Md) as in baseline (see
Figure 2c). Thus, though more messages are incorporated

into transactions (more messages are injected to the network
and transactions last longer), no direct delay is introduced
when serving a request.

However, an indirect delay might affect a request (compared
to the non-resilient baseline protocol) in the following cases:
(i) if the request is waiting for a previous transaction to
complete, which lasts longer due to the additional resilient
handshake messages, (ii) due to higher utilization of caches,
since data copies remain cached for longer (till the reception
of the invalidate permission, rather than being immediately
invalidated), (iii) due to an increase in the average network
latency, due to higher network contention as a result of ad-
ditional handshake messages. For moderate network traffic,
sufficiently large caches, and adequate NoC bandwidth, we
expect negligible overall performance overhead.

3.2 A Resilient Broadcast-Based Protocol
We define as “broadcast-based”, a coherence protocol where
all data/ownership requests are broadcasted to all nodes in
the system, including the memory node. All sharers and
non-sharers acknowledge the reception of the request, while
a sharer caching a Modified copy (or owner) provides the up-
to-date data. If no such sharer is present, the requestor uses
the data retrieved by memory. Once the requestor gathers
all responses, it transitions to a stable state and the trans-
action completes. While such a protocol is easily realizable
when the communication medium is a snoopy bus, a mech-
anism to achieve global ordering among requests is required
for coherence protocols built on the top of unordered NoCs
(e.g., meshes). This mechanism typically introduces a serial-
ization point. In this section, we assume a broadcast-based
coherence protocol similar to that used by AMD (in their
Opteron systems), also known as AMD Hammer [2]. AMD
Hammer leverages the home node of each memory line as a
serialization point: all requests are sent to their home node
and ordered there, before being broadcasted.

Baseline. A transaction is initiated with a coherence re-
quest being sent to the home node of the memory address.
Then, the requestor (transaction initiator) remains in tran-
sient state until all nodes have responded with acknowledg-
ments or data. As shown in the requestor’s FSM (Figure 4),
a transaction completes when the number of responses (a)
equals the number of nodes in the system (all nodes have to
respond independently of their state). If a sharer caches a
Modified copy (exclusive sharer), its response (i.e., DATA)
also piggybacks the up-to-date data copy. Also, upon recep-
tion of a request, an exclusive sharer is invalidated (Modified
ownership request) or downgraded to S (Shared ownership
request). Figure 4 assumes a request for Modified owner-
ship, but the transaction is similar for any other request
(the only difference is the requestor/sharer states).

Properties. In Figure 5, we demonstrate how we modify
the baseline transaction and its cache states, to produce a
resilient coherence protocol. If a sharer caches a Modified
copy, a triple handshake is incorporated into the transaction,
to protect the unique data copy that is transferred (Prop-
erty2). The requestor’s FSM during the triple handshake
is shown in a dashed line. Also, the transaction now com-
pletes at the initiating node (with a done message) to adhere
to Property1. Finally, the requestor maintains the vector of

ES

M
request

I

DATA

I
request

IM

S
ack

request

I

ack

ack

MEM
DATA

DATAack

ack unblock
M

ack unblock
M

I

requestor

IM, a=1/5

SM, a=4/5

IM, a=2/5

IM, a=3/5

IM, a=4/5

response count (a):
example assumes
that the (fixed) total
number of nodes in
the system is 5, so 5
responses expected

exclusive sharer

requestI

ack
ack

BROADCAST(request)

...

S
S

DATA

MEM
DATA

unblock

M
sharers / non-sharersmemory

M

Figure 4: Broadcast-based coherence protocol: origi-
nal / baseline transactions.

exclusive sharer

M
request

Ip

I

invalidateinvalidate

requestI

ack
ack

I
BROADCAST(request)...

S
S

invalidate ack
invalidate permission

DATA

MEM
DATA

M done
unblock

ackpermission

M

Ma

Md
unblock

M
done

invalidate
ack

invalidate
permission

Md
unblock

M
done

S
request

I

I

sharers /
non-sharersmemory

requestor
I request

IMack
[1000]

ack
[0010]

MEM
DATA
ack

[0100]
ack

[0001]

IM, a[1000,0]

IM, a[1010,0]

IM, a[1010,1]

IM, a[1110,1]

DATA
[0100]

ack
[0001]

SM, a[1110,1]

ack
[ID]

DATA
[ID]

response vector (a)
example assumes:

in the system,

- 4 sharers (s0-s3)
- 1 memory node (m)

[s0 s1 s2 s3, m]
thus a's format is:

Figure 5: Broadcast-based coherence protocol: modi-
fied (resilient) transactions.

nodes that have responded, instead of the response count, to
adhere to Property3. Each response marks the entry corre-
sponding to its sender as “1” in the acknowledgment bitvec-
tor (a); once all bits are set, the request has been served
and the data can be delivered to the processor core. Table
1b lists all the additional transient states that are encoded,
together with the properties which prompted their addition.

Message retransmission. If the requestor detects that a
transaction has been suspended before receiving responses
from all nodes, the recovery mechanism will regenerate the
request message. Request will replay the transaction for the
very beginning, consequently all sharers and non-sharers will
(again) acknowledge. If the Modified sharer has already
provided its data copy and already received an invalidate
permission, it will acknowledge the request as a non-sharer.
Otherwise, if either the data copy has not been sent, or the
invalidate permission has not been received (M or Ip states
respectively when replaying), the sharer will resend its data
copy. On the other hand, if the requestor has received all
responses (Md state), the unblock message is regenerated.

Performance impact of transformations. Similarly to
the directory-based protocol (Section 3.1), no direct delay
is introduced when serving a coherence request. The criti-
cal path of transferring data/ownership from any sharer to
the requestor remains three hops (requestor → serialization
node → sharer → requestor) as in baseline. Any additional
resilience messages (done and potentially invalidate permis-
sion/invalidate ack, if a sharer caches the copy in M state)
are only sent after the requestor has been served.

System Configuration
Processors In-order SPARC cores

1GHz clock frequency
L1 Caches Size 2 x 32KB / node
(split I&D) Line width 64-byte

Associativity 4-way set associative
Latency 3 cycles

L2 Caches Size 1MB / node
Line width 64-byte
Associativity 4-way set associative
Latency 6 cycles

Memory Size 1GB / controller
Controllers 4
Latency 160 cycles

Protocols MESI SCMP bankdirectory
MOESI SMP hammer

Network-on-Chip
Network Topology 8 x 8 2D Mesh
Channel Width 64-bit
Virtual Networks 5
Memory Controllers Attached in chip corners
Routing Protocol XY routing
Arbitration Queueing RoundRobin arbiters
Message Ordering Point-to-Point ordered NoC

Table 2: Simulated system configured in GEMS.

4. EVALUATION
4.1 Simulation Framework and

System Configuration
We simulate a 64-core tiled CMP architecture with in-order
SPARC cores (Table 2) in the Wisconsin Multifacet GEMS
simulator [15]. For the directory-based coherence protocol,
we model private split instruction/data L1 caches and a
physically distributed shared L2 cache, where the unique
L2 copy piggybacks the directory vector. For the broadcast-
based coherence protocol, we model private split instruc-
tion/data L1 caches and private L2 caches, where L2 misses
are broadcasted to all nodes. We evaluate both SPLASH-2
[19] and PARSEC [8] parallel benchmarks. Each run con-
sists of 64 threads of the application running on the 64-core
CMP. For each experiment, we perform ten runs with small
random perturbations (we feed ten different random seeds
to GEMS) to capture the variability in parallel workloads
[5], and then average the results of the runs.

To evaluate resilient functionality, we simulate various fault
rates, ranging from 1 fault per millisecond to 1 fault per 10
microseconds. At each rate, we inject faults in a uniform
random distribution across all routers’ hardware, corrupt-
ing the in-transit packets that are buffered in the Network-
on-Chip. Packet headers are protected with a Single-Error-
Correcting Double-Error-Detecting Hamming code (SECDED)
[7], while the entire packet is protected with a checksum.
Thus, upon detection of two errors in the header the packet
is instantly dropped and the corresponding network resources
are deallocated. On the other hand, packets whose data has
been corrupted are dropped later, when the checksum is re-
computed at the destination node.

Figure 6: Transaction duration breakdown. baseline vs. resilient directory-based coherence protocol.

Figure 7: Execution overhead for the resilient directory-based protocol.

4.2 Evaluation Results
Directory-based protocol. We first evaluate the impact
of our resilience transformations on transaction duration.
Figure 6 depicts the duration of each transaction for the
directory-based protocol discussed in Section 3. In x-axis,
we separately consider the average duration of each baseline
transaction in a lose-less NoC (i.e., B) and its corresponding
resilient transaction in a lossy NoC (i.e., R), for three trans-
action types: transactions directly served by the L2 cache
line that the directory is attached to (i.e., L2), served by
the L1 cache of a sharer (i.e., L1), or served by the mem-
ory (i.e., MEM). The duration of each transaction is further
broken down to the time till data is received by the initiator
(data), time till the invalidation acknowledgment is received
by the initiator (invalidation ack), time till the directory
is unblocked and the next transaction can be served (DIR
unblocked), and time till the transaction is completed at
the initiator with a done message from the directory (done).
Note that only transactions which involve transferring data
from another cache (i.e., L1) incorporate invalidation hand-
shaking, requiring the initiator to wait for the invalidation
ack message.

We observe that the overall duration of each baseline trans-
action (B) increases when incorporating resilience (R). That
is because the requestor has to wait for two additional mes-
sages to complete a transaction (done and invalidation
ack). This translates to an indirect performance overhead:
requests from other nodes will remain queued in the direc-
tory node longer. In addition, since we are modeling in-order
processor cores, the initiator itself cannot generate succeed-
ing memory requests for other memory addresses, until its
current transaction has been completed. We note that in all
benchmarks we simulate, the majority of requests (over 99%)

is either served by the directory (L2 cache) or a sharer’s L1
cache, thus this indirect performance overhead mostly de-
pends on the increase of the L2 bar (for benchmarks with
read-only data) or L1 bar (for benchmarks with exclusive
data). Since the L1 bar also accounts for the triple invali-
dation handshake, it results in higher (percent) increase in
the transaction duration. Thus, as we show later in this sec-
tion, benchmarks that are frequently requesting exclusive
data incur a higher performance overhead.

Though the overall duration of transactions increases, the
actual time till the initiator’s request is served with data
remains almost constant (less than 5% difference) in most
benchmarks. There are a few exceptions to this trend, such
as radix and water spatial. These benchmarks have the
largest working sets and share mostly read-only data. Thus,
they generate high read-request traffic (almost 2x compared
to other benchmarks), which is served by the L2 cache (be-
cause the data copy is not modified by any sharer most of
the times). The high traffic to the directory node is reflected
by delayed data delivery in the baseline bar of Figure 6 (the
L2 B bar is higher for radix and water spatial). In a lossy
NoC, these benchmarks will suffer the most as faults in-
crease, since re-transmissions saturate the network and re-
sult in higher network latencies. This is reflected in the
corresponding resilient bar (L2 R) of Figure 6 as additional
delay in data delivery (11% radix and 24% water spatial).

Figure 7 shows the overall execution overhead of the resilient
directory based protocol, for increasingly lossy NoCs. For
a fault-free NoC, our methodology only introduces a 1.1%
performance overhead (on average). Benchmarks with ex-
clusive requests are mostly affected by resilient transactions,
as explained before: fmm, lu, and swaptions have the highest

execution overhead (around 2%) when there are no faults,
since their exclusive requests are 2x, 1.5x, and 1.3x higher
than other benchmarks. On the other hand, while the fault
rate increases, the benchmarks with the largest working sets
exponentially degrade due to network traffic saturating the
NoC (7.4% overhead for radix and 11% overhead for water
spatial at highest fault rate). The performance of bench-
marks with low network demands (such as x264) remains
unaffected by our modified transactions.

Broadcast-based protocol. The performance of broadcast-
based protocols is very sensitive to network traffic load.
Since each transaction generates a large number of mes-
sages (a request is broadcasted to all nodes, and all nodes
respond to the requestor), it results in a traffic spike while
packets compete for network resources. Consequently, when
the number of requests increases, the network quickly satu-
rates, imposing high network latencies to messages. Figure
8 depicts the average duration of baseline (B) and resilient
(R) transactions for the broadcast-based protocol discussed
in Section 3. Note the high data delivery time (over 500
cycles) compared to the directory-based protocol, due to in-
creased network latencies during the broadcast.

In a lossy NoC, on top of the high volume of broadcast
traffic, retransmission of lost messages further increases net-
work contention and the duration of data delivery, especially
in benchmarks with large working sets (28% for radix and
39% for water spatial, Figure 8). On the other hand, the
duration of resilient handshaking (invalidation ack mes-
sage and donemessage) is insignificant compared to the data
delivery duration, since these messages are always sent af-
ter the initiator has been served (all nodes have responded
and network resources have been deallocated). Thus, we
expect the performance overhead of incorporating resilience
into transactions to be negligible for small fault rates.

Figure 9 depicts the execution overhead of the resilient broad-
cast protocol, for increasingly lossy NoCs. For a fault-free
NoC, our methodology introduces a negligible 0.5% perfor-
mance overhead (on average), which exponentially increases
as the rate of faults increases. We note that the fault-free
performance overhead is even smaller than the directory-
based scheme, since resilient messages account for a smaller
portion of coherence transactions. On the other hand, when
the fault rate increases, performance exponentially degrades
due to network traffic saturating the already-congested NoC.
Since the execution overhead mostly depends on network
traffic, benchmarks generating a large number of requests
are penalized the most (51% degradation for radix, 56%
degradation for water spatial).

We note that such high fault rates are unrealistic and are
intended to showcase that our methodology is viable for the
highest possible fault rate where a system may recover with
retransmissions. That is because for 1 fault per 10 microsec-
onds (1 fault every 10,000 cycles for 1GHz clock) a fault is
injected as often as twice the fault detection threshold (5,000
cycles), nearing the limit that we can handle (a system that
loses packets at a higher rate than triggering retransmission
of lost packets is not viable). For a fault per week, as dis-
cussed in Section 1, we expect the performance overhead of
our methodology to be close to the fault-free scenario.

Figure 8: Transaction duration breakdown. baseline
vs. resilient broadcast-based coherence protocol.

Figure 9: Execution overhead for resilient bcast protocol.

Figure 10: Traffic overhead due to resilient functionality.

4.3 Network Congestion
Figure 10 quantifies the increase in link utilization, as a re-
sult of the additional traffic introduced by resilient func-
tionality, for all configurations and coherence protocols we
have simulated. The figure depicts the link utilization of a
resilient protocol (without faults and for 1 fault every 10 mi-
croseconds), as well as its corresponding baseline protocol.
We observe that though for small request rates the effect
of resilient transactions on link utilization is negligible, for
higher request rates the utilization of the most congested
link (bottleneck) increases up to 8%. This might be a rel-
atively small overhead, but note that for high traffic loads
the effect of congested links on performance degradation is
non-linear, as demonstrated in Section 4.2.

5. DISCUSSION

5.1 Corner Cases
Redundant re-transmission. As discussed in Section 2.1,
the recovery mechanism is triggered once the state of a cache
line remains in a transient state beyond a timeout threshold.
However, a transaction’s duration cannot be bounded, due
the non-deterministic nature of the underlying NoC. Thus,
any timeout threshold can lead to redundant retransmis-
sions. In other words, if the NoC excessively delays the de-
livery of a message (e.g., due to an occasional traffic spike),
the transaction initiator will retransmit its request to re-
play the transaction. If this occurs, the newly injected re-
quest will co-exist in the NoC with message(s) from a later
phase of the same transaction. Intermingling new and stale
messages has unpredictable consequences and may result in
coherence violations. Hence, we want to eliminate all in-
transit messages of a transaction before re-generating the
initial request, so that the transaction safely “freezes” in a
consistent state and is re-played without interferences.

To implement this, we incorporate a timeout counter into
each in-transit packet. Intermediate routers then decrement
this counter (once per cycle) and drop the corresponding
packet once it exceeds the timeout threshold (counter un-
derflow). The timeout counter of a packet is inherited from
the packet that triggered its generation (unless it is the ini-
tial packet of a transaction, in which case the counter is set
to the timeout threshold). Thus, at any point in time, all in-
transit packets of a transaction piggyback the same timeout
count (which matches the timeout counter of the initiator).
Consequently, if the initiator’s counter underflows, trigger-
ing the regeneration of the initial request, any in-transit
packet of the ongoing transaction will be also dropped by
its host router and thus will not interfere with the re-played
transaction.

Note that though redundant retransmissions are possible, if
the timeout threshold is set properly they occur very rarely.
Our 5,000-cycle timeout threshold is an order of magnitude
higher than the average transaction duration measured when
the network is operating at its saturation point. Thus, the
rate of messages regenerated due to timeouts (even under
high traffic) is significantly lower than the overall rate of
injected messages and does not affect traffic. A potential
improvement here, which eliminates the need for profiling,
is to adjust the timeout threshold at runtime, based on the
number of transactions exceeding it over long time intervals.

Redundant messages after completing a transaction.
This corner case occurs in transactions incorporating coher-
ence messages with multiple destinations. Assume that the
transaction is suspended due to a message to one of these
destinations being lost. The initiator will resend its latest
coherence message to replay the transaction, regenerating
the message to multiple destinations. However, a number of
responses from these destinations could have already been
received by the initiating node (before suspension). Thus,
when replaying the transaction, the initiating node does not
require the destinations that have already responded to re-
spond again in order to complete the transaction. Conse-
quently, the transaction may complete while some of these
(redundant) responses are still in transit.

Since the initiator transitions to a stable state, such redun-
dant messages (expected in a transient state) can be safely
ignored upon reception. However, it is possible that the ini-
tiator will be serving a succeeding transaction for the same
address when a redundant message is received. In this case,
if the ongoing transaction is also expecting a response from
the node that generated the redundant message, the redun-
dant message is erroneously recognized as a message of the
current transaction. To prevent such corner cases, each ini-
tiator tags its requests with a transaction ID4, while all mes-
sages generated due to a request also need to piggyback the
request’s transaction ID. Furthermore, each node in tran-
sient state should retain the transaction ID of the ongoing
transaction and ignore messages tagged with different IDs.

Note that once a transaction that resulted in a redundant
message has been completed, its initiator may start a new
transaction with the same transaction ID (if it allocates to
the same MSHR entry). However, in a NoC with point-
to-point ordering, the redundant message will always reach
its destination before any messages of the new transaction5.
Since the destination of the redundant message cannot be
tagged with the redundant message’s transaction ID (no
node other than its initiator may start a new transaction
with this transaction ID), the redundant message is always
dropped.

5.2 Hardware Overhead
Each outstanding transaction allocates an entry to the Miss
Status Holding Register (MSHR), which retains the program
counter, memory address, transient state, requesting node,
flags, etc. In today’s systems, a MSHR typically consists of
4 to 32 entries. Implementing our methodology requires the
existing MSHR fields to be augmented and new fields to be
incorporated, as detailed below:

• Additional transient states. The resilient protocols of
Section 3 extend the requestor/sharer cache states from 9 to
17 (Table 1a, directory-based protocol) and from 12 to 22
(Table 1b, broadcast-based protocol). This translates to an
additional state bit to encode cache states in both protocols
(4 to 5). In contrast to stable states that are stored in the
cache line, transient states are stored in the MSHR, thus the
1-bit overhead applies only to a few (up to 32) entries.
• Transaction ID. In order to prevent the corner case of
redundant messages being received after the completion of
a transaction, each outstanding transaction (corresponding
to a MSHR entry) is tagged with a transaction ID. For 64

4The transaction ID consists of two numbers: the initiat-
ing node ID and a request ID. The initiating node ID is 6
bits for a 64-node system, while the request ID is a unique
number, used to distinguish the request from other concur-
rent requests of the same core, thus it is constrained by the
maximum number of outstanding requests (per core). We
set the request ID equal to the index of the MSHR entry of
the outstanding request. In today’s systems, the number of
outstanding requests typically ranges from 1 to 32 (requires
0 to 5bits), thus the transaction ID can be up to 11bits for
a 64-node system. In our simulations, we assumed a 6-bit
transaction ID (6+0, since we are modeling in-order cores).
5In a point-to-point ordered network (as in Table 2), deter-
ministic routing and queuing arbiters ensure that two mes-
sages with the same source and destination can never be
re-ordered in-network

in-order cores, that is a 6-bit (log64) overhead per entry.
• Sender bitvector. In order to enforce Property3, the
requestor needs to maintain the “vector of message senders”
while aggregating responses from all potential sharers (as
described in Section 2.3). For a 64-node system, that is an
overhead of 64 bits per MSHR entry.
• Timeout Mechanism. The initiator needs to maintain
a counter that counts up to the timeout threshold for each
outstanding transaction. Our 5,000-cycle timeout threshold
imposes a (storage) overhead of 13 bits per MSHR entry.

The total overhead per MSHR entry is below 11 bytes (1 bit
+ 6 bits + 64 bits + 13 bits), which totals 352 bytes/node,
assuming a 32-entry MSHR. In addition to the overhead of
the MSHR, a 13-bit adder per buffered packet is required
in each router, for decrementing the timeout counters (we
assume 4 x 5 such half adders, since state-of-the-art routers
typically maintain 2-8 virtual channels in each of their 5
ports -for a mesh topology-). In total, an overhead of 352
bytes/node and 20 x 16-bit half adders per router is a very
low area overhead compared to the core gate count, which
is in the order of hundred million gates.

5.3 Non-Blocking Decentralized Protocols
This section discusses how our methodology can be applied
to token coherence [14]. In token coherence, the system asso-
ciates a fixed number of tokens with each block. A processor
may read a cache block when it holds at least one token, and
write a cache block when holding all tokens. Requests are
broadcasted to all nodes. Sharers respond to exclusive own-
ership requests with any tokens they hold, while the owner
responds to shared ownership requests with data and one
token. Conflicting transactions may result in races, which
are tackled by persistent requests.

Token coherence adheres to Property1: the initiator remains
transient during a transaction, since all transactions com-
plete at the initiator upon reception of required tokens. Thus,
no enforcement (no done message) is required. To adhere
to Property2, in addition to unique data, all messages that
hold tokens need to be protected with a triple handshake:
upon reception of a message that holds token(s), the initiator
should provide permission to delete the token(s), while the
sender should acknowledge once deleting the token(s). No
critical path delay is introduced when serving such a request,
since the handshake occurs after the requestor has received
the token(s). Finally, Property3 requires the requestor to
maintain the vector of nodes that responded with token(s),
to be able to identify duplicate tokens from the same node.

An interesting optimization here is that since regular re-
quests do not always succeed in fetching the requested data
or ownership, it is acceptable if they are lost (there is no need
to retransmit a regular request, since a persistent request
will be eventually triggered). On the other hand, persistent
requests are essential for correctness and should always be
regenerated after the timeout period. Note that nodes re-
member when persistent requests have been received, until
they are explicitly cancelled by their sender. Consequently,
a duplicate persistent request can be easily identified with-
out retaining any additional state.

6. RELATED WORK
Resilience at network-level. Resilient NoCs explore novel
designs to allow correct operation in the face of network
faults: BulletProof [9] and Vicis [12] can detect and tolerate
the loss of many network components due to hard faults. In
addition, a number of resilient routing algorithms [4, 18]
have been suggested to re-route network packets around
faulty links. In the case of faulty links causing network nodes
to become disconnected, DRAIN [10] uses emergency links
to transfer architectural state and cached data to nearby
connected caches. However, no resilient solution can guar-
antee 100% fault tolerance in the network layer. Resilient
routers utilize redundant resources for resiliency, which are
finite: for 100 permanent network faults, half of the routers
are not functional in Vicis, while BulletProof’s reliability
approaches zero. In addition, upon a link failure, though
resilient routing algorithms will re-route traffic around the
faulty link, they cannot recover the packets that are stranded
across multiple routers. Finally, emergency links that re-
cover data from disconnected nodes can themselves fail. If a
NoC solution does not succeed in masking a network fault,
this fault will be exposed to upper layers, causing lost or
corrupted coherence messages, and resulting in coherence
violations.

Resilience with checkpointing. Checkpointing requires
pro-actively replicating a safe state to roll-back upon the oc-
currence of a fault. The granularity of checkpointing is the
critical factor determining a solution’s implementation over-
head, thus some solutions (SafetyNet [20]) opt for frequent
and lightweight checkpointing, while others (ReVive [17])
suggest infrequent but complex checkpointing. SafetyNet’s
checkpointing mechanism [20] does not interfere with pro-
gram execution, since it silently logs every change in cache
lines and coherence state in dedicated cache structures called
Checkpoint Log Buffers (CLBs). However, logging in CLBs
consumes expensive cache space (storage overhead is 12%-
25%). To avoid consuming cache space, ReVive [17] opts for
infrequent (every 100ms) but more intrusive checkpointing,
where processors are interrupted and flush their caches to
establish a global checkpoint. Establishing a system-wide
coherent checkpoint is a complex procedure and involves a
6.3% performance overhead during error-free execution [17].

Resilient coherence protocols. Recently, Fernández et
al.modified a directory coherence protocol for CMPs (FT-
DirCMP [16]) and token coherence protocol for CMPs (FT-
TokenCMP [11]) to tolerate the loss of their coherence mes-
sages. The recovery mechanism of these protocols is also
based on retransmissions, but each node participating in a
transaction utilizes its own protocol-specific timeout types,
generates protocol-specific synchronization messages, and
retains protocol-specific information for recovery. Some of
these synchronization messages are not present during error-
free execution. For example, in FTDirCMP, if the directory
remains blocked for too long, this triggers a “lost unblock”
timeout, which pings the requestor to retransmit its unlock
message (UnlockPing). Since such synchronization messages
are not present in regular transactions, additional network
resources need to be allocated (e.g., FTDirCMP requires
two additional virtual channels to be deadlock-free).

As these approaches utilize a set of protocol-specific time-
outs, each invoking a different recovery procedure, it pre-
vents them from being applied to other protocols. Our
methodology, on the other hand, utilizes a single timeout
counter for each transaction, always at the node which initi-
ated the transaction. Upon a fault, the transaction initiator
replays the suspended transaction (from its current state to
completion) identically as the fault-free scenario, without
introducing any protocol-specific synchronization messages.
Consequently, we believe that our methodology is generic
and applicable to a wide range of coherence protocols.

7. CONCLUSIONS
We have presented a systematic methodology to incorpo-
rate resiliency into a wide range of coherence protocols. Our
methodology modifies the protocol states, transitions, and
messages, to adhere to three properties. These properties
guarantee that any transaction that has been suspended
due to the loss of coherence messages will eventually com-
plete. We have also presented two case studies, demonstrat-
ing how these properties are enforced in a directory-based
and a broadcast-based coherence protocol. Our experimen-
tal results indicated negligible hardware overhead and an ex-
ecution overhead of 0.8% during fault-free operation, which
increases to 1.9% at an aggressive fault rate of one fault per
millisecond. Thus, we conclude that our methodology is a
parsimonious solution that enables reliable functionality on
unreliable silicon for future CMP architectures.

ACKNOWLEDGMENTS
The authors would like to thank Edya Mozes for giving them
a tutorial on sketching a proof for the proposed methodology,
and Tushar Krishna for suggesting a way to tackle redundant
retransmissions.

References
[1] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-Network

Snoop Ordering (INSO): snoopy coherence on un-
ordered networks,” in Proceedings of the 15th Interna-
tional Symposium on High-Performance Computer Ar-
chitecture, 2009.

[2] A. Ahmed, P. Conway, B. Hughes, and F. Weber,
“AMD opteron shared memory MP systems,” in Pro-
ceedings of the 14th HotChips Symposium, 2002.

[3] K. Aisopos, C.-H. O. Chen, and L.-S. Peh, “Enabling
system-level modeling of variation-induced faults in
networks-on-chip,” in Proceedings of the 48th Design
Automation Conference, 2011.

[4] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco,
“ARIADNE: Agnostic Reconfiguration In A Discon-
nected Network Environment,” in Proceedings of the
International conference on Parallel Architectures and
Compilation Techniques, 2011.

[5] A. R. Alameldeen and D. A. Wood, “IPC considered
harmful for multiprocessor workloads,” IEEE Micro,
vol. 26, no. 4, 2006.

[6] R. Bauman, “Soft errors in advanced computer sys-
tems,” IEEE Design Test of Computers, vol. 22, no. 3,
2005.

[7] D. Bertozzi, L. Benini, and G. De Micheli, “Er-
ror control schemes for on-chip communication links:
the energy-reliability tradeoff,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 24, no. 6, 2005.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PAR-
SEC benchmark suite: Characterization and architec-
tural implications,” in Proceedings of the International
conference on Parallel Architectures and Compilation
Techniques, 2008.

[9] K. Constantinides, S. Plaza, J. Blome, B. Zhang,
V. Bertacco, S. Mahlke, T. Austin, and M. Orshan-
sky, “Bulletproof: a defect-tolerant CMP switch archi-
tecture,” in Proceedings of the International Symposium
on High Performance Computer Architecture, 2006.

[10] A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh,
“DRAIN: Distributed Recovery Architecture for Inac-
cessible Nodes in Multi-Core Chips,” in Proceedings of
Design Automation Conference, 2011.

[11] R. Fernández-Pascual, J. M. Garćıa, M. E. Acacio, and
J. Duato, “A low overhead fault tolerant coherence pro-
tocol for CMP architectures,” in Proceedings of the 13th
International Symposium on High-Performance Com-
puter Architecture, 2007.

[12] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw,
and D. Sylvester, “Vicis: a reliable network for unreli-
able silicon,” in Proceedings of the Design Automation
Conference, 2009.

[13] J. Graham, “Soft errors a problem as SRAM geometries
shrink,” EE Times, 2002.

[14] M. Martin, M. D. Hill, and D. A. Wood, “Token coher-
ence: decoupling performance and correctness,” in Pro-
ceedings of the 30th annual International Symposium
on Computer Architecture, 2003.

[15] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood,
“Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) toolset,” Special Interest Group on
Computer Architecture, vol. 33, no. 4, 2005.

[16] R. F. Pascual, J. M. Garćıa, M. E. Acacio, and J. Du-
ato, “A fault-tolerant directory-based cache coherence
protocol for CMP architectures,” in Proceedings of the
38th International Conference on Dependable Systems
and Networks, 2008.

[17] M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: cost-
effective architectural support for rollback recovery in
shared-memory multiprocessors,” in Proceedings of the
29th International Symposium on Computer architec-
ture, 2002.

[18] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide,
“Immunet: A cheap and robust fault-tolerant packet
routing mechanism,” Special Interest Group on Com-
puter Architecture, vol. 32, no. 2, 2004.

[19] S. Woo et al, “The SPLASH-2 programs: characteriza-
tion and methodological considerations,” in Proceedings
of the International Symposium on Computer Architec-
ture, 1995.

[20] D. J. Sorin, M. M. K. Martin, M. D. Hill, and
D. A. Wood, “Safetynet: improving the availability
of shared memory multiprocessors with global check-
point/recovery,” in Proceedings of the 29th Interna-
tional Symposium on Computer Architecture, 2002.

[21] L. Spainhower and T. A. Gregg, “IBM S/390 parallel
enterprise server g5 fault tolerance: A historical per-
spective,” IBM Journal of Research and Development,
vol. 43, no. 5.6, 1999.

