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This is a quick overview of my papers on shape-constrained regression. I decided it was the easiest way to

explain how several of them are interrelated. The papers involve monotonic (isotonic) regression, unimodal

regression, and step functions. The basic idea is to have a best approximation of real-valued data, where

the data is at the vertices of some directed acyclic graph (dag). A dag G(V,E) with defines a partial order

(poset) over the vertices V = (v1, . . . vn), where vi ≺ vj , vi, vj ∈ V if and only if there is a path from vi to

vj . The partial orderings considered are linear, tree, d-dimensional grids, points in d-dimensional space with

component-wise ordering, and arbitrary orderings.

A real-valued function ~z = (z1 . . . zn) on V is isotonic if whenever vi ≺ vj , then zi ≤ zj , i.e., it is

a weakly order-preserving map from G to ℜ. In most areas of mathematics this is known as a monotonic

function, but for some reason in this context it is usually called isotonic. By data (~y, ~w) on G we mean there

is a weighted value (yi, wi) at vertex vi, 1 ≤ i ≤ n, where yi is an arbitrary real number and wi, the weight,

is ≥ 0. By unweighted data we mean wi = 1 for all i.

For 1 ≤ p ≤ ∞, or p = 0, given data (~y, ~w) on dag G(V,E), an Lp isotonic regression of the data is an

isotonic function ~z over V that minimizes

(
∑n

i=1
wi|yi − zi|

p)1/p 1 ≤ p < ∞

maxni=1
wi|yi − zi| p = ∞

∑n
i=1

wi · (yi 6= zi) p = 0

among all isotonic functions.

Fast algorithms for finding isotonic regressions depend on the dag and metric, and whether the data is

weighted or not. Because of this there are numerous relevant papers, and I try to keep track of the fastest (in

terms of O-notational analysis of worst case) in “Fastest Known Isotonic Regression Algorithms”. Unimodal

functions are somewhat simpler in that they are usually only defined on linear orders and are an isotonic piece

followed by an anti-isotonic piece (crudely speaking, they go up then down). Unimodal functions can also

be defined on undirected trees, trying to determine an optimal root. For step functions I only consider linear

orders, generating a sequence of some fixed number of steps on which they are constant.

Points in d-dimensional space with component-wise ordering are an important class of partial orderings,

but do not directly specify a dag. This ordering is sometimes referred to as general dimensions. Having

an explicit dag is important since many of the algorithms are based on using its vertices and edges. This is

addressed in 3), giving two dags: a rendezvous dag of size Θ(n logd n), and a reduced rendezvous dag of size

Θ(n logd−1 n). These dags add vertices to V , but greatly reduce the worst-case number of edges. This is

important because the time of many of the algorithms depends on the number of edges as well as number of

vertices. The extra vertices are Steiner vertices. For vertices v,w ∈ V , v ≺ w iff there is a path of length 2

from v to w in the rendezvous dag, where the intermediate point is a Steiner vertex. In the reduced rendezvous

dag the path may be longer.

When the points form a grid the rendezvous dags aren’t needed because the number of grid edges are

linear (for fixed d) in n. For grids, there is an important difference between d = 2 and d > 2. For L1 and L2

the former makes dynamic programming approaches possible that are impossible in higher dimensions. The

dynamic programming for 2-d grids can be extended to arbitrary points in 2-dimensions (see 4).
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Finally, some of the algorithms below, and those of others, will yield faster algorithms if advances in

flow algorithms or matrix multiplication (or transitive closure) occur. In some cases these or close relatives

are the primary determiners of worst-case time, especially in algorithms for arbitrary dags. For example,

8) uses the algorithm for arbitrary dags to show that isotonic L0 regression on multidimensional data can

be accomplished in o(n3/2) time. This is based on the rendezvous dags from 3), having Θ̃(n) edges, with

a recent flow algorithm (Gao-Liu-Peng) taking Θ̃
(

w
3

2
−

1

328

)

time on a graph of w edges. Until the 2021

Gao-Liu-Peng algorithm the best that was accomplished was Θ̃(n3/2), but by just citing it the result improved

slightly. These improvements were then used in 9 to give improved algorithms for general Lp, 1 ≤ p < ∞.

Unimodal Regression

1. Stout, QF (2008), “Unimodal regression via prefix isotonic regression”, Computational Stat. and Data

Analysis 53, pp. 289–297, gives basic algorithms for unimodal regression. They utilize the computa-

tions for an isotonic regression on 1 . . . i to help determine an isotonic regression on 1 . . . i+1. Optimal

algorithms are given for weighted and unweighted L1 and L2, and unweighted L∞. A much more com-

plicated algorithm for weighted L∞ appears in 5). The UniIsoRegression package in CRAN contains

implementations of several of these algorithms. Extended abstract.

2. Paper 5 includes algorithms for weighted and unweighted L∞ unimodal regression on undirected trees.

They are quite different in that they determine the mode (root) without first computing a sequence of

prefix regressions.

Isotonic Regression

3. Stout, QF (2015), “Isotonic regression for multiple independent variables”, Algorithmica 71, pp. 450–

470. Except for 6), all of the algorithms below for multidimensional data, d ≥ 3, depend on this paper

to give an efficient dag for the implied ordering. Here algorithms are given for L1 and L2. L∞ is

not unique, so algorithms are given for several options, including strict L∞ (see 7)). Most of this was

originally posted on the web in 2008, see 5). It wasn’t until years later that I learned that others were

looking at the same problem and that the rendezvous graph is a Steiner 2-transitive-closure spanner.

Extended abstract.

4. Stout, QF (2013), “Isotonic regression via partitioning”, Algorithmica 66, pp. 93–112. This has algo-

rithms for L1 isotonic regression for a variety of dags, creating the regression via a sequence of binary

partitions. The technique is also applied to: approximations for Lp regressions, 1 ≤ p < ∞; exact

regression for p = 2, 3, 4, 5; and regressions with multiple values per vertex. The UniIsoRegression

package in CRAN contains implementations of L1 and L2 algorithms for 2-d grids. This paper is

closely related to 9. Extended abstract.

5. Stout, QF (2018), “Weighted L∞ isotonic regression”, J. Computer Sys. and Sci. 91, pp. 69–81. This is

a major revision of the original version that was posted on the web in 2008. Some of the material in that

paper was moved to 3) since the original paper was far too long and the multidimensional results extend

far beyond L∞. L∞ regression is not unique, and this paper considers several variants, one related to

1). See also 7). It also introduces river regression, a regression on rooted trees corresponding to some

classification and taxonomy problems. Extended abstract.

6. Stout, QF (2015), “L∞ isotonic regression for linear, multidimensional, and tree orders”, arXiv

1507:02226. This gives algorithms that use a new non-constructive feasibility test to determine if
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there is an L∞ regression with specified error. For all of the orders considered the algorithms take time

linear in the number of vertices, where for the multidimensional orderings the implied constants depend

upon the dimension. Further, the algorithms for multidimensional data in arbitrary positions replace the

explicit dags in 3) with repeated sorting, taking only linear space. Thus all of the algorithms are optimal

in both time in space. Extended abstract.

7. Stout, QF (2012), “Strict L∞ isotonic regression”, J. Optimization Theory and App. 152, pp. 121–135.

L∞ isotonic regression is not unique, and this paper introduces a natural option, namely limp→∞ of the

unique Lp regression. If for all isotonic regressions you take the errors at the vertices and sort them in

decreasing order then the strict regression is the first, in lexical order, of this list of n-element strings.

This is closely related to strong L0 regression 8). The version of the paper linked to here has added

appendix material that did not appear in the journal version. It gives a different way of showing that

a regression is the strict regression, and a faster (in practice, not O-notation) way of finding the strict

regression. Extended Abstract.

8. Stout, QF (2021), “L0 isotonic regression with secondary objectives”, arXiv:2106.00279v2. L0 iso-

tonic regression is defined when the data is linearly ordered labels, not just real numbers. It is not

unique, so this paper adds secondary criteria, such as minimizing L2 error when the labels are real

numbers. It also examines regularized Lp isotonic regression, minimizing || · ||p + α|| · ||0 for a fixed

α, and L0 regression on vertices in multidimensional space. The paper introduces strong L0 regression,

which applies in the general case when only the ordering of labels is used. If for each regression you

take the regression error at each vertex, where the error is defined as the number of labels between the

regression value and original value, and sort them in increasing order, then a strong L0 regression is

the first in lexical order of this list of n-element strings (there may be ties). Strict L∞ regression (7)

minimizes large errors, while strong L0 maximizes small ones. Extended abstract.

9. Stout, QF (2021), “Lp isotonic regression using an L0 approach”, arXiv:2107.00251v2. Significant ad-

vances in maximum flow algorithms have changed the relative performance of various approaches to

isotonic regression. If the transitive closure is given then the standard approach used for L0 (Hamming

distance) isotonic regression (finding anti-chains in the transitive closure of the violator dag), combined

with new flow algorithms, gives a weighted {0,1}-valued L1 isotonic regression algorithm taking Θ̃(n2)
time on a graph of n vertices. Then partitioning is used to find an arbitrary real-valued L1 isotonic re-

gression in the same time (with the Θ̃ hiding an addition log factor). The previous fastest was Θ(n3).
For points in d-dimensional space with coordinate-wise ordering, d ≥ 3, L1 regression can be found

in o
(

n1.5
)

time, improving on the previous best of Θ̃(n2 logd n). Similar results are obtained for Lp

approximations, 1 < p < ∞, and for exact L2 regression when the values and weights are restricted.

This paper is closely related to 4.

10. Stout, QF (2023), “Best Lp isotonic regressions, p ∈ {0, 1,∞}, arXiv:2306.00269. Lp isotonic regres-

sion is unique for all p ∈ (1,∞) but not when p ∈ [0, 1] ∪ {∞}. We are interested in determining a

“best” isotonic regression for p ∈ {0, 1,∞}, where by best we mean a regression satisfying stronger

properties than merely having minimal norm. One approach is to use strict Lp regression, which is the

limit of the best Lq approximation as q → p. When p = ∞ this is known as the Polya approach, and

when p = 1 is sometimes called the Polya-1 approach. A quite different approach for p ∈ {0,∞} is to

use lex regression, which is based on lexical ordering of regression errors. For L∞ the strict and lex

regressions are unique and the same (see 7), but this is not true for L0 unless Lp regression is extended

to p < 0. For L1, strict regression from above is unique, but it may not be when q approaches from

below. We also give algorithms for computing the best Lp isotonic regression in certain situations. One
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is a refinement of the algorithm in 7 for L∞, and another determines strict L1 when 1 is approached

from above.

Step Functions

11. Stout, QF (2014), “An algorithm for L∞ approximation by step functions”, arXiv 1412.2379. Given a

fixed number of steps, this paper considers steps in isotonic order and arbitrary steps. It also solves the

k-center problem for 1-dimensional data and the variable width histogram problem. It uses bounded

error envelopes instead of the unbounded ones used in most L∞ algorithms. Extended abstract.

12. Hardwick, JP and Stout, QF (2014), “Optimal reduced isotonic regression”, arXiv 1412.2844. The

problems considered include Fisher’s “unrestricted maximum homogeneity” approximation and Ioan-

nidis’ optimal variable-width “serial histogram” problem (also known as “v-optimal histograms”). The

algorithms also determine optimal k-means clustering of 1-dimensional data. This paper only considers

L2, though an earlier version also examined L1. Extended abstract.
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