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Abstract

Cube-connected cycles are a family of cubic graphs with relatively small diameters and regular struc-
ture, making them attractive models for parallel architecture design. The existence of perfect dominating
sets for any structural model of parallel computation is both useful for the construction of efficient al-
gorithms for that structure and indicative of practical design constraints. This paper gives a simple
algorithmic method for constructing perfect dominating sets on cube-connected cycles where they exist,
and proves nonexistence for all other cases. Specifically, standard perfect dominating sets (distance equal
to 1) are shown to exist for cube-connected cycles of order k, k not equal to 5. Moreover, the existence
of perfect dominating sets for all distances greater than 1 is disproved (with the trivial exception — the
distance equaling or exceeding the diameter of the graph).

Keywords: Cube-Connected Cycles, Dominating Sets, Perfect Dominating Sets, Parallel Ar-
chitecture, Parallel Algorithms.

1 Notation and Background

1.1 Cube-connected cycles

Formally, a cube-connected cycle of orderk 1 (here denotedCCCk) can be described as the labeled graph
(V;E) whereV , the vertices ofCCCk, is the setn

(i; j) : i 2 f0; : : : ; k � 1g ; j 2
n
0; : : : ; 2k � 1

oo
andE, the edges ofCCCk, is the set of unordered pairsf(i1; j1); (i2; j2)g where(i1; j1) and(i2; j2) are
elements ofV which satisfy either

i1 + 1 � i2 (mod k) and j1 = j2

or

i1 = i2 and jj1 � j2j = 2(k�i1�1):

The edges which satisfy the first condition are referred to ascycle edges; the remaining edges, exactly those
which satisfy the second condition (i1 = i2 and jj1 � j2j = 2(k�i1�1)), are referred tohypercube edges.

1Cube-connected cycles of orders smaller than 3 are traditionally ignored in the same manner that cycles of order smaller than
3 are ignored. However, various reasonable extensions of the definition (i.e. nonsimple graphs) will produce graphs small enough
to allow most results (including this one) to shown by inspection.
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By inspection, the removal of all hypercube edges produces a graph with2k components, each of which is
a k-cycle. Thus, contracting all the cycle edges inCCCk will produce a graph with2k vertices (in fact, a
hypercube). For this reason, eachk-cycle inCCCk which does not include any hypercube edges is referred
as asupervertexof the (embedded) hypercube. Moreover, theorigin of CCCk is thesetof vertices in the
supervertex located at 0.

In essence, the formal definition uniquely describes each vertex inCCCk by its position within the su-
pervertex (the cycleindex) and by the position of the the supervertex within the hypercube. Following the
conventions established for the hypercube, the position of a supervertex will be described as a binary string
(e.g. 010000000 or, in the form of a regular expression,010(7)). Specific vertices will be described with the
addition of an accent over the bit position corresponding to the index. (For simplicity, the bit positions will
indexed from 0 tok - 1 from left to right.) An example of a cube-connected cycle and the notation used here
is shown in figure 1. Informally, two vertices are adjacent ifeither they are located in the same supervertex
and the corresponding indices are adjacent in thek-cycleor they each have the same cycle index and have
supervertex locations which differ only in the bit position indicated by the index (accent). It follows that,
for anyk, each vertex inCCCk has degree 3, and, with this notation, the three neighbors can be described
simply — e.g., inCCC6, 10101̂1 has neighbors,1010̂11, 101011̂, and10100̂1.
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Figure 1: Cube-Connected Cycle of order 3

From the informal definition, it should be intuitive that, for any verticesv0 andv1 in CCCk, there exists a
graph isomorphism which sendsv0 to v1 — rotation or reversal of the dimensions (and corresponding cycle
indices) and/or reflection over any dimension as needed.

A perfect dominating set of distanced (here abbreviatedPDSd ) is a subset of the vertices of graph such
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that every vertex in the graph is dominated by exactly one vertex in the set. Formally, for any graphG,
let d(v; w) be the minimal path distance between the verticesv andw (with d(v; v) = 0). For a given
positive integer distanced, a vertexv is said tocoveror dominatew if and only if d(v; w) � d. Letting
V (G) denote the set of vertices ofG, a subsetX of V (G) is adominatingset with distanced if and only if
8v 2 V (G);9w 2 X such thatw coversv. A subsetX of V (G) is aperfectdominating set with distanced
if and only if 8v 2 V (G);9 a uniquew 2 X such thatw coversv. A standardperfect dominating set2 is
a perfect dominating set of distance 1; an example of a standard perfect set is shown in table 1 and figure
refpds3.

1.2 Motivation and Background

Cube-connected cycles, as mathematical structures, are interesting in and of themselves; however, they
have two properties which make them particularly attractive as potential structures for massively parallel
computers.

First, like the mesh, but unlike the hypercube, each node has a small, fixed degree. This allows the re-
design of larger systems without the need to redesign and rethink the individual processors. Also, from
the viewpoint of theoretical computer science, asymptotic analysis of hypercube algorithms holds troubling
questions regarding the computational power of processors which have�(logn) connections.

Second, like the hypercube, but unlike the mesh, the diameter of the graph grows slowly with respect to the
number of processors (�(logn) as opposed to�(

p
n)). Since algorithms designed for parallel architectures

often require data from all processors, reduction of the worst-case communication time may be a matter of
necessity.

Dominating sets are also an area of strong concern in the design of both parallel structures and parallel
algorithms. With a specified processor structure (such as the mesh, hypercube, or cube-connected cycle),
it is often necessary to find an efficient method of distributing limited or costly replicable items — power
sources, i/o ports, function libraries, algorithm information, etc. — among the processors. In some variations
of the problem, resources may conflict, and, in fact, with regular structures, having resources placed within
some (short) distance of every node is not always sufficient. Other considerations – such as the complexity
of the paths between each processor and its designated resource – are also considerations. Because of
regularity of the structures, a perfect dominating set is usually the best answer.

The existence of perfect dominating sets for the mesh family of architectures is fairly straightforward (de-
pending on the mesh) and the hypercube has been investigated exhaustively for this property however, results
for the cube-connected cycle architecture were not generally known beyondk > 12 andd > 1. Here, an
algorithmic method is shown for constructing aPDSd onCCCk whend = 1 andk 6= 5. The nonexistence
of nontrivial perfect dominating sets whend > 1 is also demonstrated.

2 Algorithmic Construction of Standard Perfect Dominating Sets

The existence of perfect dominating sets ford = 1 andk 6= 5 will be shown by explicit construction. In
addition to describing the vertices which belong to this set, it will also be useful to distinguish between the
non-member vertices by the direction in which the vertex which dominates it lies — not only will this make
the allocation scheme adaptable to a wide variety of uses, it will also be used to demonstrate correctness.

2The termstandard dominating setis intended to agree with various definitions of dominating set used when distance is not a
consideration.
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Location of
Supervertex Index 0 Index 1 Index 2

000 CH CH CH

001 CR CL R

010 R CR CL

011 CL R CR

100 R CR CL

101 CL R CR

110 CR CL R

111 CH CH CH

Table 1: Marking ofCCC3 showing a Standard Perfect Dominating Set

10 11 01

00 CH CH CH

01 CR CL R

10 R CR CL

11 CL R CR

Table 2: First Labeling Scheme Component

2.1 Vertex Marking

Each vertex inCCCk has two neighbors within the cycle and one neighbor adjacent along its hypercube
edge. Thus, four possibilities exist for each vertex. Either it is a resource node (in the perfect dominating
set), the vertex which covers it lies across the hypercube edge, or the vertex which cover it lies to the left or
right within the cycle. Formalizing the description:

R a member of the perfect dominating set (aResourcenode)

CH dominated by the adjacent vertex along the dimension indicated by the index (Covered
along a Hypercube edge)

CL dominated by the adjacent vertex within the same cycle to the left — meaning the vertex
whose index is 1 more (modk) (Covered by a node to the Left)

CR dominated by the adjacent vertex within the same cycle to the right — meaning the vertex
whose index is 1 less (modk) (Covered by a node to the Right)

A solution fork = 3 (d = 1) is presented with these labels in table 1 (inspection of figure 2 suffices to verify
that this is, indeed, aPDS1).

2.2 The Method

The general solution ford = 1, k 6= 5 is generated using copies of Table 2 and Table 3. First, the value of
k is decomposed into3a+4b wherea andb are nonnegative integers (note that this is possible for allk > 3

with the exception of 5). Then,a copies of the first component (table 2) are concatenated withb copies
of the second component (table 2). As an example, whenk = 11, the example shown in table 4 might be
produced.
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Figure 2: Cube-Connected Cycle of order 3 with Perfect Dominating Set (d = 1)

10 10 10 10

00 CH CL R CR

01 CR CH CL R

10 R CR CH CL

11 CL R CR CH

Table 3: Second Labeling Scheme Component

Table 4: Example Concatenation of Components

10 11 01 10 10 10 10 10 10 10 10

00 CH CH CH CH CL R CR CH CL R CR

01 CR CL R CR CH CL R CR CH CL R

10 R CR CL R CR CH CL R CR CH CL

11 CL R CR CL R CR CH CL R CR CH
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Now, given the position of any vertex inCCCk, its index and the the location of the supervertex within
the hypercube, the composite table can be used to provide a marking for each vertex such that the vertices
marked withR form a perfect dominating set.

The binary values immediately above the table (in our example, 10, 11, 01, 10, 10, 10, 10, 10, 10, 10, 10) for
which the corresponding bit is high are bitwise XOR’ed together (using 00 as the result for the supervertex
at the origin). The resulting binary number is the label of the row which will be used. The column is that of
the index.

Thus, in order to find the appropriate designation for101̂00100000, note that the supervertex located at
10100100000 has high bits in three locations — the first, third and sixth positions from left to right —
corresponding to values 10, 01, and 10; since10 � 01 � 10 is 01, the row labelled01 will be used; the
column is that underneath the accented 1; and, hence,101̂00100000 will be marked as a resource node.

2.3 Correctness:

The row chosen is dependent only on the location of the supervertex. Thus, the labeling within each cycle
can be read directly from the appropriate row of the table. Hence, it can quickly verified that, from left to
right (and wrapping around the end), the constraints on aPDS1 are followed within each supervertex — that
each vertex with designationR has left and right neighbors appropriately labeledCR andCL, etc. (note
that the tables above are constructed so that concatenation preserves this property). What may or may not
be so quickly verified is that edges between supervertices are also properly used (a vertex is marked with
CH/R if and only if it has a neighbor along its hypercube edge with designationR/CH).

Note that two supervertices connected to one another along dimensioni are connected at the vertex with
indexi. Thus, two vertices which are connected by an edge not in a cycle (a hypercube edge) have the same
index,i; the designations, therefore, come from the same column. Note also that supervertex locations must
differ in exactly one bit — the bit with indexi. Thus, the row used to label one vertex is different from
that vertex’s (only) cube-edge neighbor by an XOR operation with entry above columni. Now, a closer
examination of the columns of each initial table confirms that, for any row label, bitwise XOR’ing with that
binary value will not map the designationR/CH onto any designation thanCH/R.

Now, since every vertex has a designation,R, CH, CL, or CR; no vertex with designationR has any
neighbor marked incorrectly, and each of the markingsCH, CL, andCR correctly indicate the presence
of a resource node, it follows that the process of marking indicated by the tables has, in fact, generated a
perfect dominating set.

2.4 A Proof of the Non-existence of a PDS1 for k = 5

It does not follow that noPDS1 exists whenk = 5 simply because the above generating scheme does not
produce a proper marking for that case. The argument for nonexistence is more subtle. There are5�25 (160)
vertices inCCC5. If a PDS1 did exist, since each vertex covers exactly four neighbors, it would contain
exactly5� 25�2 (40) elements. By inspection, no supervertex can contain more than one element from the
PDS1. Since there25 (32) supervertices, by the pigeon-hole principle, some supervertex must contain more
than one element. Hence, the assumption that aPDS1 did exist is contradicted.
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3 Nonexistence of Perfect Dominating Sets with Greater Distances

With the exception of the distance equaling or exceeding the diameter ofCCCk, when noPDSd for CCCk

exists whend > 2. This can be restated as noPDSd with more than one vertex exists forCCCk when
d > 2. (Note: If d is less than the diameter ofCCCk, more than one vertex is necessary — this is not true
for all graphs, but follows from the automorphisms ofCCCk.)

The argument for nonexistence proceeds as follows: Whend � 5, the pattern of vertices covered by a single
vertex is sufficiently “irregular” to preclude the construction of aPDSd with more than one element. For
2 � d � 4, examination of various conditions on the number of vertices covered by a single vertex will
handle the majority of the remaining cases.

3.1 Elimination of Large Values ofd

The first set of cases will be all but a finite number of values ford. Specifically, the existence of aPDSd
with more than element is shown not to be possible whend � 5.

The general technique is to choose an arbitrary vertexv0 from CCCk, and demonstrate that there exists a
vertexv which is isolated— it is not covered byv0 and any vertex which does cover it also covers some
vertex which is already covered byv0. Thus, if we start to construct a perfect dominating set by the inclusion
of v0, we cannot include a vertex which coversv without having some vertex covered twice.

(By the symmetries ofCCCk, any arbitrary vertex is isomorphic to a particular vertex; so, it is sufficient to
demonstrate an isolated vertexv whenv0 is 0̂0k�1. This vertex will be referred to as thezeroof CCCk.)

3.1.1 Useful Definitions and Lemmas

Lemma 3.1.1 Any path inCCCk with the locations of the supervertices containing the endpoints differing
in bit positionp must include a visit to a vertex with indexp.

PROOF: The set of hypercube edges along dimensioni form a cutset; thus, the described path must include
one of these edges. The lemma follows immediately from the fact that the only vertices incident to these
edges have indexi.

Lemma 3.1.2 (The Distance Calculation Lemma)Letv0 andv1 be vertices inCCCk such thatv0 has
index i0, v1 has indexi1, and the locations of the supervertices containingv0 and v1 differ in the bit
positions described by the setH = fp0; : : : ; ph�1g. If x be the number of edges in the shortest walk on
thek-cycle starting at indexi0 and ending at indexi1 which includes a visit to every vertex with an index
in the setH thenx+ h is the distance inCCCk from a vertexv0 to a vertexv1.

PROOF: Without loss of generality, letv0 be vertexi0 at the origin inCCCk, and letv1 be vertexi1 in the
supervertex whose location has high bits in positions described byH. Any path fromv0 to v1 must include
at leasth hypercube edges. Removing these edges from the path and mapping the remaining cycle-edges
onto thek-cycle in obvious manner will form a walk on thek-cycle. This walk starts at vertexi0, ends at
vertexi1, and visits every vertex with an index in the setH. The length of this walk must be at leastx. So
the distance fromv0 to v1 is leastx+ h.

Now, given a walkW in thek-cycle from vertexi0 to vertexi1 which visits every vertex with an index in the
setH which has lengthx, we can construct a walk fromv0 to v1 in the following way: Starting atv0, if the
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current vertex is the first vertex encountered with an index inH, include the hypercube edge and proceed;
otherwise take the next edge inW , map it onto the current supervertex, and proceed along that edge. This
walk has lengthx+ h, so the distance fromv0 to v1 must be at mostx+ h, and the lemma follows.

Corollary 3.1.1 Let v0; v1; v2 be vertices inCCCk. The distance fromv0 to v1 is less than the distance
from v0 to v2 if the index ofv1 is equal that ofv2 and set of bit positions where the supervertices containing
v0 and v1 differ is a proper subset of the set of bit positions where the supervertices containingv0 andv2
differ.

Lemma 3.1.3 The diameter (the greatest distance between any two vertices in a specified graph) ofCCCk

is b5k
2
� 2c whenk > 3; whenk = 3, the diameter is 6.

PROOF: Let v0 be the zero ofCCCk (equivalent to an arbitrary choice). Now, by the above corollary, ifv1
is any vertex inCCCk with index i1, then the distance fromv0 to v1 is not greater than the distance from
v0 to the vertex with indexi1 in the supervertex whose location has only high bits. Thus, it is sufficient to
find the indexi1 such that the shortest walk from0 to i1 on thek-cycle which visitsall vertices is maximal.
By inspection,i1 = 0 suffices for the casek = 3 andi1 = bk2c suffices for all other cases.

Lemma 3.1.4 k > 4d
5

is a necessary condition for the existence of aPDSd with more than one vertex for
CCCk.

PROOF: If a PDSd with more than one element exists forCCCk, then the shortest path between any two
elements in thatPDSd is at least2d + 1. Because that distance is at most the diameter ofCCCk, when
k � 4, 2d + 1 � b5k2 � 2c, and immediatelyd < 5k

4 . Whenk = 3, the diameter is 6, and the maximum
allowable distance for aPDSd is 2; thus, the lemma follows.

3.1.2 Isolated Points for Certain Values ofd

Let d = 8, and, therefore,k > 6, and the vertices

v = 1̂010(k�4)1

n1 = 1010(k�4)1̂

n2 = 0̂010(k�4)1

n3 = 1̂010(k�4)1

are well-defined.

Now, v is not covered by (within distanced of) the zero ofCCCk. This is the first application of the
distance calculation lemma; so, explicitly: the shortest walk on thek-cycle from0 to 0 which visits vertices
in f0; 1; 2; k � 1g has length6 (by inspection — recall thatk is least 6, making a cycle tour at least as long
as the walk given by the vertex sequence(0; 1; 2; 1; 0; k � 1; 0)); thus, the distance from the zero ofCCCk

to v is 6 + 3 (the number of hypercube edges traversed and/or the number of high bits in the location of the
supervertex containingv).

However, all of the neighbors ofv (exactlyn1, n2, andn3) are covered by the zero ofCCCk (this also
follows from the distance calculation lemma). Since any vertex which coversv must also cover at least one
of its neighbors, the vertexv is isolated. (In fact, this is a stronger condition – for every vertexv1 such that
d(v; v1) = d, any path of lengthd connectingv1 andv mustincludea vertex which is covered by the zero.)
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Thus, it is not possible, whend = 8, to select a set of vertices which cover all vertices inCCCk without
some vertex being covered at least twice. Hence, whend = 8, noPDSd exists forCCCk.

Similarly, whend = 10 andv = 1̂010(k�6)10, or d = 13 andv = 1̂0110(k�7)10, v can be shown to be
isolated. In both cases, the zero ofCCCk does not coverv, but does cover all three neighbors ofv.

Not every value ofd whered � 5 will produce a vertex which is not covered by the zero, but has all three
neighbors covered by the zero. However, it will be possible to demonstrate a vertexv which is not covered
by the zero and a setB of vertices which are covered by the zero so that every vertex which coversv must
cover some vertex inB.

For d = 5, let v = 0̂10(k�3)1 and letB be the setfb0; b1; b2; b3g whereb0 = 10̂0(k�3)1, b1 = 110(k�3)0̂,
b2 = 01̂0(k�3)1, andb3 = 010(k�3)1̂. Every vertex inB is covered by the zero,v is not, and all vertices in
BS fvg are well defined.

Let v1 be any vertex which coversv. If d(v; v1) < 5, v1 must coverb2 and b3 as well asv. Other-
wise, d(v; v1) = 5 and, if v1 does not cover eitherb2 and b3, d(1̂10(k�3)1; v1) = 4. Moreover, either
d(11̂0(k�3)1; v1) = 3 ord(110(k�3) 1̂; v1) = 3. Assume thatd(110(k�3) 1̂; v1) = 3; sinced(110(k�3) 1̂; b1) =
1, d(b1; v1) = 4. Otherwise,d(11̂0(k�3)1; v1) = 3; sinced(11̂0(k�3)1; b0) = 1, d(B1; v1) = 4. Thus, any
vertex which coversv must cover some vertex inB andv is isolated.

A similar argument suffices for the cased = 7 with

v = 0̂010(k�4)1 and B =
n
001̂0(k�4)1; 000̂0(k�4)1; 0010(k�4) 1̂; 0010(k�4) 0̂

o
:

Thus, whend 2 f5; 7; 8; 10; 13g, an isolated vertex exists, and it is not possible to construct aPDSd for
CCCk.

3.1.3 Isolated Points for Large Values ofd

Letd = 3n+2m+iwheren,m, andi are integer values such thatn � m � i > 0. Note that appropriate val-
ues forn,m, andi can be chosen to produce any positive integer except those inf1; 2; 3; 4; 5; 7; 8; 10; 13g:
Let v denotê11(n)0(k�m�n�1)1(m). Since

k >
4(3n+ 2m+ i)

5

> 2n+m+
m+ i

5
> 2n+m+ i

> n+m+ 1

this v is well-defined.

Now, the length of the shortest walk on thek-cycle from 0 to 0 which visits all vertices in
H = fm� k;m� k + 1; : : : ; k � 1; 0; 1; : : : ; ng is the minimum ofk (corresponding to a complete cycle
tour) and2n + 2m (any other walk must visit bothn andk �m and, since it is closed, each edge will be
included twice). Sincek > 2n+m+ i andm � i implies that2n+ 2m � 2n+m+ i, 2n+m = i is a
lower bound on the length of that walk. Thus, by the distance calculation lemma, the distance from the zero
of CCCk to v is at least(2n+m+ i) + (n+m+ 1), which is greater thand. Thus,v is not covered the
zero ofCCCk.

LetBn be the setn
B0B1 : : : Bn�1B̂n0

(k�m�n�1)Bk�m : : : Bk�1 : 8j 2 H;Bj 2 f0; 1g
o
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and letBm be the setn
B0B1 : : : Bn0

(k�m�n�1) ^Bk�mBn�k+1 : : : Bk�1 : 8j 2 H;Bj 2 f0; 1g
o

and letB = Bn
SBm.

Both 1(n)1̂0(k�m�n�1)1(m) and1(n+1)0(k�m�n�1)1̂1(m�1) are covered by the zero ofCCCk (the length
of the shortest walk from 0 ton in thek-cycle which includes vertices fromH is at mostn+2m; the length
of the shortest walk from 0 tok � m in the k-cycle which includes vertices fromH is at most2n + m;
(n+2m)+(n+m+1) � (2n+m)+(n+m+1) � d). Thus, by the corollary to the distance calculation
lemma, it follows that every element ofB is also covered by the zero ofCCCk.

Let v1 be any vertex inCCCk within d distance ofv. Let i1 denote the cycle index ofv1, and letH1 be
the set of bit positions where supervertices containingv andv1 differ. Now, choose a vertexbn from Bn and
a vertexbm from Bm such that8j 2 H, thejth bit of the location of the supervertex containingbn andbm
agrees with the corresponding bit of the supervertex containingv1.

If H1 � H (the set of indices fromH1 which do not appear inH) is empty, bothbn and bm lie in the
same supervertex asv1 and, immediately, at least one ofbn andbm is within distanced of v1 (v1 is within
distanced of the vertex with cycle index 0). Otherwise, the shortest walk on thek-cycle from i1 to 0
which visits all vertices fromH1 � H ends with a path from eithern or k � m to 0. Thus, there is
a walk on thek-cycle starting ati1, visiting every vertex inH1 � H, and ending at eithern or k � m

which is shorter. SinceH1 � H � H1, one of eitherbn or bm is closer tov1 thanv. Since any vertex
which coversv also covers some vertex already covered by the zero ofCCCk, if d is any value not in
f1; 2; 3; 4; 5; 7; 8; 10; 13g � f5; 7; 8; 10; 13g, noPDSd exists containing more than one element forCCCk.
COMMENT: Whend < 5, it is possible to show that no isolated vertices exist.

3.2 Nonexistence of Perfect Dominating Sets for2 � d � 4

LetC(d; k) be the number of vertices inCCCk covered by a single vertex. By the isomorphic properties of
CCCk, C(d; k) is a constant for fixedk andd. In fact, it will be shown that whenk > 2d, C(d; k) depends
only on the value ofd.

For most of the remaining cases, when2 � d � 4,C(d; k) will shown later to contain an odd prime factorp
which either does not dividek or is greater than2d. Both conditions preclude the existence of aPDSd for
CCCk. The first is shown immediately with the following lemma:

Lemma 3.2.1 If there exists aPDSd for CCCk andC(d; k) contains an odd prime factorp, thenk is
divisible byp.

PROOF: There arek�2k vertices inCCCk. Each element in thePDSd must cover exactlyC(d; k) vertices;
so, k2k

C(d;k) (the number of vertices in aPDSd) is an integer, and the lemma follows.

The structure of the argument for the second will be to show that a necessary condition for the existence of
a PDSd for CCCk whenk is a multiple of exactlyn factors of an odd primep such thatp > 2d is that
the number of elements in thePDSd must be divisible bypn (this is trivially true whenn = 0). Therefore,
for any primep > 2d, given thatk contains exactlyn factors ofp, k

pn
2k

C(d;k) must be an integer — implying
immediately thatC(d; k) cannot contain any prime factor greater than2d. Hence, ifC(d; k) does contain a
prime factorp greater than2d, noPDSd exists forCCCk.
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3.2.1 Necessary Definitions

By the automorphisms ofCCCk, if some vertex with indexi covers exactlyn vertices with indexj, then
every vertex with indexi covers exactlyn vertices with indexj. The following definitions make that property
explicit and offer a straightforward method of calculating the value ofn.

Definition 3.2.1 LetC(d; k)j be the number of distinct subsetsH of
f0; : : : ; k � 1g such that there exists a walk of lengthx on thek-cycle which starts at indexd, visits all
vertices inH, and ends at indexj subject tox+ jHj � d.

Lemma 3.2.2C(d; k)j is the number of distinct vertices with indexj in CCCk which are withind dis-
tance of a single vertex with an indexd.

PROOF: This follows from the distance calculation lemma. WithH taken as a set of bit positions, each
distinct subset ofH uniquely describes a supervertex location withinCCCk and, together withj, a unique
vertex inCCCk.

Corollary 3.2.1 The number of vertices covered by a single vertex,C(d; k), is

k�1X
i=0

C(d; k)i

.

Corollary 3.2.2 For all i; j 2 f0; : : : ; k � 1g, the number of distinct vertices with indexi which can be
covered by a single vertex with indexj isC(d; k)(d+i�j mod k).

CLARIFICATION : This follows from the automorphisms ofCCCk. If a vertex with indexj coversc vertices
with index i, then a vertex with index(j + x mod k) coversc vertices with index(i + x mod k). It now
follows that, for large values ofk, C(d; k) does not depend onk. Since our concern is now with a finite
set of values ofd, the set of values ofC(d; k) andC(d; k)j under consideration will also be finite (and
calculable by the method implicit in the definition ofC(d; k)j).

Lemma 3.2.3 For all k > 2d,C(d; k)j = C(d; 2d+ 1)j.

PROOF: Whenk > 2d, the value ofC(d; k)j does not depend onk. No walk of length at mostd starting
at d visits any vertex outside of the setS = f0; 1; : : : ; 2d� 1; 2dg. Immediately, anyH 6� S need not be
considered and8j 62 S, C(d; k)j = 0.

Corollary 3.2.3 For all k > 2d, C(d; k) = C(d; 2d + 1).

Corollary 3.2.4 For all j > 2d, C(d; 2d + 1)j = 0.

Now, given that a single vertex with indexj covers exactlyC(d; k)(d+i�j mod k) vertices with indexi, if Xj

is the number of elements in aPDSd for CCCk with indexj, then the sum overj ofXjC(d; k)(d+i�j mod k)

is total number of vertices inCCCk with index i. This property and similar necessary conditions can be
expressed as matrix relationships. The following definition will be useful in that regard.
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0
BBBBBBBBBBBBBBBBBB@

8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10
10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10
10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11
11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6
6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1
1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0
0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0
0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0
0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0
0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0
0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0
0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0
0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0
0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0
0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0
0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1
1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6
6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11

11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10
10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10
10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8

1
CCCCCCCCCCCCCCCCCCA

Figure 3: Example:M(5; 21)

Definition 3.2.2 For all n � 2d + 1, letM(d; n) denote then � n matrix such thatM(d; n)i;j =
C(d; 2d+ 1)(d+i�j mod n).

An example of such a matrix is shown in figure 3.

3.2.2 Properties ofM(d; pn)

Examining the definition, we find thatM(d; n)i;j = M(d; n)(i+1 mod n);(j+1 mod n). In essence, each row
of M(d; n) is the previous row “shifted” right (with wrap-around). Other properties of interest are:

Lemma 3.2.4 Each rowR in M(d; n) is nonzero, has no negative entries, and, in fact, has at least two
distinct nonzero entries.

PROOF: Applying the calculation method implicit in the definition ofC(d; 2d + 1), C(d; 0) = 1 and
C(d; 1) = d + 1. LetR be thejth row ofM(d; n), and, WLOG, assumej � d, the(j � d)th entry inR,
M(d; n)(j�d);j), is 1 and the(j � d+ 1)th entry inR is d+ 1.

Lemma 3.2.5 Whenn = qp wherep > 2d, each rowR in M(d; n) has the property that for allj, the
ith entry inR is nonzero for at most one value ofi � j (mod p).

PROOF: Recalling thatC(d; 2d + 1)j = 0 for all j � 2d + 1, thenC(d; 2d + 1)(d+i�j mod n) nonzero
implies thatd+ i� j mod n is less than2d+1 and, therefore, less thanp. If i0 � i1 (mod p), buti0 6� i1
(mod p)q, then at most one ofd + i0 � j mod pq andd + i1 � j mod pq is less thanp. By the definition,
at most one ofM(d; n)i0;j andM(d; n)i1 ;j is nonzero.

Lemma 3.2.6M(d; n) has rank at leastn� 2d.

PROOF: By inspection, the rowsd throughn � d � 1 are in diagonal form. (Whenj 2 fd; d+ 1; : : : ,
n� d� 1g andi < j�d, d+ i� j is an element off2d+ 1� n; 2d+ 2� n; : : : ;�1g. Sincen � 2d+1,
(d+ i� j mod n) � 2d+ 1 andM(d; n)i;j = 0.)

12



Theorem 3.2.1 Letn be a positive integer,M(d; pn) is regular whenp > 2d andp is prime.

PROOF: Let L be the isomorphism from<(pn) to itself which sends theith standard basis vector3 to the
(i+ 1 mod pn)th standard basis vector.

TreatingL purely as a linear transformation, the minimum polynomial ofL is �(�) = �(p
n) � 1. (The

minimum polynomial of a linear transformationL is the nonzero polynomial� of least degree such that
8v; (�(L))(v) = 0 4.) Verification is immediate since bothL(pn) andI(0)p are the identity transformation,
thus

8v 2 <p; (�(Ip))(v) = (I(p)p � I(0)p )(v) = I(p)p (v)� I(0)p (v) = 0

Minimality follows from consideration of the operation of any nonzero polynomial of degree less thanpn

on a standard basis vector.

Now, for any nonzero vectorv, the order ofv with respect to a linear transformationL is the nonzero
polynomial�v of least degree such that(�v(L))(v) = 0. The minimum polynomial� is a multiple of the
order of any vector; thus, for any nonzero vectorv 2 <(pn), the only possible values for�v are factors of
�(p

n) � 1. As shown in appendix 3.4, a complete factorization of�(p
n) � 1 is

f�� 1g
[8<
:
p�1X
i=0

�(ip
j) : j 2 f0; 1; : : : ; n� 1g

9=
; :

DefineS(v) as the subspace spanned by
n
L(n)(v) : n > 0

o
. (Formally,S(v) is an invariant subspace of

<(pn), the cyclic space relative toL generated by the vectorv.) The degree of the order ofv is the rank of
the subspaceS(v). (Let �v have degreer, �v(L)(v) = 0 implies thatL(r)(v) is a linear combination of
vectors from n

L(n)(v) : 0 � n � r � 1
o
:

Since�v(L)(v) has minimal degree, there does not existr0 � r such thatLr0(v) is a linear combination of

vectors from
n
L(n)(v) : 0 � n � r0 � 1

o
. Thus,S(v) has

n
I(n)p (v) : 0 � n � r � 1, wherer is the degree of�v

o

as a basis, and, directly, the rank ofS(v) is the number of vectors in that basis,r.)

Now consider the order ofR, an arbitrary row ofM(d; pn). S(R) is, by definition, the subspace of<(pn)

spanned by the row vectors ofM(d; pn) (L(i)(R) is also a row inM(d; pn)) for arbitraryi; and for any row
R0 in M(d; pn), there exists ani such thatR0 = L(i)(R)). Thus, degree of�R is the rank ofM(d; pn).

SinceR is nonzero and has no negative entries;(�p
n
�1 + �p

n
�2 + � � � + �+ 1)(L)(R) is a nonzero vector

and�R is not a factor of�p
n
�1 + �p

n
�2 + � � �+ �+ 1. Thus,�R must be a multiple of(�� 1).

Recall thatR has two distinct nonzero entries and that for allj, theith entry inR is nonzero for at most one
value ofi � j (mod p). Thus,

R0 =

0
@p(n�1)

�1X
i=0

�(ip)

1
A (L)(R)

3Thenth standard basis vector for<m is the unique vector~V 2 <
m with thenth entry, the only nonzero entry, equal to 1. As

used here, the enumeration of positions begins with 0; thus, the0th standard basis vector denotes(1; 0; : : :).
4The definition often includes the restriction that the leading coefficient must be 1 to avoid ambiguity.
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is a nonzero vector with at least two distinct entries. Immediately,(� � 1)(L) applied to that vector is
nonzero. Since

((�� 1)(L))(R0) = ((�� 1)(L))

0
@
0
@p(n�1)

�1X
i=0

�(ip))(L

1
A
1
A (R)

=

0
@(�� 1)

0
@p(n�1)

�1X
i=0

�(ip)

1
A
1
A (L)(R)

=

 
�(p

n) � 1Pp�1
i=0 �

i

!
(L)(R)

is a nonzero vector,�R has(
Pp�1

i=0 �
i) as a factor.

Since the rank ofM(d; pn) is at leastpn � 2d, �R cannot be a factor of

�(p
n) � 1Pp�1

i=0 �
(ipj)

for j � 1 since, otherwise, the degree of�R would bepn�(p�1)pj which, whenj � 1 is less thanpn�2d.
Thus,�R must include(

Pp�1
i=0 �

(ipj)) as a factor for allj � 0.

It follows that the order ofRmust be�(p
n)�1. The degree of�R beingpn, the rank ofM(d; pn) is therefore

pn and, sinceM(d; pn) is apn � pn matrix,M(d; pn) is regular (invertible).

3.2.3 The Relation ofM(d; k) to a PDSd for CCCk

Now the regularity ofM(d; pn) is applied to show the following theorem:

Theorem 3.2.2 Let k = qpn wherep is an odd prime such thatp > 2d, andn andq are positive integers.
If there exists aPDSd for CCCk, then the number of elements in thePDSd must be divisible bypn.

PROOF: Let k, p, n, andq be as described, and define thepn-index of a vertex as its cycle indexmod pn

(this notation is purely for convenience of expression). Now, the proof can be expressed in the following
two lemmas.

Lemma 3.2.7M(d; pn)i;j is the number of distinct vertices inCCCk withpn-indexj which can covered
by a single vertex withpn-indexi

PROOF: By an earlier lemma, the number of distinct vertices with indexj which can be covered by a
single vertex with indexi is C(d; k)(d+i�j mod pn); therefore, forj 2 f0; : : : ; pn � 1g, the number of
vertices with an index equivalent toj modulo pn which can be covered by a single vertex with index
i (WLOG, pn-index i) is

Pq�1
`=0 C(d; k)(d+i+`pn�j mod k). Now, C(d; k)(d+i+`pn�j mod k) is zero when

d + i + `pn � jmod � 2d + 1, implying that,C(d; k)(d+i+`pn�j mod k) is nonzero for at most value of

`. In fact,
Pq�1

`=0 C(d; k)(d+i+`pn�j mod k) = C(d; k)(d+i�j mod pn). BecauseM(d; pn)i;j = C(d; 2d +

1)(d+i�j mod pn) = C(d; k)(d+i�j mod pn), the lemma follows.

Definition 3.2.3 LetX be any set of vertices fromCCCk and let ~X denote the column vector in<k whose
ith entry, ~Xi, is the number of elements inX with pn-indexi.

14



Lemma 3.2.8 If X is a PDSd, thenM(d; k)� ~X =
�
2kq 2kq � � � 2kq

�T
.

PROOF: If X is a PDSd, then every vertex inCCCk with pn-index j must be covered by exactly one
vertex fromX. The number of distinct vertices withpn-index j covered by a single vertex withpn-index
i is M(d; k)i;j ; the number of elements inX with pn-index i is ~Xi. No vertex inCCCk is covered by
more one element ofX; so,M(d; k)i;j multiplied by ~Xi. must be the total number of distinct vertices with
pn-index i covered by the vertices inX with pn-index j. It follows that ifRj is thejth row ofM(d; pn),
thenRj

~X must be the total number of distinct vertices withpn-indexj covered by the setX. SinceX is a
PDSd, this be must the total number of vertices inCCCk with pn-index j. The lemma then follows from
the definition of matrix multiplication and the fact that there are exactly2k vertices inCCCk with any
arbitrary indexi — and, thus,2kq vertices with any arbitrarypn-indexi.

SinceM(d; pn) is regular, anypn length column vector~Y such thatM(d; k)� ~Y =
�
2kq 2kq � � � 2kq

�T

must have uniform entries. (One solution for~X is

 
2kqPpn�1

i=0 M(d; pn)i;j

2kqPpn�1
i=0 M(d; pn)i;j

� � � 2kqPpn�1
i=0 M(d; pn)i;j

!T

Immediately, sinceM(2d; pn) is invertible, this is theonly solution.) Noting that the entries in~X must be
integers, it follows that the sum of the entries in~X must be an integer which is divisible bypn. Under the
assumptions stated earlier, the number of vertices inX, an arbitraryPDSd for CCCk, is the sum of the
entries in~X; thus, the number of elements in an arbitraryPDSd for CCCk must be divisible bypn.

Theorem 3.2.3 If C(d; k) has any prime factorp > 2d, noPDSd exists forCCCk.

PROOF: Recall that the number of elements in anyPDSd for CCCk must be k2k

C(d;k) , an integer. For any
prime p > 2d, k can be written as= qpn wheren is a nonnegative integer andq a positive integer not

divisible byp. By the above, for anyPDSd for CCCk, for any primep > 2d, q2k

C(d;k) must be an integer for
some value ofq not divisible byp.

3.2.4 Specific Cases

Now, listing the calculated values ofC(d; k) in Table 5 (and noting that fork > 2d,C(d; k) = C(d; 2d+1)),
there are exactly two cases whereC(d; k) does not either contain a primep > 2d or any primep wherek
is not divisible byp — whend = 2 andk = 3 and whend = 3 andk = 5. This are small graphs, and an
exhaustive search reveals that, in these cases as well, there does not exist aPDSd for CCCk. Hence, for all
d > 1, noPDSd exists forCCCk.

COMMENT: Whend = 5, C(d; 2d + 1) is 84. While a similar matrix argument exists, the one given here
does not suffice. Also, it is not clear whether or the matrix argument could be generalized to handle arbitrary
values ofd. Thus, both arguments seem necessary.

3.3 Other Points of Interest:

There may be some extended results which limit the number of ways in which aPDS1 may be constructed
for CCCk(k 6= 5). Essentially, the obvious rotations, reflections, and alternate choices fora andb (such
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Table 5: Calculated values ofC(d; k)

d = 2 d = 3 d = 4

k = 3 8 14 20
k = 4 9 17 28
k = 5 10 20 36
k = 6 10 21 39
k = 7 22 42
k = 8 43
k = 9 44

thatk = 3�a+4� b) using the above scheme might be shown to form all possible perfect dominating sets
for d = 1 and certain values ofk. No immediate application of this result is known to the authors.

The existence and patterns generated by isolated points may have some application to the problem of finding
generalized dominating numbers – the size of the minimal set of vertices which dominates the graph with
distanced.

Also, the matrix argument may be generalized to include other graphs, and has some application to the
problem of dominating numbers. Work is currently in progress on Tori and related graphs.

3.4 Summary

Standard perfect dominating sets exist and be easily constructed for cube-connected cycles of any order
other than 5. However, for greater distances, no perfect dominating sets with more than one element exist
for any cube-connected cycle. In fact, ford > 4, an isolated vertex exists, indicating that the size of a
minimal dominating set will be much larger than optimal. (For1 < d � 4, a corresponding argument
cannot be easily constructed.)

Appendix A Complete Factorization of�(pn)
� 1

Since

�(p
n) = (�� 1)(

n�1Y
j=0

(
p�1X
i=0

�(ip
j)))

it will be sufficient to show that each element in

f�� 1g
[8<
:

p�1X
i=0

�(ip
j) : j 2 f0; 1; : : : ; n� 1g

9=
;

is irreducible in order to obtain a complete factorization. The following lemma will be useful for that
purpose:
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Lemma .0.1 For all integersm;n; i; j and primep,

 
m

n

!
�

iX
`=0

 
i

`

! 
m� ipj

n� `pj

!
(mod p):

PROOF: By induction onj. Noting that 
m

n

!
=
X
`=0

 
i

`

! 
m� i

n� `

!

is an identity, assume that

 
m

n

!
�

iX
`=0

 
i

`

! 
m� ipj�1

n� `pj�1

!
(mod p)

for all m;n; i and primep. Then, since

 
p

i

!
� 0 (mod p) wheni is not divisible byp,

 
m

n

!
�

pX
`=0

 
p

`

! 
m� pj

n� `pj�1

!
�
 
m� pj

n

!
+

 
m� pj

n� pj

!
(mod p):

Now, by repeated application of 
m

n

!
�
 
m� pj

n

!
+

 
m� pj

n� pj

!
(mod p);

the lemma follows.

Lemma .0.2 For all nonnegative integersj,
Pp�1

i=0 �
(ipj) is irreducible whenp is prime.

PROOF: This is a straightforward application of the Eisenstein irreducibility criteria. Letx = � � 1 and
substitute. Immediately, the resulting polynomial is monic and has constant termp. All that is now required
to show that it is irreducible is show that all the other coefficients are divisible byp. Thenth coefficient

is
Pp�1

i=0

 
ipj

n

!
. Using the above identity,

 
ipj

n

!
� Pi

`=0

 
i

`

! 
0

n� `pj

!
which is nonzero only

whenn = `pj for some`. Whenn = `pj,

 
ipj

n

!
�
 

i

`

!
(mod p) and thenth coefficient is

equivalent to
Pp�1

i=0

 
i

`

!
or

 
p

`+ 1

!
modulop. Thus, ifn is not(p� 1)pj , then thenth coefficient is

divisible byp. Thus, a complete factorization of�(p
n) � 1 is

f�� 1g
[8<
:
p�1X
i=0

�(ip
j) : j 2 f0; 1; : : : ; n� 1g

9=
; :
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