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TREE ALGORITHMS FOR UNBIASED COIN TOSSING
WITH A BIASED COIN

By QUENTIN F. STOUT AND BETTE WARREN
State University of New York, Binghamton

We give new algorithms for simulating a flip of an unbiased coin by
flipping a coin of unknown bias. We are interested in efficient algorithms,
where the expected number of flips is our measure of efficiency. Other authors
have represented algorithms as lattices, but by representing them instead as
trees we are able to produce an algorithm more efficient than any previously
appearing. We also prove a conjecture of Hoeffding and Simons that there is
no optimal algorithm. Further, we consider generalizations where the input is
a sequence of iid discrete random variables and the output is a uniform
random variable with N possible outcomes. In this setting we provide an
algorithm significantly superior to those previously published.

1. Introduction. We are concerned with efficiently using flips of a coin of
unknown bias to simulate a flip of an unbiased coin. This problem is quite
natural in that when given an arbitrary coin one should assume that it has some
unknown bias. Von Neumann ([7]) seems to have been the first to propose such
an algorithm and Hoeffding and Simons ([4]) the first to analyze the problem in
depth. Shortly after [4] appeared, both Dwass ([2]) and Bernard and Letac ([1])
gave equivalent generalizations of one of its algorithms to the case where the
sequence of iid Bernouilli random variables associated with the original coin is
replaced by a sequence of iid random variables from a nondegenerate discrete
distribution, and where the goal is to generate one of N equally likely outcomes.

One common characteristic of all the previous algorithms is the practice of
reducing a sequence of flips to a record of the numbers of heads and tails
occurring. With this reduction, algorithms can be represented as random walks
on the non-negative integer lattice points in the plane, where whether an outcome
is determined or a walk continues depends solely on the current lattice position.
In contrast, our algorithms use all of the sequence information in determining
whether to halt or continue, so we are led to represent algorithms as trees. This
change, which enlarges the class of algorithms under consideration, seems to be
desirable because it allows us to construct an algorithm which is dramatically
more efficient than that of Dwass and Bernard and Letac. We are also able to
transform a fairly efficient lattice algorithm of Hoeffding and Simons into a
more efficient tree algorithm, and for the class of tree algorithms we prove their
conjecture that there is no algorithm which has, for all biases of the coin, the
minimum expected number of flips. Further, lattice algorithms are more compli-
cated than they first appear for, in any implementation, at least some sequence-
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order information must be retained. Although they can decide from the current
lattice position whether or not a sequence terminates, they must distinguish
sequences in order to know which value is determined.

Other authors have considered related problems. While we will assume that
flips of our coin are independent, Samuelson ([6]) described a method which can
be used when successive flips have a simple Markov dependence. He first
simulates independent, but still biased, input values and then applies the von
Neumann procedure. Of course, once the Markov dependence has been eliminated
a more efficient tree algorithm could be used in place of von Neumann’s. Elias
([3]) discussed the generation of sequences of unbiased output values, using the
expected number of output values per input value as his measure of efficiency.
Finally, Knuth and Yao ([5]) used trees to analyze the reverse of our problem—
generating biased output from unbiased input.

2. Preliminaries. We assume that there is a mechanism which produces
sequences of iid Bernoulli random variables, each taking the value L with
probability p € (0, 1) and the value R with probability ¢ = 1 — p. (We use {R, L}
rather than {H, T'} in order to facilitate our description and use of binary trees.)
We are interested in algorithms that convert sequences of R’s and L’s into 0’s
or 1’s (the outcomes) in such a way that Pr(0) = Pr(1) = % for all values of
p € (0, 1). Our strategy is always to algebraically balance the probability of the
sequences assigned to 0 with the probability of those assigned to 1, and to verify
separately that the procedure stops with probability 1.

A sequence of L’s and R’s is reachable for an algorithm provided no proper
initial segment of the sequence causes the algorithm to determine an outcome
(and therefore stop). Those reachable input sequences which determine outcomes
are called termination sequences, and those that do not are called continuation
sequences.

Algorithms are associated with binary trees in a natural way. Reachable input
sequences are identified with paths from the root of the tree; an L is interpreted
as a branch to the left and an R a branch to the right. The final node in the path
associated with a termination sequence is a leaf (ie, it has no branches emanating
from it) and is labeled with the outcome assigned to the sequence. It is called a
termination node. All other nodes are called continuation nodes and have branches
to both the left and the right.

Hoeffding and Simons define stopping points and continuation points which
are the lattice analogs of our termination and continuation nodes. Since the
lattice point (i, j) is associated with every sequence having i R’s and j L’s, it may
be associated with several reachable sequences of probability piq’. Lattice algo-
rithms terminate for all of these or for none of them. Tree algorithms are not so
constrained, and can therefore exhibit efficiencies unattainable by the lattice
algorithms.

We adopt the following conventions.

1. Terminologies of algorithms and trees are used interchangably. Any concept
defined for an algorithm carries over to its tree, and vice versa.
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F1G. 1a. The generator.

Fi1G. 1b. The von Neumann Tree

L™ denotes a sequence of k& L’s and R'® a sequence of k R’s.

If A is an algorithm and p the probability that an L is produced, then
E(4; p) is the expected length of the input sequence required to determine
an outcome. When there are N > 2 outcomes we denote the expected
sequence length by E(A; p; N), and when the input distribution is discrete
with probabilities p;, p, - - - we denote the expectation by E(A; py, ps, -+ +)
or E(A; p1,p2, --+; N)

. If an unshaded figure, eg. A, represents a finite tree with some of its leaves

unlabeled, then the corresponding shaded figure, eg. A, represents the
recursive completion of A obtained by starting with A, replacing each
unlabeled leaf with a copy of A, replacing each unlabeled leaf of this new
tree with a copy of A, and so on. (See Figure 1.)

. The unqualified term algorithm will mean a tree algorithm such that Pr(0)

= Pr(1) = ¥, or, when discussing the case of N equally likely outcomes, the
probability of each outcome is 1/N.

Our notion of when one algorithm is better than another is based on the
expected length of an input sequence required to determine an outcome. We say
that algorithm A is E-faster than algorithm B if for all p € (0, 1), E(A; p) <
E(B; p), and for at least one value p = py, E(A; po) < E(B; po). This defines a
partial order on algorithms, and there are easy examples to show that it is not a
total order. We say that A is E-optimal if for any algorithm B, either A is E-
faster than B or A and B are E-equivalent (E(A; p) = E(B; p) for all p). We say
that A is E-minimal if no algorithm is E-faster than A.

3. Background. Since input symbols are generated independently, LR and
RL are equiprobable. This observation is the basis of the von Neumann algorithm:
generate pairs of input values; if the pair is RL then the outcome is 1, if it is LR
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FiG. 2.

the outcome is 0, and if it is neither the process is repeated. The first few levels
of the von Neumann tree, which we represent by A, are shown in Figure 1. It is
easily verified that E(A; p) = 1/pq.

Even some very primitive symmetry is ignored by the von Neumann algorithm.
For example, L?R® and R®L® are equiprobable and could have been designated
termination sequences, one producing a 0 and the other a 1. In fact, any pair
SR®L® and SL®R®, k > 0, of reachable sequences with common initial
segment S are equiprobable and could terminate. Hoeffding and Simons describe
an algorithm @, (see Figure 2) that terminates at precisely such sequences. It
maintains the probability balance between 0 and 1 level by level, making assign-
ments, half 0 and half 1, only when there are an even number of sequences of
the same probability.

Any algorithm which maintains its probability balance in this manner is called
an even procedure, and Hoeffding and Simons proved that stopping sets of even
procedures can contain only points (i, j) for which the binomial coefficient (‘%)
is divisible by 2. Dwass ([12]) showed that @ is the optimal even procedure in
the strong sense that no proper initial segment of a termination sequence for Q,
reaches a stopping point of any other even procedure. This also shows that
among even procedures @, is E-optimal.

Q. assigns a 0 to a termination sequence of length n if there are an even
number of R’s in its first n — 1 elements, and a 1 if there are an odd number.
Hoeffding and Simons noted that the outcome assigned to a termination node at
level n is determined by its parent at level n — 1, so if both children of a level n
— 1 continuation node are termination nodes, then they each produce the same
outcome. In this situation an E-faster tree can be constructed by replacing the
parent at level n — 1 with a termination node whose outcome is the outcome
previously assigned to the children. The algorithm obtained from @, by making
all such substitutions is called @3, and is illustrated in Figure 3.

Hoeffding and Simons constructed an algorithm @, for which E(Q4; p) <
E(Qs; p) for sufficiently small p, showing that Q3 is not E-optimal. However,
since E(Q4; ¥2) > E(Qs3; ), this does not rule out the possibility that Qs is E-
minimal. We prove in the next section that it is not.

In addition to our E-based partial order, Hoeffding and Simons considered
another partial order on algorithms. Algorithm A is continuation-better than
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FiG. 3.
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A B B A
Tl(A,B) TZ(A’B)
FiG. 4.

algorithm B if the continuation sequences of A are a proper subset of the
continuation sequences of B. A minimal algorithm under this partial order is
called weakly admissible. Any E-minimal algorithm clearly must be weakly
admissible, but we are uncertain of the converse. Hoeffding and Simons showed
that every lattice algorithm is continuation-comparable to a weakly admissible
algorithm, and their proof easily extends to the class of tree algorithms. Despite
this, neither they nor we have shown that any particular algorithm is weakly
admissible.

4. Improving Q3.

THEOREM 1. There is a tree T such that E(T; p) < E(Qs; p) forall0 <p <
1, with equality holding only at p = Ys.

Proor. Consider both Figures 3 and 4. @; has a tree of type T,(0, 1) attached
to the node L®R“L, and one of type T(1, 0) attached at R®L“R. Define a new
tree T by replacing this T4(0, 1) with a T5(0, 1) and the T,(0, 1) with a T3(0, 1).
Neither substitution destroys the 0 — 1 probability balance (although the “all or
none” lattice property no longer holds, so T does not correspond to a lattice
algorithm). The change in expectation is

p°q*(g — p) + p*¢°(p — q) = p*q*(q — P)(P°® - ¢°).
This expression is negative except at p = ¥ where it is zero. [
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COROLLARY. Q3 is not E-minimal. 0

The expectation can be reduced further by substituting T>(A, B) for T,(A, B)
and T,(B, A) for To(B, A) everywhere a tree of the form T,(A, B) is attached to
a node of probability p%q® and T,(B, A) is attached to a node of probability pfq“
with a > 8. Such situations occur repeatedly in @s. For all p # 1, one of these
substitutions increases the expectation, but the other decreases it by a greater
amount. If we knew the direction of the bias (the sign of p — q) we could make
only the advantageous substitutions. In fact, we could substitute at every occur-
rence of the inefficient T}, regardless of the probability of the node to which it is
attached. (In the portion of @ illustrated in Figure 3, substitutions of Ti(1, 0)
for Ty(1, 0) would be made at LR, L®®R, and R®L“R if p < q, and if p > q,
T5(0, 1) would be substituted for T4(0, 1) at R¥L, R*?L and L®R®L.)

5. E-optimality. E-minimality is of interest only if there are no E-optimal
algorithms. Hoeffding and Simons conjectured that this was the case among
lattice algorithm and we shall prove it among tree algorithms. First we need to
establish some lower bounds on the E function. No sequence of the form L™ can
ever be a termination sequence, for when p = (0.6)*/" then L™ has probability
.6. Similarly all sequences of the form R™ are continuation sequences. Hoeffding
and Simons showed that any algorithm must have additional continuation
sequences. We use Z* to denote {1, 2, ---}.

THEOREM 2. (Hoeffding and Simons [4, Theorem 2]). There is no algorithm
which has only S = {R™, L'™: n € Z*} as its set of continuation sequences. [

COROLLARY. (Hoeffding and Simons). E(A; p) > 1/pq — 1 for any algorithm
A and probability p. 0

LEMMA 1. For any algorithm A, either E(A;p) =1/pg—1+q+0(q) asq—
0,orE(A;p)=1/pg—1+p+o(p)asp—0.

ProoF. Let S = {R™, L™: n € Z*}. By Theorem 2 there is an n such that

A’s continuation sequences contain either S U {L‘™R} or S U {R™L}. In the first
case

1 1
E(A; )2(——-—1>+ n =<——1)+ +o0(q) asq—0,
p o7 p"q e q + o(q q

while in the second case
1 1
E(A; )2<"‘—1>+ ”=<———1)+ +o(p) asp—0. O
p g qp pq p p p

THEOREM 3. There is no E-optimal algorithm.

PROOF. Suppose there were an algorithm V such that E(V;p) <1/pg—1 +
0O(q?) as ¢ — 0. If we interpret V as a tree and take its mirror image we will have
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atree V* corresponding to an algorithm for which E(V *; p) < 1/pg — 1 + O(p?
as p — 0. Let U be any algorithm. By Lemma 1 we know that either E(U; p) =
1/pg — 1+ q+ o(q) or E(U; p) = 1/pq — 1 + p + o(p). In the former case E(U;
p) > E(V; p) for g sufficiently small, and in the latter case E(U; p) > E(V *; p)
for p sufficiently small. In either case, U is not E-optimal. Therefore our theorem
is proved once we have shown the existence of V, which is accomplished by the
following lemma. [

The algorithm V mentioned in the theorem is presented as a tree in Figure 6.
It is constructed from the pieces in Figure 5.

LEMMA 2. In the tree V, Pr(0) = Pr(1) = %, and

E(V;p)s£—1+0(q2)asq—>0.

ProoF. We compute E(V; p) by summing the probabilities of the contin-
uation nodes. Direct calculations from Figures 5 and 6 show that

E(V;p) = CZop'+ X200 ¢ — 1) + ¢*[E(A; p)— TE0 ¢']
+ p*¢°E(A; p)
+ pg®(1 + p + pH[1 + gE(V; p)]

4.3
=<L_l>+q4<i_}_>+u
pq pbq p pq

; freoltep @) 1))
+pq(1+p+p)[1+q<q+p - pd)|

1
<|l—-1)+¢+¢+9¢
(pq >

1
={—-1)+0(g>) asqg—0.
(2= 1) 0w

This also proves that the algorithm terminates with probability 1, so we can
prove Pr(0) = Pr(1) = % by showing Pr(0) = Pr(1). The values of Pr(0) — Pr(1)
for the various pieces are given in Figure 5. From these we calculate that for V,

Pr(0) — Pr(1) = (pg + p®q + pq* — pq — p%q)
p4
1-p
rq*
1-pt

= pq3<1 -

+

5 [-¢*1 — p*)(1 - pY)]

+ (1 +p + pA)(—=(1 - p*)
(1 -p*)

1= (1 +p“)>=0. 1]
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Symbol Tree P.(0) — P.(1)

A von Neumann Tree 0

O

-¢*(1 - p’)(1 - p)

v 1 -(1-pY

FiG. 5.

v

FiG. 6.

6. A generalization of @.. Let M(i, j) be the number of §,-reachable
sequences of probability p'q’. The termination rule for @, can be described in
two ways:

(1) assign outcomes to all sequences of probability p'q’ if M (i, j) is even.

(2) assign outcomes to all sequences of probability p’q’ if M(i, j) is even, and

to all but one if M (i, j) is odd.
The two rules are equivalent because M (i, j) is always 0, 1, or 2 (. has (})mod
2 continuation strings of probability p"q"~" for all integers 0 < r < n).

Suppose we have input values drawn from a discrete (possibly infinite) distri-
bution with non-zero probabilities p;, ps, - - -, and a set of outcomes of cardinality
N < o, The algorithm suggested by Dwass ([2]), and Bernard and Letac ([1]),
hereafter referred to as DBL, generalizes rule 1, terminating all of the reachable
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sequences of probability [[p? if and only if there are a multiple of N of them, or
equivalently if and only if N divides the multinomial coefficient (,,l,z,,;‘j,,,). We
propose an algorithm, hereafter referred to as SW, generalizing rule 2: terminate
all but (,,l?;,;‘jm) mod N of the sequences of probability =p?. The continuation
sequences of SW are a proper subset of the continuation sequences of DBL.

SW and DBL are actually families of algorithms. In order to specify an
algorithm of either type we need a rule for distributing outcomes among the
termination sequences. Further, for SW we need a rule to determine which
reachable sequences of a given probability terminate when there are more than
N but not a multiple of N of them. There are many simple rules available (for
example, a “first come first served” rule based on lexical ordering of sequences).
However, the expected input sequence lengths are independent of these rules,
depending only on the p;’s, N and the number of continuation sequences of each
probability. When we make assertions about SW or DBL we mean that they are
true of every algorithm of that type.

We would like to determine the behavior of E(DBL; py, ps, ---; N) for fixed
p1, D2, -+ as N — oo, Unfortunately we are unable to do so. However, we
determine enough of its behavior to show that SW is vastly superior to DBL.

PROPOSITION 1. For fixed py, ps, - - -, there are infinitely many N for which
E(DBL; py, ps, - -+, N) > N.

PrROOF. If N is prime then it cannot divide any multinomial coefficient
(n,/y) - - +) with n < N, so all DBL termination sequences have length = N. Since
some sequences of length N do not terminate, the expected input sequence in
length exceeds N. 0O

We will show that for fixed p;, ps, - - -, SW has an expected sequence length
of the form O(log N), proving it first in the case of binary inputs.

THEOREM 4. For fixed p, E(SW; p; N) has order log(N).

PROOF. Assume that p > 1, the cases p < %2 and p = % being similar. Let L
be the least integer which is no less than —log, N.

E(SW; p; N) = ¥ Titjmn [(':) mod N]piqj

n i . P s .
= Zf{=0 Zi+j=n (i)p q’ + 2n=L+1 Zi+j=n Np’q’

<L+1+ N Ynrnp" (T (g/p)’)

L+2
p

=L+1+N-E2—<rp+1+-L—
q(p —q) q(p — q)

2

= O(log N).
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On the other hand, (?) = N whenever n < log,N, so
E(SW; p; N) > log,N.
Therefore E(SW; p; N) is of exact order log (N). 0O

Notice that E(A; p; N) > log, N for all algorithms A and probabilities p. To
see this, suppose k < logyN. If p were % then each node at level k& would have
probability 27* > 1/N, so none could be a termination node. Therefore
E(A; p; N) = log;N, and since L* can never be a termination node we have
E(A; p; N) > log,N.

We can use Theorem 4 to give information about SW algorithms with nonbi-
nary input. Let py, p,, - - - be the (non-zero) probabilities associated with an input
process and let I, I,, --- be any partition of its index set. Define a restricted
input process with probabilities g; = Y je;, p; by identifying values whose indices
fall into the same I;. It is easy to show that if SWy is an SW algorithm based on
the full (original) input process and SWr, is based on the restricted process, then
for all n € Z*, the probability that SWr continues beyond level n is no greater
than the probability that SWg continues. In particular, if I is any proper subset
of the index set and p = Y e/p;, then E(SW; py, ps, ---; N) < E(SW; p; N).
Combining this observation with Theorem 4 gives

THEOREM 5. For fixed py, ps, - -+, E(SW; p1, p2, ---; N)=0(log N). 0O

Dwass showed that DBL is continuation-optimal among all algorithms making
counter-balancing assignments to sequences of equal probability and terminating
either all or none of the sequences of a given probability. SW has the first
property; it is the lattice-inspired “all or nothing” characteristic of DBL that
makes it so much less efficient.

7. Remarks and questions.

(1) E(Qs;p) =1/pg—1+q +o0(q) as ¢— 0, and E(V;p) = 1/pg — 1 + ¢* +
0(g%). What is the largest k for which a 1/pg — 1 + O(g*) algorithm exists?
Hoeffding and Simons’ proof of Theorem 2 showed that there is an upper
bound on k.

(2) Can Q3 be improved at p = 4? That is, is E(Qs; %) = min{E(A; %): A an
algorithm}?

(3) Is every tree algorithm E-comparable to an E-minimal algorithm? Hoeffding
and Simons showed that every lattice algorithm is continuation-comparable
to a continuation-minimal algorithm, but their Zorn’s Lemma based argu-
ment does not extend to the more complex E-ordering.

(4) What is the asymptotic behavior of E(DBL; p;, - - -; N) or at least what is it
for other special cases? Bernard and Letac showed that for primes the
expectation grows linearly. Is it possible that for some infinite sequence (such
as products of successive pairs of primes) sublinear asymptotic behavior can
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be achieved? Also, no one has yet shown that the expectation is never worse
than linear.
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