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Abstract

A dominating setS of a graphG is perfectif each vertex ofG is dominated by exactly one vertex
in S. We study the existence and construction of PDSs in families of graphs arising from the
interconnection networks of parallel computers. These include trees, dags, series-parallel graphs,
meshes, tori, hypercubes, cube-connected cycles, cube-connected paths, and de Bruijn graphs.
For trees, dags, and series-parallel graphs we give linear time algorithms that determine if a PDS
exists, and generate a PDS when one does. For 2- and 3-dimensional meshes, 2-dimensional tori,
hypercubes, and cube-connected paths we completely characterize which graphs have a PDS, and
the structure of all PDSs. For higher dimensional meshes and tori, cube-connected cycles, and de
Bruijn graphs, we show the existence of a PDS in infinitely many cases, but our characterization
is not complete. Our results include distanced-domination for arbitraryd.

1 Introduction

SupposeG = (V;E) is a graph with vertex setV and edge setE. A vertex i is said todominatea
vertexj if E contains an edge fromi to j or if i = j. A set of verticesS � V is called adominating
setof G if every vertex ofG is dominated by at least one member ofS. When each vertex ofG is
dominated by exactly one element ofS, the setS is called aperfect dominating set(PDS) ofG.

The size of a set of least cardinality among all dominating sets forG is called thedomination
numberof G and any dominating set of this cardinality is called aminimum dominating setfor G. It
is clear that a perfect dominating set for a graph is necessarily a minimum dominating set for it as
well. These notions can be extended tod-domination, where a vertexi is said tod-dominatea vertex
j if there is a path fromi to j in G of length at mostd. Whend > 1, we will use the terminology
distanced PDSor perfectd-dominating setto describe a subsetS of vertices of a graphG such that
every vertex ofG is d-dominated by a unique vertex inS.

The concept of a perfectd-dominating set seems to have appeared first in a paper by Biggs [5],
who introduced the termperfectd-codeto denote what we call a perfectd-dominating set. Biggs [5, 6]
was concerned with characterizing all perfectd-error correcting codes, and claimed that the proper
setting to study such issues is in the class of distance-transitive graphs. He defined adistance-
transitivegraphG as a connected graph with distance functionÆ such that wheneveru; v; x; y, are
vertices ofG for which Æ(u; v) = Æ(x; y), there is an automorphism� of G such that�(u) = x
and �(v) = y. Using algebraic techniques, Biggs derived an important necessary condition for
the existence of a perfectd-code in a distance transitive graph and applied his condition to several
distance-transitive graphs including the classical hypercube graph.
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Later Bange, Barkauskas, and Slater [1], apparently unaware of Bigg’s work, defined the class of
efficientdominating sets, which is exactly the same as the class of perfect 1-dominating sets. They
concentrated on finding perfect dominating sets in trees, showing that there are linear-time algorithms
that decide if a tree has a PDS, and if so then produce one [2].

Our motivation for studying the notion of perfect domination in graphs arose from our work
involving resource allocation and placement in parallel computers [15]. To see how PDSs arise in this
context, suppose we have a parallel computer whose processors (pes) and interconnection network
are modelled by the graphG = (V;E), where each pe is associated with a vertex ofG and a direct
communication link between two pes is indicated by the existence of an edge between the associated
vertices. Suppose, further, that we have a limited resource such as disks, I/O connections, or software
modules, and we want to place a minimum number of these resource units at the pes, with at most
one per pe, and so that every pe is within a distanced of at least one resource unit. Finding such a
placement involves constructing a minimumd-dominating set for the graphG. If G has a perfectd-
dominating set, this represents an optimal situation in which there is neither duplication nor overlap.
Even when a distanced PDS does not exist for a given graph, information about perfect dominating
sets for related graphs can be useful to help construct near optimumd-dominating sets. This is
particularly true in graphs with quite regular structures, which are the graphs that arise from parallel
computers.

Determining if an arbitrary graph has a dominating set of a given size is a well-knownNP -
complete problem [8, 13]. Straightforward proofs can be used to show that it is alsoNP -complete to
decide if a graph has a PDS, and the problem remainsNP -complete even if the graphs are restricted
to 3-regular planar graphs. Thus the general problem of determining if a graph has a PDS is quite
hard, but we show that for many significant classes of graphs it is manageable.

In Section 2 we consider whether perfect dominating sets exist for several classes of graphs which
arise in the context of networks for parallel computers. These families include meshes, tori, trees,
dags, series-parallel graphs, hypercubes, cube-connected cycles, cube-connected paths, and de Bruijn
graphs. Except for hypercube graphs, none of these is distance transitive, and therefore the Biggs
condition does not apply.

The existence of perfectd-dominating sets for trees, dags, and series-parallel graphs is studied in
Section 2.1. For fixedd � 1, we give linear time algorithms that determine if a perfectd-dominating
set exists, and generate them when they do exist. In Section 2.2, we completely characterize all 2- and
3-dimensional meshes and 2-dimensional tori that possess a PDS and also characterize the structure of
the existing PDSs. For 2-dimensional meshes and tori we extend this to distanced PDSs for arbitrary
d.

Distanced perfect dominating sets for hypercubes and hypercube related networks such as cube-
connected cycles and cube-connected paths are considered in Section 2.3. For completeness we
include the complete characterization of distanced PDSs for hypercubes, which follows from the
results on perfectd-error correcting codes. Our characterization of the cube-connected cycles which
have a PDS and the structure of the existing PDSs is not complete, however. For, while we have
shown that there are infinitely many dimensionsk for which cube-connected cycles of dimensionk
have a PDS, and that no PDS exists for dimensions 2 and 5, we do not know if there are infinitely
many dimensions for which a PDS does not exist. The situation for cube-connected paths is much
simpler. In Section 2.3.3, we show no PDS can exist for cube-connected paths of even dimension,
while for cube-connected paths of odd dimension, we construct the PDSs, which are unique up to
isomorphism.

Graphs which are constructed from binary shift register sequences, called de Bruijn graphs, are
considered in Section 2.4. For directed de Bruijn graphs, which we denote byBk, we construct
distance 1 PDSs for allk and show the existence of distanced PDSs for infinitely many values of
k. Undirected de Bruijn graphs, denoted byB�

k, have a PDS fork = 1; 2, but we show that no PDS
exists fork = 3; 4; 5. Whether distanced PDSs exist forB�

k whenk > 5 andk�1 > d � 1 is not
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known.

2 Perfect Dominating Sets for Graphs

Let Nd(G; v) denote the set of vertices in the graphG = (V;E) within a distanced of vertexv and
let nd(G; v) = jNd(G; v)j. If S is a perfectd-dominating set forG thenfNd(G; v) : v 2 V g forms a
partition ofV and X

v2S

nd(G; v) = jV j: (1)

WhenG is regular or nearly regular, Equation ( 1) can be simplified, which provides a useful tool in
combinatorial arguments for the existence of a PDS ofG. We note also that ifd is at least the size of
the radius ofG, thenG has a distanced PDS.

As we investigate the existence of perfect dominating sets in the families of graphs mentioned, we
use many different techniques, depending on the particular graphs under consideration. For example,
we introduce linear time algorithms to determine perfect dominating sets in trees, dags, and series-
parallel graphs. For tori, hypercubes, cube-connected paths, and directed de Bruijn graphs, a mixture
of algebraic and combinatorial methods are used. Several ad hoc methods are required for meshes,
cube-connected cycles, and undirected de Bruijn graphs.

2.1 Trees

Let T be a tree with two verticesu1 andu2 that have a common parent, and supposeT has the
property that any minimum dominating set forT must containu1 andu2. ThenT cannot have a
perfect dominating set. This means, for example, that a completem-ary tree of height greater than
1 fails to have a PDS, for anym > 1. On the other hand, as we shall see in the following theorem,
there are no “forbidden” subgraphs that prevent perfect dominating sets in arbitrary trees or arbitrary
graphs.

Theorem 2.1 Given any graphG and any positive integerd, there is a graphG0 containingG as an
induced subgraph, such thatG0 has a distanced PDS. Given any treeT and any positive integerd,
there exists a treeT 0 containingT as a subtree and which has a distanced PDS.

Proof: Given a graphG = (V;E), let u be a new vertex not inG, and letG0 have verticesV [ fug,
and edgesE [ ffu; vg : v 2 V g. Thenfug is a distanced PDS forG0 for anyd.

For the tree result we will give the proof ford = 1 as the proof ford > 1 is similar. Let the
treeT be given, and supposer is its root. We will proceed recursively, simultaneously building the
treeT 0 and a perfect dominating set,S, as we go. Initially,T 0 = T andS = �. If r is a leaf, add a
child q to it and placeq in S, otherwise, choose a child ofr, sayp, add it toS. Recursively apply this
procedure to the subtrees rooted atr’s other children and to the subtrees rooted atp’s grandchildren.2

Note that in the above construction ofT 0, the only vertices added toT were added to leaves ofT .
The question of whether an arbitrary treeT has a perfect dominating set can be answered in time

that is linear in the number of nodes ofT . To see how this can be done, consider the following
algorithm.

Let V denote the set of vertices ofT and letl(v) denote the label of a vertexv 2 V , wherel(v)
is a subset offC;D;Ng determined by the rules described below. Conceptually, the label of vertexv
holds the information of the possible assignment ofv as an element in some PDS that, at least up to
that stage of the construction, is possible. Thus, ifC 2 l(v) thenv is already dominated (covered) by
one of its children in some PDS construction to that stage, ifD 2 l(v) thenv is not dominated by any
of its children andv could be a dominator. Finally, ifN 2 l(v) then all ofv’s children are dominated
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Algorithm 2.1 (PDS Finder for Trees)

LetV denote the set of vertices ofT and letl(v) denote the label of a vertexv 2 V .

1. If v is a leaf ofT , initialize l(v) = fD;Ng.

2. Initializenode = root of T .

3. TraverseT in postorder, computing the label ofnode as soon as the labels of all its children
have been computed. Computation stops if the computed label is empty, for no PDS exists for
T .

but none of them is a dominator (i.e.,v needs to be covered but cannot be a dominator itself). More
specifically, if all ofv’s children have labels, we computev’s label l(v) as follows:C 2 l(v) if v has
a child whose label containsD while the labels of the remaining children ofv all containC; D 2 l(v)
provided thatN is in the label of each child ofv; N 2 l(v) if C is in the label of each child ofv; if
none of these hold,l(v) = �.

The algorithm proceeds by computing the labels of the vertices ofT in postorder and stops either
when the label of a node is determined to be empty, in which caseT has no PDS, or when the label
of the root is determined to be nonempty. All PDSs ofT can be generated by using the algorithm,
proceeding from the root in a depth-first search traversal, selecting a compatible element from the
label of each node. The computation of the labels is outlined in Algorithm 2.1.

We thus have shown the following result, which was also proven earlier in [2].

Theorem 2.2 LetT be a tree. Algorithm 2.1 determines whetherT has a perfect dominating set in
time proportional to the number of vertices ofT . Moreover, all perfect dominating sets forT are
found by this algorithm.2

A straightforward modification of Algorithm 2.1 and of the definition ofl(v) provides an algo-
rithm to determine the existence of a distanced PDS.

Corollary 2.3 Let T be a tree. For fixedd, the question of whetherT has a perfectd-dominating
set can be answered in time proportional to the number of vertices ofT . Further, if a perfectd-
dominating set exists then one can be determined in time proportional to the number of vertices ofT .
2

The above methods can also be used to give a linear time decision algorithm to determine whether
a directed acyclic graph (dag) has a distanced PDS [16]. Adapting work on series-parallel graphs [18,
23, 24], these methods extend to yield a PDS decision algorithm for them in time proportional to the
size of the graphs [16].

2.2 Meshes and Tori

Let Mk(m1;m2; : : : ;mk) denote ak-dimensional mesh of sizem1 � m2 � : : : � mk, where we
will assume the labelling is such thatm1 � m2 � : : : � mk. The vertices of thisk-dimensional
mesh are identified ask-tuples of integers(i1; i2; : : : ; ik), where1 � ij � mj for 1 � j � k. An
edge is present between two vertices if and only if their labels differ in only one component and that
difference is one.

Thek-dimensional torus of sizem1 �m2 � : : :�mk, denoted byTk(m1;m2; : : : ;mk) is thek-
dimensional meshMk(m1;m2; : : : ;mk) enhanced withwrap-aroundconnections. Two verticesu =
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(u1; u2; : : : ; uk) andv = (v1; v2; : : : ; vk) of the torus have a wrap-around connection in component
t providedfut; vtg = f1;mtg and, for allj 6= t, uj = vj .

It is easy to characterize those 1-dimensional meshes and tori that have a distanced PDS. We state
these in the following.

Theorem 2.4 The 1-dimensional meshM1(m) always has a distanced PDS for anyd. The 1-
dimensional torusT1(m) has a distanced PDS if and only ifm � 0 mod (2d+ 1). 2

In the next theorem, we give a characterization of the 2-dimensional toriT2(m;n) that have a
distanced PDS. Our proof of the characterization, which appears in [16], shows also that for eachd
there is only one distanced PDS, up to isomorphism.

Theorem 2.5 The 2-dimensional torusT2(m;n) has a perfectd-dominating set if and only iffm;ng
is a member of

ff2; 4dpg; f4; (4d�2)pg; f6; (4d�4)pg; : : : ; f2d; (2d+2)pg : p � 1g [
ff(2d2+2d+1)p; (2d2+2d+1)qg : p; q � 1g:

2

Thus we see that the only 2-dimensional tori for which distance 1 perfect dominating sets exist
areT2(2; 4p), T2(4; 2p), andT2(5p; 5q), wherep andq are positive integers.

While we have not completed the PDS characterization for all 3-dimensional tori, we have found
several instances for which a PDS exists. For example,T3(2; 3p; 6q) has a PDS for all positive integers
p and q. In addition, for arbitrary positive integersp1; p2; : : : ; pk, the torusTk((2k+1)p1; (2k+
1)p2; : : : ; (2k+1)pk) has a PDS. Perfect dominating sets for these tori appear in [16].

Any distanced PDS for the 2-dimensional torusT2(m;n), with m;n � 2d+1, can be used to
construct a distanced PDS for the infinite 2-dimensional meshM2(1;1), where we think of the
torus as being unrolled and copies of it placed, non-overlapping, to cover the mesh. In [3], Bange
et al. noticed a periodic distance 1 PDS for the infinite 2-dimensional mesh and used it to construct
dominating sets for 2-dimensional meshes of finite size. The periodic distance 1 PDS observed by
Bange et al. is also the PDS constructed in [16] forT2(5; 5).

In the following two theorems we characterize all 2- and 3-dimensional meshes of finite size that
possess a PDS.

Theorem 2.6 The 2-dimensional meshM2(m;n) has a PDS if and only if eitherm = n = 4,
or fm;ng is a member of the setff2; 2p+1g : p a positive integerg. Furthermore, the PDS for
M2(4; 4), unique up to automorphism, isf(1;2); (2;4); (3;1); (4;3)g. The PDS forM2(2; 2p+1), Sp,
is also unique up to automorphism, where

Sp = f(1 + (i mod 2); 1+2i) : 0 � i � pg:

Proof: First, it is straightforward to show that the given sets are indeed perfect dominating sets for
the specified meshes.

Now, supposeS is a PDS forM2(2; n). If (1; 1) is not inS, then exactly one of(1; 2) and(2; 1)
must be inS. If (1; 2) is in S then(2; 1) cannot be dominated without overlapping, and if(2; 1) is
in S then the result will be a dominating set automorphic to one including(1; 1). We conclude that,
without loss of generality,(1; 1) 2 S. From this point, the remaining elements ofS are completely
determined and we find thatn � 1 (mod 2) and thatS is as described in the statement of the theorem.

If T denotes a PDS forM2(m;n), wherem;n > 2, then the assumption that(1; 1) is in T leads
to a contradiction. It follows that exactly one of(1; 2) and(2; 1) must be inT , and without loss of
generality we take(1; 2) to be inT . This forces(3; 1); (2; 4); and(4; 3) to be inT . Thus, ifn = 4
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thenT is a PDS forM2(4; 4). If n > 4, however, then(1; 6) 2 T , leaving(3; 5) undominated.2

A characterization of perfect dominating sets for 3-dimensional meshes can be found by similar
methods, as the proof of the following theorem illustrates.

Theorem 2.7 Let2 �m1 � m2 � m3. The 3-dimensional meshM3(m1;m2;m3) has a PDS if and
only ifm1 = m2 =m3 = 2:

Proof: SupposeS is a PDS forM3(m1;m2;m3). It is easy to check thatf(1;1;1); (2;2;2)g is
a PDS forM3(2; 2; 2), and that it is unique up to automorphism. Thus, it remains to show that
M3(m1;m2;m3) has no PDS for any other values ofm1;m2;m3.

Case 1: supposem1 = m2 = 2 andm3 > 2. If (1; 1; 1) 2 S, then(2; 2; 2) must be inS which
leaves(2; 1; 3) and (1; 2; 3) undominated. Consider, then, the possibility that(1; 1; 1) is not inS.
We must have(2; 1; 2) and therefore(1; 2; 1) in S. This is equivalent to the case(1; 1; 1) 2 S under
automorphism, however.

Case 2: supposem1 = 2 andm2 > 2. If (1; 1; 1) 2 S, then we consider which element of
S can dominate(1; 2; 2). The assumption that(1; 2; 3) 2 S leads to the fact that(2; 1; 2) is not
dominated; the assumption that(2; 2; 2) 2 S leads to the conclusion that(2; 1; 4) is in S, leaving
(1; 1; 3) undominated.

Case 3: supposem1 � 3. A similar but more lengthy case-by-case analysis establishes that no
meshM3(m1;m2;m3) has a PDS.2

For distanced > 1, we have completed the characterization of all 2-dimensional meshes that
have a distanced PDS and the characterization of all perfectd-dominating sets for them. We include,
below, the 2-dimensional meshes that have a distanced PDS but the complete statements and proofs
of these results are given in [16].

Theorem 2.8 The 2-dimensional meshM2(n;m), 2 � n � m, has a distanced PDS if and only if
one of the following holds:

( i) n+m � 2d+ 1

( ii ) n = m = 2d+ 2

( iii ) n � d+1 and (m mod 2d+2�n) 2 f1; : : : ; 2d+3�2ng

2

We have shown that weaker results of a similar form hold fork-dimensional meshes, in that
Mk(m1; : : : ;mk�1; n) has a perfectd-dominating set for infinitely manyn wheneverd � m1 +

� � � + mk�1 � (k� 1), and there are straightforward formulas giving suchn and the perfectd-
dominating sets [16]. However, it may be thatMk(m1; : : : ;mk) does not have a distanced PDS
whenm1; : : : ;mk � 2d+ 1 for d > 1 andk > 2.

2.3 Hypercubes and Related Graphs

Here we investigate the existence of distanced perfect dominating sets in the hypercube graph in Sec-
tion 2.3.1, and in two variations of the hypercube graph: the cube-connected cycles in Section 2.3.2,
and the cube-connected paths in Section 2.3.3.
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2.3.1 Hypercubes

The hypercube graph of dimensionk, which we denote byQk, consists of2k vertices labeled as
binaryk-tuples, andk2k�1 edges, where each edge joins two vertices whose correspondingk-tuples
differ in exactly one component. These graphs have a long and rich history [11] and have recently
become an important architectural model for several commercial parallel computers such as the Intel
iPSC and the NCUBE machines.

For a hypercube graph of dimensionk, a distanced perfect dominating set is precisely a perfect
binaryd-error-correcting code over an alphabet of2k symbols. As illustrated in the survey article of
van Lint [25], these codes have been the object of great interest since their inception by Hamming [10]
and Golay [9] in the late 1940’s. All perfect binary error-correcting codes are known, in fact, all per-
fect codes over alphabets which are finite fields are known [25]. Perfect binary single-error-correcting
codes of lengthk exist if and only ifk+1 is a power of 2, and when this is the case, can be constructed
directly using algebraic methods such as those described in [4] or can be constructed recursively, as
shown by Golay [9]. The only perfect, binary, multiple-error-correcting code is the 3-error correcting
Golay code of dimension 23. We state these results in terms of distanced PDS in the following.

Theorem 2.9 Thek-dimensional hypercube,Qk, has a distanced perfect dominating set if and only
if one of the following conditions is satisfied.

( i) k � d

( ii ) d = 1 andk + 1 is a power of two

( iii ) d = 3 andk = 23.

2

2.3.2 Cube-Connected Cycles

The cube-connected cycles network of dimensionk, which we denote byCCCk, consists of ak-
dimensional hypercube, each of whose2k “vertices” consists of a cycle ofk nodes [20]. For each
dimension, every cycle has a node connected to a corresponding node in the neighboring cycle in that
dimension. In order to be more precise, suppose that we label the nodes ofCCCk as ordered pairs
(i; �), where1 � i � k and� is a binaryk-tuple. At position� in thek-dimensional hypercube, the
k-cycle of nodes are labelled in, say, clock-wise order around the cycle as(1; �); (2; �); : : : ; (k; �).
Moreover, two nodes(i; �) and(j; �) are joined by an edge in dimensiont if and only if i = j = t
and thek-tuples� and� differ only in thet-th component. Figure 1 illustratesCCC3.

From the description we can see thatCCCk hask2k nodes,3k2k�1 edges, a diameter of2k, and
each node has degree 3 fork � 3. These are some of the properties which make cube-connected
cycles an interesting alternative architecture for multicomputers.

Characterizing which cube-connected cycles have distanced perfect dominating sets appears to
be difficult. Our first result shows that if a distanced PDS exists for ak-dimensional cube connected
cycle graph, then a distanced PDS will exist for all dimensions that are a multiple ofk.

Theorem 2.10 If CCCk has a perfectd-dominating set, then so doesCCCmk for all m � 1 and
k � 2d+ 1.

Proof: We form a projection� of CCCmk ontoCCCk by � : (w; �) 7! (w mod k; �), where
�i = �i��i+k� � � ���i+(m�1)k for all 1 � i � k, and where� denotes theexclusive oroperation.
It is straightforward to verify that with this projection,CCCmk is a covering space ofCCCk such that
given any point(i; �) in CCCk and any point(w; �) mapping onto(i; �), the distanceb(k � 1)=2c-
neighborhood of(w; �) is mapped isomorphically onto the distanceb(k � 1)=2c-neighborhood of
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(i; �). To construct a distanced PDS ofCCCmk, let Sk be a distanced PDS ofCCCk, and let
Smk = ��1(Sk). A straightforward argument establishes thatSmk is a distanced PDS forCCCmk,
sinced � b(k � 1)=2c. 2

We summarize in the table below what we have learned about the existence of a PDS forCCCk

for 1 � k � 9.
The Table 1 entry fork = 1 clearly holds. The casek = 2 is easy, too, for equation (1) becomes

3 � jSj = 2 � 22, which is impossible.
We verify the casesk = 3; 4 by exhibiting perfect dominating setsS3 andS4 for CCC3 and

CCC4, respectively. A PDS forCCC3 is

S3 = f(1; 000); (2; 110); (3; 101); (1; 111); (2; 001); (3; 010)g

and is unique up to isomorphism. It was also shown in [21] that a perfect dominating set exists for
CCC3. Now, any perfect dominating set forCCC4 contains16 elements, with one element of the
PDS in each 4-cycle at the hypercube nodes. The set

f(2; �) : � is of odd parityg [ f(4; �) : � is of even parityg

is a PDS forCCC4, as can be easily verified.
A simple counting argument establishes the fact thatCCC5 has no PDS. By equation (1), if a

PDS, sayS, did exist, it must contain 40 elements. Thus, some hypercube node must have at least 2
elements ofS in its 5-cycle, but that is impossible.

Table entries fork = 6; 8; and 9 follow from Theorem 2.10.

1,001

2,001

3,001

1,101
2,101

3,101

1,111
2,111

3,111

1,011
2,011

3,011

3,100

2,100
1,100

2,000
1,000

3,000

2,010

1,010

3,010

1,110

2,110

3,110

Figure 1: Cube-Connected Cycles of Dimension 3.
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k PDS forCCCk

1 yes
2 no
3 yes
4 yes
5 no
6 yes
7 ?
8 yes
9 yes

Table 1: Existence of a PDS forCCCk

2.3.3 Cube-Connected Paths

The cube-connected paths network of dimensionk, which we denote byCCPk, is very similar to the
cube-connected cycles except that the cycles at the hypercube nodes are replaced by paths of length
k. For each dimension, the path at a hypercube node is connected to the corresponding node in the
path located at the neighboring hypercube node in that dimension. As in the cube-connected cycles,
we label the nodes ofCCPk as ordered pairs(i; �), where1 � i � k and� is a binaryk-tuple. At
position� in the k-dimensional hypercube, the nodes of the path of lengthk of nodes are labelled
(1; �); (2; �); : : : ; (k; �). Notice that two nodes(i; �) and(j; �) are joined by an edge in dimension
t if and only if i = j = t and thek-tuples� and� differ only in thet-th component. An example of
CCP3 is pictured in Figure 2.

From the description of cube-connected paths, we see thatCCPk hask2k nodes,(3k�2)2k�1

edges, a diameter of3k � 2, and node degrees 2 and 3, where nodes with labels(1; �) and(k; �)
have degree 2, and other nodes have degree 3. One advantage of the cube-connected paths over cube-
connected cycles is that aCCPk+1 has two disjoint copies ofCCPk in it, while the corresponding
statement forCCCk is false. This permits some recursive algorithms to be developed more cleanly
on theCCP than on theCCC.

Theorem 2.11 If k is an odd positive integer, thenCCPk has a perfect dominating set which is
unique up to isomorphism and is given by

Tk = f(i; �) : i � 1 (mod 4) and � is of even parityg [

f(i; �) : i � 3 (mod 4) and � is of odd parityg:

If k is even thenCCPk has no perfect dominating set.

Proof: In the case whenk is odd, the demonstration thatTk is a PDS forCCPk is straightforward,
so we do not include it here.

SupposeS is a perfect dominating set forCCPk. For each1 � i � k, let xi denote the number
of elements ofS with label (i; �), where� is arbitrary. Since any node of the form(i; �) must be
adjacent to a unique element ofS of the form(i�1; �), (i+1; �), or (i; �), where the binaryk-tuples
� and� differ only in theirith component, thexi must satisfy the following system of equations:

2x1 + x2 = 2k

x1 + 2x2 + x3 = 2k

x2 + 2x3 + x4 = 2k

: : :
xk�2 + 2xk�1 + xk = 2k

xk�1 + 2xk = 2k

9



Let dk denote the determinant of the matrix of coefficients of the above system of equations.
Sinced2 = 3, d3 = 4 anddk = 2dk�1 � dk�2 for k � 3, it follows thatdk = k + 1 for all k � 2.
Thus, the above system has a unique solution. The uniqueness of the PDS, up to isomorphism, now
follows easily fork odd.

For k even, sayk = 2m, and, for1 � i � m, a solution to this system is obtained by taking
x2i�1 = (m�i+1)2k=(2m+1) andx2i = i2k=(2m+1). Since these are not integer values, we may
conclude thatCCPk has no PDS whenk is even.2

2.4 Binary de Bruijn Graphs

Let Bk denote the graph whose vertices are binaryk-tuples, and for which an edge is directed from
the vertexx1x2 : : : xk to vertexy1y2 : : : yk provided thatx2x3 : : : xk = y1y2 : : : yk�1. This graph,
known as a (directed)binary de Bruijn graphor shift register graph, is illustrated in Figure 3 for
k = 3. Parallel computers based on de Bruijn graphs have recently been suggested as alternatives to
hypercubes [19].

When it is notationally convenient, we will denote the vertices ofBk as0; 1; : : : 2k � 1, using the
decimal equivalent of their binaryk-tuple. With this notation, vertexj has an edge directed from it to
vertex2j and to vertex2j + 1, where these numbers are taken modulo2k.

The following theorem shows that the graphsBk have perfect dominating sets for allk � 1, and
that for anyd, distanced perfect dominating sets exist for infinitely manyk. The theorem leaves
open the possibility there are distanced PDS for other values ofk, a possibility partially discussed in
Proposition 2.13.

Theorem 2.12 For anyd � 1 and fork a positive integer of the form(d+1)m or (d+1)m � 1 or
k < d, let Tk denote a subset of the vertices ofBk defined as follows.

1,001

2,001

3,001
1,101

2,101

3,101

1,000

2,000

3,000

1,100

2,100

3,100

1,111

2,111

3,111

1,010

2,010

3,010

1,110

2,110

3,110

1,011

2,011

3,011

Figure 2: Cube-Connected Paths of Dimension 3.
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111000
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100

011

101

110

Figure 3: de Bruijn Graph fork = 3.

( i) T1 = T2 = : : : = Td = f0g,

( ii ) T(d+1)(m+1)�1 = T(d+1)m�1 [ fj : 2
(d+1)m�1 � j � 2(d+1)m � 1g,

( iii ) T(d+1)m = T(d+1)m�1 [ f2
(d+1)m � 1� s : s 2 T(d+1)m�1g.

Then the setTk is a perfect dominating set forBk.

Proof: It is easy to check that the setf0g is a distanced PDS forBk whenk � d. For k of the
form (d+1)m � 1, the fact thatTk is a perfectd-dominating set forBk follows by induction and the
fact that all vertices of the form2�j+� are within distanced of vertexj for all 0 � j < 2k�d and
1 � � � d, 0 � � < 2�. For k of the form(d+1)m, the result follows by virtue of the fact that
Tk is the union ofTk�1, which is a distanced PDS forBk�1, and the “reflection” ofTk�1 found by
taking the exclusive or of its elements with thek-tuple binary representation of2k�1. This reflection
provides a unique dominator for every vertexj such thatj � 2k�1. 2

It may be the case that the only distanced dominating sets are of the form given above, and in
particular that no perfect 2-dominating sets are possible forBk whenk�1 is a multiple of 3. However,
we have been unable to prove or disprove that statement. To see that none can exist forB4, we offer
the following argument. First,N2(B4; v) has: 4 elements ifv = 0; 15; 5 elements ifv = 7; 8; 6
elements ifv = 5; 10; and 7 elements otherwise. The criterion supplied by equation (1) serves to
reduce the possibilities to just three, corresponding to the partitions4+6+6, 4+5+7, and5+5+6.
The case corresponding to the partition4 + 6 + 6 cannot occur becauseN2(B4; 5) andN2(B4; 10)
overlap. The remaining two cases are settled similarly. We have thus proved the following.

Proposition 2.13 The graphB4 has no perfect 2-dominating set.2

Let us consider the undirected analog ofBk, which we denote byB�
k. Vertexj in B�

k is adjacent
to vertices2j; 2j + 1; bj=2c; 2k�1 + bj=2c, where these numbers are taken modulo2k. To illustrate,
vertex 0 is adjacent to vertices0; 1 and2k�1; vertex2k� 1 is adjacent to2k�1� 1; 2k� 2 and2k� 1.
Since the radius ofB�

k is k � 1 whenk > 1, it follows that a distancek � 1 PDS exists for allk > 1.
On the other hand, althoughf1g is a PDS forB�

1 andB�
2 , we have found no other values ofk for

which a PDS exists. In the proof of the following proposition, we give a case-by-case analysis which
shows that no PDS exists fork = 3; 4; 5.

Proposition 2.14 The undirected deBruijn graphB�
k has a perfect dominating set fork = 1; 2, but

has no perfect dominating set fork = 3; 4; 5.
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Proof: The fact thatf1g is a PDS forB�
1 andB�

2 was noted above. For the remaining cases,
n1(B

�
k; 0) = n1(B

�
k; 2

k � 1) = 3, and it is easy to see that these are the only two verticesv for which
n1(B

�
k; v) = 3. Further, there are only two vertices for whichn1(B�

k; v) = 4, namely2 + 23 + : : :+
2k�2 and1 + 22 + : : : + 2k�1 if k is odd and2 + 23 + : : : + 2k�1 and1 + 22 + : : : + 2k�2 if k is
even. The remaining vertices haven1(B�

k ; v) = 5. Now, supposeS is a PDS forB�
k for somek. Let

xi be the number of elements ofS for whichn1(B�
k; v) = i. As we have just observed,xi must be 0

unlessi = 3; 4; 5. Moreover,x4 � 1 because the two elements withn1(B�
k ; v) = 4 have overlapping

neighborhoods. It follows that
3 � x3 + 4 � x4 + 5 � x5 = 2k: (2)

Supposek = 3. Equation (2) cannot hold unlessx3 = x5 = 1. Without loss of generality we
may assume0 2 S. This means that any vertex ofB�

3 whose neighborhood overlapsf0; 1; 4g cannot
be inS. This leaves only the possibilitiesS = f0; 3g and= f0; 7g, neither of which are a PDS.

If k = 4 then Equation (2) cannot hold unlessx3 = x5 = 2. With both0 and15 in S, we find that
the remaining 2 elements ofS must be from the setf6; 9; 11g. In order that element 3 be dominated,
we must have6 2 S, but neither of the neighborhoods of 9 and 11 are disjoint from the neighborhood
of 6. Thus,B�

4 has no PDS.
Now supposek = 5. Equation (2) cannot hold unlessx3 = x4 = 1, which means that one of

f0; 31g and one off10; 21g must be inS. Without loss of generality we assume0 2 S. If 10 2 S,
then either 15 or 30 must be inS. If 15 2 S, then the only possibilities for the remaining 4 elements
of S come from the setf4; 6; 8; 9; 12; 13; 17; 22; 25g. A careful analysis of neighborhoods shows that
it is impossible to complete the description ofS in this case. In case30 2 S, the remaining 4 elements
of S must come from the setf4; 6; 9; 12; 17; 19; 22g. Again, it is impossible to completeS. We may
conclude that 10 is not inS and that 21 is inS. Again, one of 15 or 30 is inS. In the case15 2 S,
the remaining 4 elements ofS must be inf4; 6; 9; 12; 17; 18; 25g; in the case30 2 S, the remaining 4
elements ofS must come fromf4; 6; 9; 12; 17; 18; 19g. In both of these cases, we find thatS cannot
be completed. Therefore no PDS exists forB�

5 . 2

3 Variations on PDS

Domination, in general, can be thought of as a binary relation of the form “x dominatesi”, where
x 2 X, i 2 I, andX need not be the same asI. Perfect dominating sets can be defined for this general
notion of domination as follows. We call a dominating setS 2 X perfectif eachi 2 I is dominated
by a uniquex 2 S. With this definition, a perfect dominating set is not necessarily of minimum
size unlessX = I and the domination is symmetric. For example, in vertex-edge domination on
undirected graphs, consider a pathP of 3 vertices. The two end vertices form a PDS, but the center
vertex forms a PDS also. In general, a perfect dominating set may not be of minimum size, although
it is always a minimal dominating set.

Let us consider some of these variations on domination in relation to the families of graphs con-
sidered in Section 2. While these variations have extension to distanced > 1, we will restrict our
discussion tod = 1. In vertex-to-edge domination, denotedve-domination, each vertexv dominates
all the edges of the form(v; q). There is a simple characterization for all undirected graphs that have
a perfectve-dominating set.

Theorem 3.1 The undirected graphG has a perfectve-dominating set if and only ifG is bipartite.
If G is bipartite, sayG = (U1 [ U2; E) with each edge inE incident with one vertex inU1 and one
in U2, then either of the setsU1 or U2 is a perfectve-dominating set forG. 2

In edge-to-vertex domination, denoted byev-domination, an edge(u; v) dominates vertexv.
Undirected graphs which have perfect dominating sets in this sense are also easily characterized.
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Theorem 3.2 The undirected graphG has a perfectev-dominating set if and only ifG has a complete
matching, in which case the set of edges in the complete matching form a PDS.2

In Qk, for example, we see that a perfectev-dominating set is the set of edges with one vertex in
one(k�1)-dimensional subcube and the other vertex in a vertex-disjoint(k�1)-dimensional subcube.
Similar constructions yield perfectev-dominating sets forCCCk andCCPk.

For edge-to-edge domination, denoted byee-domination, an edge(u; v) dominates all edges of the
form (v; p). Although we do not have a complete characterization of graphs with perfect dominating
sets of this type, we will list a few of the more immediate results. The techniques of Section 2.1
can be used to yield a linear time decision algorithm that decides whether a tree has a perfectee-
dominating set. As a consequence of the fact that an undirected graph with a 4-cycle can have no
perfectee-dominating set, we find that meshes, tori, and hypercubes have no perfectee-dominating
sets for dimension 2 or more. It follows similarly thatCCC3 andCCC4 have no perfect dominating
set of this type. On the other hand, it is easy to show thatCCP3 does have a perfectee-dominating
set.

In [14], Laskar and Peters study the domination numbers of arbitrary graphs forve-, ev-, and
ee-domination.

4 Related Questions

Throughout the paper we noted several families of graphs for which the characterization of those
with perfectd-dominating sets is incomplete. It would be of particular interest, however, to complete
the characterization of graphs with perfect dominating sets for higher dimensional meshes and tori,
cube-connected-cycles, and the undirected de Bruijn graphs.

There is a closely related question which arises from the placement of several different types
of resources in a parallel computer. In order to perform this placement optimally on a given inter-
connection network, one is interested in the existence of several disjoint perfectd-dominating sets
for the graph of the network. Consider, for example, the torusT2(5; 5) with one PDS given by
f(1; 1); (2; 4); (3; 2); (4; 5); (5; 3)g. Using this set and its translates, it is straightforward to check that
T2(5; 5) has the maximum possible of 5 disjoint PDSs. For the hypercubesQk which have a PDS,
namely those withk = 2t � 1, a perfect code forQk, together with its cosets, yield a partition of the
nodes ofQk, where each cell of the partition is a PDS. Existence of multiple perfectd-dominating
sets for other families of graphs is largely unexplored.

There are a number of interesting and quite general questions that involve constructing perfect
dominating sets for a graph from a given subgraph, or involve determining subgraphs which prevent
a graph from possessing a PDS. We mention just two of these here and refer the reader to [17] for
further discussion of these.

Question 1. What are theforbidden subgraphsof perfect domination for trees (or some other large
class of graphs) for various notions of domination?

In addition to the subgraph requirement, more specifications may be added, such as for trees, one
may wish to specify that certain leaves of the subgraphs are also leaves of the tree.

For thevv-domination considered in this paper, Theorem 2.1 showed that there are no forbidden
subgraphs. However, if one requires that certain nodes of the subgraph are leaves, then there are
forbidden subgraphs. For example, the complete binary tree of height2, where all the leaves of the
binary tree must be leaves of the treeT , is a forbidden subgraph ifT is to have a PDS.

In the case ofve-domination, for example, recall that a graph has a PDS of this type if and only
if it is bipartite. Thus, we find that a graph has a perfectve-dominating set if and only if it does
not contain an odd cycle. The forbidden subgraphs for perfectve-domination for the class of all
undirected graphs is the set of odd cycles. In the case of edge-vertex domination, however, there are
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no forbidden subgraphs for the class of all graphs. For, given any graphG = (V;E), consider the
product graphG�Q1, in which corresponding to every vertexv 2 V there is a vertexv0 (in the copy
of G) with an edge betweenv andv0. The set of new edgesfv; v0g forms a perfectev-dominating set.

Question 2. Given a graphG = (V;E), and a subsetS of V (or ofE), is it possible to add edges to
G to makeS a perfect dominating set for some supergraphG0 of G?

Admittedly, Question 2 is open-ended as stated. One can impose additional constraints onG0 such
as requiring that it be connected, say, or that it be planar. If we require that the graphG0 be connected,
andG andG0 are undirected, then we have the following observations. To avoid trivialities, we
assume thatG has at least two vertices.

If vertex-to-vertex domination is used, we find that a connectedG0 can be created if and only if
each of the following conditions holds.

� jSj � 1

� No vertex ofG is dominated by more than one vertex ofS

� The number of undominated vertices inG is at least as large as the number of isolated vertices
of G that are inS.

If vertex-to-edge domination is used, then a connectedG0 can be created if and only if each of the
following conditions holds.

� jV j � 1 � jSj � 1

� Every edge ofG is dominated by exactly one vertex ofS.

If edge-to-vertex domination is used, then a connectedG0 can be created if and only ifS is a
perfect matching forG.

If edge-to-edge domination is being used, then a connectedG0 can be created if and only if each
of the following conditions holds.

� jSj � 1

� Every edge ofG is dominated by exactly one edge ofS

� G has only two vertices, or at least one vertex is not an endpoint of an edge ofS.

Proofs of the above observations will appear in [17].
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