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Abstract

A dominating sefS of a graph(7 is perfectif each vertex of7 is dominated by exactly one vertex

in S. We study the existence and construction of PDSs in families of graphs arising from the
interconnection networks of parallel computers. These include trees, dags, series-parallel graphs,
meshes, tori, hypercubes, cube-connected cycles, cube-connected paths, and de Bruijn graphs.
For trees, dags, and series-parallel graphs we give linear time algorithms that determine if a PDS
exists, and generate a PDS when one does. For 2- and 3-dimensional meshes, 2-dimensional tori,
hypercubes, and cube-connected paths we completely characterize which graphs have a PDS, and
the structure of all PDSs. For higher dimensional meshes and tori, cube-connected cycles, and de
Bruijn graphs, we show the existence of a PDS in infinitely many cases, but our characterization

is not complete. Our results include distamedomination for arbitraryi.

1 Introduction

Supposez = (V, E) is a graph with vertex sét and edge sek. A vertexi is said todominatea
vertexj if E contains an edge fromto ; or if i = 5. A set of verticesS C V is called adominating
setof GG if every vertex ofG is dominated by at least one membersfWhen each vertex af is
dominated by exactly one element®fthe setS is called aperfect dominating séPDS) ofG.

The size of a set of least cardinality among all dominating set€-fig called thedomination
numberof G and any dominating set of this cardinality is callechemimum dominating sdor G. It
is clear that a perfect dominating set for a graph is necessarily a minimum dominating set for it as
well. These notions can be extendeditdomination, where a vertexs said tod-dominatea vertex
j if there is a path fromi to j in G of length at mostl. Whend > 1, we will use the terminology
distanced PDSor perfectd-dominating seto describe a subsét of vertices of a grapléz such that
every vertex of7 is d-dominated by a unigue vertex #

The concept of a perfeet-dominating set seems to have appeared first in a paper by Biggs [5],
who introduced the termerfectd-codeto denote what we call a perfe¢tdominating set. Biggs [5, 6]
was concerned with characterizing all perfdetrror correcting codes, and claimed that the proper
setting to study such issues is in the class of distance-transitive graphs. He defiistdnae-
transitive graphG as a connected graph with distance functdosuch that whenever, v, x, y, are
vertices ofG for which §(u,v) = d0(z,y), there is an automorphism of G such thato(u) = =
ando(v) = y. Using algebraic techniques, Biggs derived an important necessary condition for
the existence of a perfedtcode in a distance transitive graph and applied his condition to several
distance-transitive graphs including the classical hypercube graph.
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Later Bange, Barkauskas, and Slater [1], apparently unaware of Bigg’s work, defined the class of
efficientdominating sets, which is exactly the same as the class of perfect 1-dominating sets. They
concentrated on finding perfect dominating sets in trees, showing that there are linear-time algorithms
that decide if a tree has a PDS, and if so then produce one [2].

Our motivation for studying the notion of perfect domination in graphs arose from our work
involving resource allocation and placement in parallel computers [15]. To see how PDSs arise in this
context, suppose we have a parallel computer whose processors (pes) and interconnection network
are modelled by the grapl = (V, E'), where each pe is associated with a vertex;and a direct
communication link between two pes is indicated by the existence of an edge between the associated
vertices. Suppose, further, that we have a limited resource such as disks, 1/0 connections, or software
modules, and we want to place a minimum number of these resource units at the pes, with at most
one per pe, and so that every pe is within a distahoé at least one resource unit. Finding such a
placement involves constructing a minimuhtdominating set for the grapfi. If G has a perfecd-
dominating set, this represents an optimal situation in which there is neither duplication nor overlap.
Even when a distanaé PDS does not exist for a given graph, information about perfect dominating
sets for related graphs can be useful to help construct near optirdmminating sets. This is
particularly true in graphs with quite regular structures, which are the graphs that arise from parallel
computers.

Determining if an arbitrary graph has a dominating set of a given size is a well-kddRn
complete problem [8, 13]. Straightforward proofs can be used to show that it i&dPscomplete to
decide if a graph has a PDS, and the problem rem&iflscomplete even if the graphs are restricted
to 3-regular planar graphs. Thus the general problem of determining if a graph has a PDS is quite
hard, but we show that for many significant classes of graphs it is manageable.

In Section 2 we consider whether perfect dominating sets exist for several classes of graphs which
arise in the context of networks for parallel computers. These families include meshes, tori, trees,
dags, series-parallel graphs, hypercubes, cube-connected cycles, cube-connected paths, and de Bruijn
graphs. Except for hypercube graphs, none of these is distance transitive, and therefore the Biggs
condition does not apply.

The existence of perfedkdominating sets for trees, dags, and series-parallel graphs is studied in
Section 2.1. For fixed > 1, we give linear time algorithms that determine if a peri&éctominating
set exists, and generate them when they do exist. In Section 2.2, we completely characterize all 2- and
3-dimensional meshes and 2-dimensional tori that possess a PDS and also characterize the structure of
the existing PDSs. For 2-dimensional meshes and tori we extend this to digtRX®s for arbitrary
d.

Distanced perfect dominating sets for hypercubes and hypercube related networks such as cube-
connected cycles and cube-connected paths are considered in Section 2.3. For completeness we
include the complete characterization of distadcBDSs for hypercubes, which follows from the
results on perfecaf-error correcting codes. Our characterization of the cube-connected cycles which
have a PDS and the structure of the existing PDSs is not complete, however. For, while we have
shown that there are infinitely many dimensidgngor which cube-connected cycles of dimension
have a PDS, and that no PDS exists for dimensions 2 and 5, we do not know if there are infinitely
many dimensions for which a PDS does not exist. The situation for cube-connected paths is much
simpler. In Section 2.3.3, we show no PDS can exist for cube-connected paths of even dimension,
while for cube-connected paths of odd dimension, we construct the PDSs, which are unique up to
isomorphism.

Graphs which are constructed from binary shift register sequences, called de Bruijn graphs, are
considered in Section 2.4. For directed de Bruijn graphs, which we denaofg, bywe construct
distance 1 PDSs for alk and show the existence of distanéd’DSs for infinitely many values of
k. Undirected de Bruijn graphs, denoted By, have a PDS fok = 1, 2, but we show that no PDS
exists fork = 3,4,5. Whether distance PDSs exist forB; whenk > 5 andk—1 > d > 1 is not



known.

2 Perfect Dominating Sets for Graphs

Let Ny(G,v) denote the set of vertices in the gragh= (V, E) within a distancel of vertexv and
letng(G,v) = |N4(G,v)|. If S'is a perfecd-dominating set fol7 then{N,;(G,v) : v € V} forms a
partition of V- and

> na(Gv) =|V|. 1)

vES
WhenG is regular or nearly regular, Equation ( 1) can be simplified, which provides a useful tool in
combinatorial arguments for the existence of a PD& ofWe note also that ifl is at least the size of
the radius of7, thenG has a distancé PDS.

As we investigate the existence of perfect dominating sets in the families of graphs mentioned, we
use many different techniques, depending on the particular graphs under consideration. For example,
we introduce linear time algorithms to determine perfect dominating sets in trees, dags, and series-
parallel graphs. For tori, hypercubes, cube-connected paths, and directed de Bruijn graphs, a mixture
of algebraic and combinatorial methods are used. Several ad hoc methods are required for meshes,
cube-connected cycles, and undirected de Bruijn graphs.

2.1 Trees

Let T be a tree with two vertices; andus that have a common parent, and supp®@skas the
property that any minimum dominating set fér must containu; andus. ThenT cannot have a
perfect dominating set. This means, for example, that a complesey tree of height greater than

1 fails to have a PDS, for any. > 1. On the other hand, as we shall see in the following theorem,
there are no “forbidden” subgraphs that prevent perfect dominating sets in arbitrary trees or arbitrary
graphs.

Theorem 2.1 Given any graphG and any positive integet, there is a graphG’ containingG as an
induced subgraph, such thét' has a distancel PDS. Given any tre&" and any positive integet,
there exists a tre@” containingZ’ as a subtree and which has a distantEDS.

Proof: Given a grapldr = (V, E), letu be a new vertex not it¥, and letG’ have verticed” U {u},
and edge® U {{u,v} : v € V'}. Then{u} is a distancel PDS forG' for anyd.

For the tree result we will give the proof far = 1 as the proof ford > 1 is similar. Let the
treeT be given, and supposeis its root. We will proceed recursively, simultaneously building the
treeT’ and a perfect dominating sef, as we go. Initially, 7’ = T andS = ¢. If r is a leaf, add a
child ¢ to it and placey in S, otherwise, choose a child of sayp, add it toS. Recursively apply this
procedure to the subtrees rootea’atother children and to the subtrees rooteg'sgrandchildrend

Note that in the above construction’Bf, the only vertices added f6 were added to leaves @f.

The question of whether an arbitrary trEénas a perfect dominating set can be answered in time
that is linear in the number of nodes f To see how this can be done, consider the following
algorithm.

Let V' denote the set of vertices @f and let/(v) denote the label of a vertexe V', wherel(v)
is a subset of C, D, N'} determined by the rules described below. Conceptually, the label of wertex
holds the information of the possible assignment @k an element in some PDS that, at least up to
that stage of the construction, is possible. Thu€; & [(v) thenv is already dominated (covered) by
one of its children in some PDS construction to that stagl, ¢ [(v) thenv is not dominated by any
of its children and could be a dominator. Finally, iV € /(v) then all ofv’s children are dominated



Algorithm 2.1 (PDS Finder for Trees)
LetV denote the set of vertices ‘Bfand let/(v) denote the label of a vertexe V.

1. Ifvis aleaf ofT, initialize I(v) = {D, N }.
2. Initialize node = root of T'.

3. TraverseTl in postorder, computing the label abde as soon as the labels of all its children
have been computed. Computation stops if the computed label is empty, for no PDS exists for
T.

but none of them is a dominator (i.@.needs to be covered but cannot be a dominator itself). More
specifically, if all ofv’s children have labels, we compuiés labeli(v) as follows:C € I(v) if v has

a child whose label contain? while the labels of the remaining children®o&ll containC; D € [(v)
provided thatV is in the label of each child af; N € [(v) if C is in the label of each child af; if
none of these hold{(v) = ¢.

The algorithm proceeds by computing the labels of the vertic&sinfpostorder and stops either
when the label of a node is determined to be empty, in which asas no PDS, or when the label
of the root is determined to be nonempty. All PDSsIbEan be generated by using the algorithm,
proceeding from the root in a depth-first search traversal, selecting a compatible element from the
label of each node. The computation of the labels is outlined in Algorithm 2.1.

We thus have shown the following result, which was also proven earlier in [2].

Theorem 2.2 LetT be a tree. Algorithm 2.1 determines whetfiehas a perfect dominating set in
time proportional to the number of vertices 'Bf Moreover, all perfect dominating sets fér are
found by this algorithmOd

A straightforward modification of Algorithm 2.1 and of the definitioni¢#) provides an algo-
rithm to determine the existence of a distandeDS.

Corollary 2.3 LetT be a tree. For fixed/, the question of whethéF has a perfecti-dominating

set can be answered in time proportional to the number of verticés. ofFurther, if a perfectd-
dominating set exists then one can be determined in time proportional to the number of verfices of
|

The above methods can also be used to give a linear time decision algorithm to determine whether
a directed acyclic graph (dag) has a distath&DS [16]. Adapting work on series-parallel graphs [18,
23, 24], these methods extend to yield a PDS decision algorithm for them in time proportional to the
size of the graphs [16].

2.2 Meshes and Tori

Let My (m1,mo,...,my) denote ak-dimensional mesh of sizei; x ms X ... X my, where we
will assume the labelling is such that; < my < ... < my. The vertices of thig-dimensional
mesh are identified astuples of integergiy, s, ..., i), wherel < i; < m;forl <j < k. An
edge is present between two vertices if and only if their labels differ in only one component and that
difference is one.

Thek-dimensional torus of size; x mg X ... x my, denoted byl (mq, mo, ..., my) is thek-
dimensional mesiMj (mq, mo, ..., my) enhanced withvrap-aroundconnections. Two verticas =



(w1, ug,...,ux) andv = (vy,ve,...,vx) Of the torus have a wrap-around connection in component
t provided{u;, v;} = {1, m;} and, for allj # ¢, u; = v;.

Itis easy to characterize those 1-dimensional meshes and tori that have a dide&ree\We state
these in the following.

Theorem 2.4 The 1-dimensional mesh/;(m) always has a distancé PDS for anyd. The 1-
dimensional torug’; (m) has a distancel PDS if and only ifn = 0 mod (2d + 1). O

In the next theorem, we give a characterization of the 2-dimensional6mi., n) that have a
distanced PDS. Our proof of the characterization, which appears in [16], shows also that foi each
there is only one distaneéPDS, up to isomorphism.

Theorem 2.5 The 2-dimensional torug; (m, n) has a perfect-dominating set if and only ifm, n}
is a member of

{{2,4dp}, {4, (4d—2)p}, {6, (4d—4)p}, ..., {2d, (2d+2)p} : p > 1} U
{{(2d?>+2d+1)p, (2d*> +2d+1)q} : p,q > 1}.

Thus we see that the only 2-dimensional tori for which distance 1 perfect dominating sets exist
areTy(2,4p), T»(4,2p), andT:»(5p, 5q), wherep andq are positive integers.

While we have not completed the PDS characterization for all 3-dimensional tori, we have found
several instances for which a PDS exists. For exanple, 3p, 6¢) has a PDS for all positive integers
p andq. In addition, for arbitrary positive integets, ps, . .., pk, the torusTy((2k + 1)p1, (2k +
1)pe, ..., (2k+1)px) has a PDS. Perfect dominating sets for these tori appear in [16].

Any distanced PDS for the 2-dimensional tord,(m,n), with m,n > 2d+1, can be used to
construct a distancé PDS for the infinite 2-dimensional medid; (oo, o), where we think of the
torus as being unrolled and copies of it placed, non-overlapping, to cover the mesh. In [3], Bange
et al. noticed a periodic distance 1 PDS for the infinite 2-dimensional mesh and used it to construct
dominating sets for 2-dimensional meshes of finite size. The periodic distance 1 PDS observed by
Bange et al. is also the PDS constructed in [16]Fof5, 5).

In the following two theorems we characterize all 2- and 3-dimensional meshes of finite size that
possess a PDS.

Theorem 2.6 The 2-dimensional mesh/s(m,n) has a PDS if and only if eithem = n = 4,
or {m,n} is a member of the sdf{2,2p+ 1} : p a positive integer}. Furthermore, the PDS for
M>(4,4), unique up to automorphism, {§1,2), (2,4), (3,1), (4,3)}. The PDS fotM»(2, 2p+1), Sp,
is also unique up to automorphism, where

S, = {(1 4 (i mod 2),1+2i) : 0 < i < p}.

Proof: First, it is straightforward to show that the given sets are indeed perfect dominating sets for
the specified meshes.

Now, supposes is a PDS forM»(2,n). If (1,1) is notinS, then exactly one ofl, 2) and(2, 1)
must be inS. If (1,2) isin S then(2, 1) cannot be dominated without overlapping, an¢if1) is
in S then the result will be a dominating set automorphic to one inclugding). We conclude that,
without loss of generality(1,1) € S. From this point, the remaining elements$fre completely
determined and we find that= 1 (mod 2) and thatS is as described in the statement of the theorem.

If T denotes a PDS fa¥b/z(m, n), wherem,n > 2, then the assumption thét, 1) is in T leads
to a contradiction. It follows that exactly one @f, 2) and (2, 1) must be inT’, and without loss of
generality we také1,2) to be inT. This forces(3,1),(2,4), and(4, 3) to be inT. Thus, ifn = 4
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thenT is a PDS forM,(4,4). If n > 4, however, therfl, 6) € T, leaving(3, 5) undominatedd

A characterization of perfect dominating sets for 3-dimensional meshes can be found by similar
methods, as the proof of the following theorem illustrates.

Theorem 2.7 Let2 < m; < my < mg. The 3-dimensional mesWs(m, ms, m3) has a PDS if and
onIy Ifm1 =m9 = m3 = 2.

Proof:  Supposes is a PDS forMs(mq,me, m3). It is easy to check thaf(1,1,1), (2,2,2)} is
a PDS forMs3(2,2,2), and that it is unique up to automorphism. Thus, it remains to show that
Ms3(mq, mo, m3) has no PDS for any other values:af, ms, ms.

Case 1: supposer; = mge = 2andmg > 2. If (1,1,1) € S, then(2,2,2) must be inS which
leaves(2,1,3) and(1,2,3) undominated. Consider, then, the possibility thiatl, 1) is not in S.
We must havé2, 1,2) and thereford1,2,1) in S. This is equivalent to the casé, 1,1) € S under
automorphism, however.

Case 2: supposei; = 2 andme > 2. If (1,1,1) € S, then we consider which element of
S can dominatg(1,2,2). The assumption thatl,2,3) € S leads to the fact thaf2, 1,2) is not
dominated; the assumption th@, 2,2) € S leads to the conclusion thé&2,1,4) is in S, leaving
(1,1,3) undominated.

Case 3: supposer; > 3. A similar but more lengthy case-by-case analysis establishes that no
meshM3(my, mo, mg) has a PDSO

For distanced > 1, we have completed the characterization of all 2-dimensional meshes that
have a distancé PDS and the characterization of all perfdelominating sets for them. We include,
below, the 2-dimensional meshes that have a distdri®®S but the complete statements and proofs
of these results are given in [16].

Theorem 2.8 The 2-dimensional mesis(n,m), 2 < n < m, has a distancel PDS if and only if
one of the following holds:

() n+m<2d+1
(i) n=m=2d+2
(iii) n <d+1 and (m mod 2d+2—n) € {1,...,2d+3—-2n}

|

We have shown that weaker results of a similar form holdifatimensional meshes, in that
My (ma,...,mg_1,n) has a perfecti-dominating set for infinitely many. wheneverd > m; +
-+ my_1 — (k—1), and there are straightforward formulas giving suctand the perfecti-
dominating sets [16]. However, it may be thaf (m,...,m;) does not have a distancePDS
whenmg,...,m; > 2d + 1 ford > 1 andk > 2.

2.3 Hypercubes and Related Graphs

Here we investigate the existence of distarigerfect dominating sets in the hypercube graph in Sec-
tion 2.3.1, and in two variations of the hypercube graph: the cube-connected cycles in Section 2.3.2,
and the cube-connected paths in Section 2.3.3.



2.3.1 Hypercubes

The hypercube graph of dimensidn which we denote by),, consists of2* vertices labeled as
binary k-tuples, and:2¢—! edges, where each edge joins two vertices whose correspohdines
differ in exactly one component. These graphs have a long and rich history [11] and have recently
become an important architectural model for several commercial parallel computers such as the Intel
iPSC and the NCUBE machines.

For a hypercube graph of dimensiéna distancel perfect dominating set is precisely a perfect
binary d-error-correcting code over an alphabeRbfsymbols. As illustrated in the survey article of
van Lint [25], these codes have been the object of great interest since their inception by Hamming [10]
and Golay [9] in the late 1940’s. All perfect binary error-correcting codes are known, in fact, all per-
fect codes over alphabets which are finite fields are known [25]. Perfect binary single-error-correcting
codes of lengtlt exist if and only ifk 41 is a power of 2, and when this is the case, can be constructed
directly using algebraic methods such as those described in [4] or can be constructed recursively, as
shown by Golay [9]. The only perfect, binary, multiple-error-correcting code is the 3-error correcting
Golay code of dimension 23. We state these results in terms of disfdPb& in the following.

Theorem 2.9 Thek-dimensional hypercubé);., has a distance perfect dominating set if and only
if one of the following conditions is satisfied.

(i) k<d
(ii) d =1andk + 1 is a power of two
(ii) d =3 andk = 23.

|

2.3.2 Cube-Connected Cycles

The cube-connected cycles network of dimengionwhich we denote by’ C'Cy, consists of &-
dimensional hypercube, each of wha@e“vertices” consists of a cycle df nodes [20]. For each
dimension, every cycle has a node connected to a corresponding node in the neighboring cycle in that
dimension. In order to be more precise, suppose that we label the no@&3@f as ordered pairs
(i, ), wherel < i < k anda is a binaryk-tuple. At positiona in the k-dimensional hypercube, the
k-cycle of nodes are labelled in, say, clock-wise order around the cy¢le a$, (2, «), ..., (k, a).
Moreover, two nodesi, o) and(j, 3) are joined by an edge in dimensioif and only ifi = j = ¢
and thek-tuplesa and differ only in thet-th component. Figure 1 illustrat€sC'Cs.

From the description we can see tiiaf'C), hask2* nodes3k2¢~! edges, a diameter @f, and
each node has degree 3 for> 3. These are some of the properties which make cube-connected
cycles an interesting alternative architecture for multicomputers.

Characterizing which cube-connected cycles have distdmpefect dominating sets appears to
be difficult. Our first result shows that if a distané®DS exists for &-dimensional cube connected
cycle graph, then a distandePDS will exist for all dimensions that are a multiple/of

Theorem 2.10 If CCC}, has a perfecti-dominating set, then so doé&’'C,,,;, for all m > 1 and
k>2d+1.

Proof: We form a projectionr of CCC,,,;, onto CCCy by 7 : (w,3) — (w mod k, a), where
;= i ® Bisk @+ O Biy(m—1)k forall 1 < i <k, and whered denotes thexclusive ooperation.
Itis straightforward to verify that with this projectiot;C C,,, is a covering space @f C'C}, such that
given any poin{s, «) in CCC}, and any poin{w, #) mapping ontdi, ), the distance (k — 1)/2]-

neighborhood of w, ) is mapped isomorphically onto the distandé — 1)/2]-neighborhood of
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(i,). To construct a distancé PDS of CCC,,, let Sy be a distancel PDS of CCCy, and let
Sme = 7 1(Sk). A straightforward argument establishes tHay; is a distancel PDS forCCC,,;,
sinced < [(k —1)/2]. O

We summarize in the table below what we have learned about the existence of a RIXSdpr
forl1 <k <9.

The Table 1 entry fok = 1 clearly holds. The caske = 2 is easy, too, for equation (1) becomes
3-|S| = 2- 22, which is impossible.

We verify the caseg = 3,4 by exhibiting perfect dominating sets; and Sy for CCCs and
CCCy, respectively. A PDS fo€'CCj5 is

S5 = {(1,000), (2,110), (3,101), (1,111), (2,001), (3,010)}

and is unique up to isomorphism. It was also shown in [21] that a perfect dominating set exists for
CCCs5. Now, any perfect dominating set f6*C'Cy contains16 elements, with one element of the
PDS in each 4-cycle at the hypercube nodes. The set

{(2,a) : ais of odd parity} U {(4, ) : a is of even parity }

is a PDS forC'C (4, as can be easily verified.

A simple counting argument establishes the fact t&tCs; has no PDS. By equation (1), if a
PDS, says, did exist, it must contain 40 elements. Thus, some hypercube node must have at least 2
elements ofS' in its 5-cycle, but that is impossible.

Table entries fok = 6, 8, and 9 follow from Theorem 2.10.

2,111
1,111
2,011
1,011
2,110
1,110

2,010

1,010

Figure 1: Cube-Connected Cycles of Dimension 3.



PDS forCCC,

yes
no

yes
yes
no

yes

?

yes
yes

OO NOOOUTDWN P

Table 1: Existence of a PDS farC'C,

2.3.3 Cube-Connected Paths

The cube-connected paths network of dimengipwhich we denote by'C Py, is very similar to the
cube-connected cycles except that the cycles at the hypercube nodes are replaced by paths of length
k. For each dimension, the path at a hypercube node is connected to the corresponding node in the
path located at the neighboring hypercube node in that dimension. As in the cube-connected cycles,
we label the nodes af'C P, as ordered pair&, o), wherel < i < k anda is a binaryk-tuple. At
position « in the k-dimensional hypercube, the nodes of the path of legth nodes are labelled
(1,a),(2,),...,(k,a). Notice that two node§i, «) and(j, 3) are joined by an edge in dimension
t if and only if: = 5 = ¢ and thek-tuplesa andg differ only in thet-th component. An example of
C'CPs is pictured in Figure 2.

From the description of cube-connected paths, we seetbd®, hask2k nodes,(?;k—2)2’“—1
edges, a diameter 8f — 2, and node degrees 2 and 3, where nodes with lghets) and (k, «)
have degree 2, and other nodes have degree 3. One advantage of the cube-connected paths over cube-
connected cycles is that@C P, has two disjoint copies of'C' P, in it, while the corresponding
statement folC' C'Cy, is false. This permits some recursive algorithms to be developed more cleanly
on theCCP than on theCCC.

Theorem 2.11If k£ is an odd positive integer, theffC P, has a perfect dominating set which is
unique up to isomorphism and is given by

T, = {(i,a):i=1(mod4) and «is of even parity} U
{(i,) : i =3 (mod 4) and « is of odd parity}.

If k& is even therC'C P, has no perfect dominating set.

Proof: Inthe case whehis odd, the demonstration th@} is a PDS forCC P, is straightforward,
so we do not include it here.

Supposes is a perfect dominating set farC P,,. For eachl < i < k, letz; denote the number
of elements ofS with label (i, @), wherea is arbitrary. Since any node of the forfiy o) must be
adjacent to a unigue elementgbf the form(i—1, «), (i+1, «), or (i, 3), where the binary:-tuples
« andg differ only in theiri*® component, the; must satisfy the following system of equations:

2x1 4+ 1z = 2k
r1 + 2]72 + I3 = 2k
To + 2x3 + x4 = Qk

Tp—o + 2mp_1 + oz =2F
Tp—1 + 237]9 :2k



Let d;, denote the determinant of the matrix of coefficients of the above system of equations.
Sinceds = 3, d3 = 4 andd, = 2d;_1 — dj,_o for £ > 3, it follows thatd, = k + 1 for all & > 2.
Thus, the above system has a unique solution. The unigueness of the PDS, up to isomorphism, now
follows easily fork odd.

For k even, sayk = 2m, and, forl < ¢ < m, a solution to this system is obtained by taking
Toi_1 = (m—i+1)28/(2m+1) andzy; = 2% /(2m+1). Since these are not integer values, we may
conclude thaC’ C P, has no PDS wheh is even.O

2.4 Binary de Bruijn Graphs

Let B, denote the graph whose vertices are binatyples, and for which an edge is directed from
the vertexzizs ... xp t0 vertexy,ys . ..y, provided thatrozs ...z = y1y2...yx—1. This graph,
known as a (directeddinary de Bruijn graphor shift register graphis illustrated in Figure 3 for
k = 3. Parallel computers based on de Bruijn graphs have recently been suggested as alternatives to
hypercubes [19].

When it is notationally convenient, we will denote the verticeBpfaso, 1,. .. 2% — 1, using the
decimal equivalent of their binadtuple. With this notation, vertex has an edge directed from it to
vertex2; and to vertex2j + 1, where these numbers are taken modlo

The following theorem shows that the grapBs have perfect dominating sets for &l> 1, and
that for anyd, distanced perfect dominating sets exist for infinitely maky The theorem leaves
open the possibility there are distant®DS for other values d, a possibility partially discussed in
Proposition 2.13.

Theorem 2.12 For anyd > 1 and fork a positive integer of the forrt+1)m or (d+1)m — 1 or
k < d, let T, denote a subset of the verticesi®)f defined as follows.

2,101

2,011

2,100 2,110

2,010

Figure 2: Cube-Connected Paths of Dimension 3.
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Figure 3: de Bruijn Graph fok = 3.

() i =T = ... =Ty = {0},
(i) Tiaryminy—1 = Tignym-—1 U {7 : 200Im=1 < j < 2(dm 13,

(iil) Tiarym = Tiamym—1 U{2H™ —1 =55 € Tigpym-1}-

Then the sef, is a perfect dominating set fdsy.

Proof: It is easy to check that the Sgt} is a distancel PDS for B, whenk < d. Fork of the
form (d+1)m — 1, the fact thafl}; is a perfectd-dominating set fo3;, follows by induction and the
fact that all vertices of the forr@®j + 3 are within distancel of vertex; for all 0 < j < 2¥=¢ and

1 <a<d0<p <2 Fork of the form(d+1)m, the result follows by virtue of the fact that
T}, is the union off},_, which is a distancéd PDS for B;_1, and the “reflection” off},_; found by
taking the exclusive or of its elements with theuple binary representation 8f — 1. This reflection
provides a unique dominator for every vergeguch thatj > 2k-1. O

It may be the case that the only distantdominating sets are of the form given above, and in
particular that no perfect 2-dominating sets are possibl&favhenk —1 is a multiple of 3. However,
we have been unable to prove or disprove that statement. To see that none can éxistiernffer
the following argument. FirstNy(By4,v) has: 4 elements ib = 0,15; 5 elements ifv = 7,8; 6
elements ifv = 5,10; and 7 elements otherwise. The criterion supplied by equation (1) serves to
reduce the possibilities to just three, corresponding to the partitierts+ 6, 4+ 547, and5+5+6.
The case corresponding to the partitibr- 6 + 6 cannot occur becaus®,(By, 5) and No(By, 10)
overlap. The remaining two cases are settled similarly. We have thus proved the following.

Proposition 2.13 The graphB, has no perfect 2-dominating set.

Let us consider the undirected analogi)f, which we denote bys;. Vertex; in B} is adjacent
to vertices24,2j + 1, [j/2],25~" + |j/2], where these numbers are taken modifloTo illustrate,
vertex 0 is adjacent to vertic8s1 and2¢~1; vertex2* — 1 is adjacent t@*~! —1,2¥ — 2 and2* — 1.
Since the radius oB;; is k — 1 whenk > 1, it follows that a distancé — 1 PDS exists for alk > 1.
On the other hand, althougfi} is a PDS forBj and B;, we have found no other values bffor
which a PDS exists. In the proof of the following proposition, we give a case-by-case analysis which
shows that no PDS exists fér= 3,4, 5.

Proposition 2.14 The undirected deBruijn grapB;; has a perfect dominating set far= 1,2, but
has no perfect dominating set fbr= 3,4, 5.
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Proof: The fact thaf1} is a PDS forB; and B5 was noted above. For the remaining cases,
ny(Bj,0) = ny(B;, 2% — 1) = 3, and it is easy to see that these are the only two vertiéeswhich
n1(Bj,v) = 3. Further, there are only two vertices for whigh(B;,v) = 4, namely2 + 23 + ... +
2F=2and1 +22 ...+ 28 tif kisodd and + 23 + ... + 2" Land1 + 22 + ... + 2k 2if kis
even. The remaining vertices hang(B;,v) = 5. Now, supposé is a PDS forB;; for somek. Let
x; be the number of elements Sffor whichn, (B}, v) = i. As we have just observed; must be 0
unlessi = 3,4, 5. Moreover,z, < 1 because the two elements with(B}, v) = 4 have overlapping
neighborhoods. It follows that

3-234+4-24+5- x5 =2F 2)

Supposes = 3. Equation (2) cannot hold unless = z5 = 1. Without loss of generality we
may assume@ € S. This means that any vertex &f whose neighborhood overlags, 1,4} cannot
be inS. This leaves only the possibilities = {0,3} and= {0, 7}, neither of which are a PDS.

If & = 4 then Equation (2) cannot hold unless= =5 = 2. With both0 and15 in S, we find that
the remaining 2 elements 6fmust be from the s€ft6,9, 11}. In order that element 3 be dominated,
we must havé € S, but neither of the neighborhoods of 9 and 11 are disjoint from the neighborhood
of 6. Thus,B; has no PDS.

Now suppose: = 5. Equation (2) cannot hold unlesg = x4 = 1, which means that one of
{0,31} and one of{ 10,21} must be inS. Without loss of generality we assurfies S. If 10 € S,
then either 15 or 30 must be § If 15 € .S, then the only possibilities for the remaining 4 elements
of S come from the sef4, 6,8,9,12,13,17,22,25}. A careful analysis of neighborhoods shows that
itis impossible to complete the description®in this case. In cas#¥ € S, the remaining 4 elements
of S must come from the sét, 6,9, 12,17,19,22}. Again, it is impossible to complet§. We may
conclude that 10 is not il§ and that 21 is inS. Again, one of 15 or 30 is it$. In the casd5 € S,
the remaining 4 elements 6fmust be in{4,6,9,12,17,18,25}; in the cas80 € S, the remaining 4
elements ofS must come from{4,6,9,12,17,18,19}. In both of these cases, we find ttfatannot
be completed. Therefore no PDS exists Rj. O

3 Variations on PDS

Domination in general, can be thought of as a binary relation of the farnddminates”, where

z € X,i € I,andX need not be the same AsPerfect dominating sets can be defined for this general
notion of domination as follows. We call a dominating Se€ X perfectif each: € I is dominated

by a uniquez € S. With this definition, a perfect dominating set is not necessarily of minimum
size unlessX = I and the domination is symmetric. For example, in vertex-edge domination on
undirected graphs, consider a pd&lof 3 vertices. The two end vertices form a PDS, but the center
vertex forms a PDS also. In general, a perfect dominating set may not be of minimum size, although
it is always a minimal dominating set.

Let us consider some of these variations on domination in relation to the families of graphs con-
sidered in Section 2. While these variations have extension to distancd, we will restrict our
discussion tal = 1. In vertex-to-edge domination, denotee-dominationeach vertexy dominates
all the edges of the forrfw, ¢). There is a simple characterization for all undirected graphs that have
a perfectwe-dominating set.

Theorem 3.1 The undirected grapld’ has a perfecbe-dominating set if and only if7 is bipartite.
If G is bipartite, sayG = (U; U Us, E) with each edge irF incident with one vertex ifV; and one
in Us, then either of the setd; or U, is a perfectve-dominating set fo7. O

In edge-to-vertex domination, denoted by-domination an edge(u,v) dominates vertex.
Undirected graphs which have perfect dominating sets in this sense are also easily characterized.
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Theorem 3.2 The undirected grapty has a perfectv-dominating set if and only @& has a complete
matching, in which case the set of edges in the complete matching form aPDS.

In i, for example, we see that a perfeetdominating set is the set of edges with one vertex in
one(k—1)-dimensional subcube and the other vertex in a vertex-disjbint )-dimensional subcube.
Similar constructions yield perfeei-dominating sets fo€' CCy andCC P.

For edge-to-edge domination, denotedeleydominationan edg€u, v) dominates all edges of the
form (v, p). Although we do not have a complete characterization of graphs with perfect dominating
sets of this type, we will list a few of the more immediate results. The techniques of Section 2.1
can be used to yield a linear time decision algorithm that decides whether a tree has aeperfect
dominating set. As a consequence of the fact that an undirected graph with a 4-cycle can have no
perfectee-dominating set, we find that meshes, tori, and hypercubes have no pergominating
sets for dimension 2 or more. It follows similarly th@tC'Cs andC'C'C, have no perfect dominating
set of this type. On the other hand, it is easy to show ¢fatP; does have a perfeet-dominating
set.

In [14], Laskar and Peters study the domination numbers of arbitrary graphe-fogv-, and
ee-domination.

4 Related Questions

Throughout the paper we noted several families of graphs for which the characterization of those
with perfectd-dominating sets is incomplete. It would be of particular interest, however, to complete
the characterization of graphs with perfect dominating sets for higher dimensional meshes and tori,
cube-connected-cycles, and the undirected de Bruijn graphs.

There is a closely related question which arises from the placement of several different types
of resources in a parallel computer. In order to perform this placement optimally on a given inter-
connection network, one is interested in the existence of several disjoint pérflechinating sets
for the graph of the network. Consider, for example, the tdfu$, 5) with one PDS given by
{(1,1),(2,4),(3,2), (4,5), (5,3)}. Using this set and its translates, it is straightforward to check that
T5(5,5) has the maximum possible of 5 disjoint PDSs. For the hyperc@heshich have a PDS,
namely those witlk = 2! — 1, a perfect code fo€),,, together with its cosets, yield a partition of the
nodes ofQ);, where each cell of the partition is a PDS. Existence of multiple pedeiminating
sets for other families of graphs is largely unexplored.

There are a number of interesting and quite general questions that involve constructing perfect
dominating sets for a graph from a given subgraph, or involve determining subgraphs which prevent
a graph from possessing a PDS. We mention just two of these here and refer the reader to [17] for
further discussion of these.

Question 1 What are thdorbidden subgraphsf perfect domination for trees (or some other large
class of graphs) for various notions of domination?

In addition to the subgraph requirement, more specifications may be added, such as for trees, one
may wish to specify that certain leaves of the subgraphs are also leaves of the tree.

For thevv-domination considered in this paper, Theorem 2.1 showed that there are no forbidden
subgraphs. However, if one requires that certain nodes of the subgraph are leaves, then there are
forbidden subgraphs. For example, the complete binary tree of h&ig¥tiere all the leaves of the
binary tree must be leaves of the trEgis a forbidden subgraph 1 is to have a PDS.

In the case obe-domination, for example, recall that a graph has a PDS of this type if and only
if it is bipartite. Thus, we find that a graph has a perfestdominating set if and only if it does
not contain an odd cycle. The forbidden subgraphs for petfectomination for the class of all
undirected graphs is the set of odd cycles. In the case of edge-vertex domination, however, there are
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no forbidden subgraphs for the class of all graphs. For, given any @ragh(V, E), consider the
product graphG x )1, in which corresponding to every vertexc V there is a vertex’ (in the copy
of G) with an edge betweemandv’. The set of new edges, v’} forms a perfectv-dominating set.

Question 2 Given a graplG = (V, E), and a subsef of V' (or of E), is it possible to add edges to
G to makeS a perfect dominating set for some supergréafitof G?

Admittedly, Question 2 is open-ended as stated. One can impose additional constraihssion
as requiring that it be connected, say, or that it be planar. If we require that the@rapttonnected,
and G and G’ are undirected, then we have the following observations. To avoid trivialities, we
assume thatr has at least two vertices.

If vertex-to-vertex domination is used, we find that a conne¢édan be created if and only if
each of the following conditions holds.

e |S|>1
¢ No vertex ofG is dominated by more than one vertex%f

e The number of undominated verticesGhis at least as large as the number of isolated vertices
of G that are inS.

If vertex-to-edge domination is used, then a connectedan be created if and only if each of the
following conditions holds.

o VI-12>15|>1
e Every edge of7 is dominated by exactly one vertex 8f

If edge-to-vertex domination is used, then a connec¢iédan be created if and only 8§ is a
perfect matching foG.

If edge-to-edge domination is being used, then a conne&tedn be created if and only if each
of the following conditions holds.

e |S|>1
e Every edge of7 is dominated by exactly one edge $f
e (G has only two vertices, or at least one vertex is not an endpoint of an edfje of

Proofs of the above observations will appear in [17].
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