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Abstract

Cube-connected cycles are a family of cubic graphs with relatively small diameters and regular struc-
ture, making them attractive models for parallel architecture design. The existence of perfect dominating
sets for any structural model of parallel computation is both useful for the construction of efficient al-
gorithms for that structure and indicative of practical design constraints. This paper gives a simple
algorithmic method for constructing perfect dominating sets on cube-connected cycles where they exist,
and proves nonexistence for all other cases. Specifically, standard perfect dominating sets (distance equal
to 1) are shown to exist for cube-connected cycles of order k, k not equal to 5. Moreover, the existence
of perfect dominating sets for all distances greater than 1 is disproved (with the trivial exception — the
distance equaling or exceeding the diameter of the graph).

Keywords: Cube-Connected Cycles, Dominating Sets, Perfect Dominating Sets, Parallel Ar-
chitecture, Parallel Algorithms.

1 Notation and Background

1.1 Cube-connected cycles

Formally, a cube-connected cycle of ordet (here denote€CC,,) can be described as the labeled graph
(V, E) whereV, the vertices oCCCy, is the set

{(i,j):iE{O,...,k—l},j6{0,...,2’“—1}}

and E, the edges o€CCy, is the set of unordered paif$ii, j1), (i2, j2) } where(iy, j1) and (iz, j2) are
elements ol which satisfy either

i1 +1=1iy (mod k) and J1=J2
or
11 = 19 and |j1 — j2| = Q(kiilil).

The edges which satisfy the first condition are referred toyate edgesthe remaining edges, exactly those
which satisfy the second condition (= i, and|j; — jo| = 2(F~11-1)), are referred tdypercube edges

1Cube-connected cycles of orders smaller than 3 are traditionally ignored in the same manner that cycles of order smaller than
3 are ignored. However, various reasonable extensions of the definition (i.e. nonsimple graphs) will produce graphs small enough
to allow most results (including this one) to shown by inspection.



By inspection, the removal of all hypercube edges produces a grapRivithmponents, each of which is
ak-cycle. Thus, contracting all the cycle edge<O8C,;, will produce a graph witl2* vertices (in fact, a
hypercube). For this reason, edeleycle inCCC,,  which does not include any hypercube edges is referred
as asupervertexf the (embedded) hypercube. Moreover, tinigin of CCC,. is thesetof vertices in the
supervertex located at 0.

In essence, the formal definition uniquely describes each vert€Ci@; by its position within the su-
pervertex (the cyclinde® and by the position of the the supervertex within the hypercube. Following the
conventions established for the hypercube, the position of a supervertex will be described as a binary string
(e.g. 010000000 or, in the form of a regular expressian(”). Specific vertices will be described with the
addition of an accent over the bit position corresponding to the index. (For simplicity, the bit positions will
indexed from 0 td: - 1 from left to right.) An example of a cube-connected cycle and the notation used here
is shown in figure 1. Informally, two vertices are adjacerdiiherthey are located in the same supervertex
and the corresponding indices are adjacent inktogcle or they each have the same cycle index and have
supervertex locations which differ only in the bit position indicated by the index (accent). It follows that,
for anyk, each vertex irCCC;, has degree 3, and, with this notation, the three neighbors can be described
simply — e.g., inCCCg, 101011 has neighbors,01011, 101011, and101001.
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Figure 1: Cube-Connected Cycle of order 3

From the informal definition, it should be intuitive that, for any vertieggandv; in CCCy, there exists a
graph isomorphism which sendgto v; — rotation or reversal of the dimensions (and corresponding cycle
indices) and/or reflection over any dimension as needed.

A perfect dominating set of distanee(here abbreviate®DS; ) is a subset of the vertices of graph such



that every vertex in the graph is dominated by exactly one vertex in the set. Formally, for any&raph

let d(v,w) be the minimal path distance between the vertieemdw (with d(v,v) = 0). For a given

positive integer distancé, a vertexv is said tocoveror dominatew if and only if d(v, w) < d. Letting

V(G) denote the set of vertices 6f, a subseX of V(G) is adominatingset with distance if and only if

Vv € V(G), 3w € X such thatw coversv. A subsetX of V(G) is aperfectdominating set with distanaé

if and only if Vo € V(G),3 auniquew € X such thatw coversv. A standardperfect dominating setis

a perfect dominating set of distance 1; an example of a standard perfect set is shown in table 1 and figure
refpds3.

1.2 Motivation and Background

Cube-connected cycles, as mathematical structures, are interesting in and of themselves; however, they
have two properties which make them particularly attractive as potential structures for massively parallel
computers.

First, like the mesh, but unlike the hypercube, each node has a small, fixed degree. This allows the re-
design of larger systems without the need to redesign and rethink the individual processors. Also, from
the viewpoint of theoretical computer science, asymptotic analysis of hypercube algorithms holds troubling
questions regarding the computational power of processors whiclflage:) connections.

Second, like the hypercube, but unlike the mesh, the diameter of the graph grows slowly with respect to the
number of processor#(logn) as opposed t6(y/n)). Since algorithms designed for parallel architectures
often require data from all processors, reduction of the worst-case communication time may be a matter of
necessity.

Dominating sets are also an area of strong concern in the design of both parallel structures and parallel
algorithms. With a specified processor structure (such as the mesh, hypercube, or cube-connected cycle),
it is often necessary to find an efficient method of distributing limited or costly replicable items — power
sources, i/o ports, function libraries, algorithm information, etc. —among the processors. In some variations

of the problem, resources may conflict, and, in fact, with regular structures, having resources placed within
some (short) distance of every node is not always sufficient. Other considerations — such as the complexity
of the paths between each processor and its designated resource — are also considerations. Because of
regularity of the structures, a perfect dominating set is usually the best answer.

The existence of perfect dominating sets for the mesh family of architectures is fairly straightforward (de-
pending on the mesh) and the hypercube has been investigated exhaustively for this property however, results
for the cube-connected cycle architecture were not generally known béyond2 andd > 1. Here, an
algorithmic method is shown for constructin®S; onCCC; whend = 1 andk # 5. The nonexistence

of nontrivial perfect dominating sets whdr> 1 is also demonstrated.

2 Algorithmic Construction of Standard Perfect Dominating Sets

The existence of perfect dominating sets do= 1 andk # 5 will be shown by explicit construction. In
addition to describing the vertices which belong to this set, it will also be useful to distinguish between the
non-member vertices by the direction in which the vertex which dominates it lies — not only will this make
the allocation scheme adaptable to a wide variety of uses, it will also be used to demonstrate correctness.

2The termstandard dominating sés$ intended to agree with various definitions of dominating set used when distance is not a
consideration.



Location of

Supervertex| Index 0| Index 1| Index 2
000 CH CH CH
001 CR CL R
010 R CR CL
011 CL R CR
100 R CR CL
101 CL R CR
110 CR CL R
111 CH CH CH

Table 1: Marking ofCCC3 showing a Standard Perfect Dominating Set

| [l 10]11]o1]
00| CH | CH | CH
01| CR| CL | R
10| R |[CR|CL
11| CL | R | CR

Table 2: First Labeling Scheme Component

2.1 \Vertex Marking

Each vertex inCCC, has two neighbors within the cycle and one neighbor adjacent along its hypercube
edge. Thus, four possibilities exist for each vertex. Either it is a resource node (in the perfect dominating
set), the vertex which covers it lies across the hypercube edge, or the vertex which cover it lies to the left or
right within the cycle. Formalizing the description:

R a member of the perfect dominating seRasourcenode)

CH dominated by the adjacent vertex along the dimension indicated by the index (Covered
along a Hypercube edge)

C'L dominated by the adjacent vertex within the same cycle to the left — meaning the vertex
whose index is 1 morenfod k) (Covered by a node to the Left)

CR dominated by the adjacent vertex within the same cycle to the right — meaning the vertex
whose index is 1 lesar{od k) (Covered by a node to the Right)

A solution fork = 3 (d = 1) is presented with these labels in table 1 (inspection of figure 2 suffices to verify
that this is, indeed, BRDS,).

2.2 The Method

The general solution faf = 1, k # 5 is generated using copies of Table 2 and Table 3. First, the value of
k is decomposed intda + 4b wherea andb are nonnegative integers (note that this is possible fdr all3

with the exception of 5). Thery copies of the first component (table 2) are concatenated bndtipies

of the second component (table 2). As an example, whenl1, the example shown in table 4 might be
produced.



Figure 2: Cube-Connected Cycle of order 3 with Perfect DominatingdsetX)
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Table 3: Second Labeling Scheme Component

Table 4: Example Concatenation of Components

| 10]11]01]10]10] 10[ 10 ] 10] 10| 10 ] 10 |

0O|CH|CH|CH|CH|CL| R |CR|CH|CL| R |CR
OlL|CR|CL| R |CR|CH|CL| R |CR|CH|CL| R
10| R |CR | CL R |CR|CH|CL| R |CR|CH)|CL
11yC¢L| R |CR|CL| R |CR|CH | CL| R |CR|CH




Now, given the position of any vertex BCCy, its index and the the location of the supervertex within
the hypercube, the composite table can be used to provide a marking for each vertex such that the vertices
marked withR form a perfect dominating set.

The binary values immediately above the table (in our example, 10, 11, 01, 10, 10, 10, 10, 10, 10, 10, 10) for
which the corresponding bit is high are bitwise XOR’ed together (using 00 as the result for the supervertex
at the origin). The resulting binary number is the label of the row which will be used. The column is that of
the index.

Thus, in order to find the appropriate designation 1600100000, note that the supervertex located at
10100100000 has high bits in three locations — the first, third and sixth positions from left to right —
corresponding to values 10, 01, and 10; sihBed 01 & 10 is 01, the row labelled1 will be used; the
column is that underneath the accented 1; and, hande(100000 will be marked as a resource node.

2.3 Correctness:

The row chosen is dependent only on the location of the supervertex. Thus, the labeling within each cycle
can be read directly from the appropriate row of the table. Hence, it can quickly verified that, from left to
right (and wrapping around the end), the constraints BD§, are followed within each supervertex — that

each vertex with designatioR has left and right neighbors appropriately labefé® andC'L, etc. (note

that the tables above are constructed so that concatenation preserves this property). What may or may not
be so quickly verified is that edges between supervertices are also properly used (a vertex is marked with
CH/R if and only if it has a neighbor along its hypercube edge with design&iahH).

Note that two supervertices connected to one another along dimenarenconnected at the vertex with
indexi. Thus, two vertices which are connected by an edge not in a cycle (a hypercube edge) have the same
index, ¢; the designations, therefore, come from the same column. Note also that supervertex locations must
differ in exactly one bit — the bit with index. Thus, the row used to label one vertex is different from

that vertex’s (only) cube-edge neighbor by an XOR operation with entry above caluiow, a closer
examination of the columns of each initial table confirms that, for any row label, bitwise XOR’ing with that
binary value will not map the designatid®/C H onto any designation thatiH/R.

Now, since every vertex has a designatidh, CH, CL, or CR; no vertex with designatio® has any
neighbor marked incorrectly, and each of the markiogs, C L, andCR correctly indicate the presence

of a resource node, it follows that the process of marking indicated by the tables has, in fact, generated a
perfect dominating set.

2.4 A Proof of the Non-existence of a PDSor £ =5

It does not follow that nd®’DS; exists whenk = 5 simply because the above generating scheme does not
produce a proper marking for that case. The argument for nonexistence is more subtle. The®® §i&0)
vertices inCCC;. If a PDS; did exist, since each vertex covers exactly four neighbors, it would contain
exactly5 x 2°72 (40) elements. By inspection, no supervertex can contain more than one element from the
PDS,. Since ther@® (32) supervertices, by the pigeon-hole principle, some supervertex must contain more
than one element. Hence, the assumption tiRID&, did exist is contradicted.



3 Nonexistence of Perfect Dominating Sets with Greater Distances

With the exception of the distance equaling or exceeding the diame®C0f,, when noPDS; for CCCy
exists whend > 2. This can be restated as RDS; with more than one vertex exists f@CC, when

d > 2. (Note: Ifd is less than the diameter GICCj, more than one vertex is necessary — this is not true
for all graphs, but follows from the automorphisms@ECy.)

The argument for nonexistence proceeds as follows: Wherb, the pattern of vertices covered by a single
vertex is sufficiently “irregular” to preclude the construction d?BS; with more than one element. For

2 < d < 4, examination of various conditions on the number of vertices covered by a single vertex will
handle the majority of the remaining cases.

3.1 Elimination of Large Values ofd

The first set of cases will be all but a finite number of valuesdfioGpecifically, the existence ofRDS;
with more than element is shown not to be possible when5.

The general technique is to choose an arbitrary vergeikom CCCy, and demonstrate that there exists a
vertexv which isisolated— it is not covered by, and any vertex which does cover it also covers some
vertex which is already covered by. Thus, if we start to construct a perfect dominating set by the inclusion
of vg, we cannot include a vertex which coversvithout having some vertex covered twice.

(By the symmetries o€ECCy, any arbitrary vertex is isomorphic to a particular vertex; so, it is sufficient to
demonstrate an isolated vertexvhenuv, is 00~ . This vertex will be referred to as ttmeroof CCCy,.)

3.1.1 Useful Definitions and Lemmas

Lemma 3.1.1 Any path inCCC;, with the locations of the supervertices containing the endpoints differing
in bit positionp must include a visit to a vertex with indgx

PROOFE The set of hypercube edges along dimengiform a cutset; thus, the described path must include
one of these edges. The lemma follows immediately from the fact that the only vertices incident to these
edges have index

Lemma 3.1.2 (The Distance Calculation Lemma)Let vg and v, be vertices iINCCCy such thatvg has
index g, v1 has indexi;, and the locations of the supervertices containigand v, differ in the bit
positions described by the sBf = {py,...,pn—1}. If z be the number of edges in the shortest walk on
the k-cycle starting at indexX and ending at index; which includes a visit to every vertex with an index
in the setH thenz + h is the distance iICCC, from a vertexvg to a vertexvy.

PrROOF. Without loss of generality, lety be vertexiy at the origin inCCCy, and letv; be vertexi; in the
supervertex whose location has high bits in positions describdd.bdny path fromvg to v; must include

at leasth hypercube edges. Removing these edges from the path and mapping the remaining cycle-edges
onto thek-cycle in obvious manner will form a walk on thecycle. This walk starts at vertey, ends at
vertexiy, and visits every vertex with an index in the gét The length of this walk must be at leastSo

the distance fromy, to v; is leastz + h.

Now, given a walk¥ in the k-cycle from vertex to vertexi; which visits every vertex with an index in the
setH which has length, we can construct a walk fromy, to v; in the following way: Starting aty, if the
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current vertex is the first vertex encountered with an indei jrinclude the hypercube edge and proceed;
otherwise take the next edge Wi, map it onto the current supervertex, and proceed along that edge. This
walk has length: + h, so the distance fromy to v; must be at most + h, and the lemma follows.

Corollary 3.1.1 Let vy, v1, v be vertices inCCCy. The distance fromy, to v is less than the distance
from vy to v, if the index ofv; is equal that ofy, and set of bit positions where the supervertices containing
vg and vy differ is a proper subset of the set of bit positions where the supervertices contagnargl v-
differ.

Lemma 3.1.3 The diameter (the greatest distance between any two vertices in a specified gra@g pf
is |2 — 2] whenk > 3; whenk = 3, the diameter is 6.

PROOEF. Let v, be the zero o€CC;, (equivalent to an arbitrary choice). Now, by the above corollany, if

is any vertex inCCC, with index iy, then the distance fromy to v, is not greater than the distance from
vp to the vertex with index; in the supervertex whose location has only high bits. Thus, it is sufficient to
find the indexi; such that the shortest walk frodto i, on thek-cycle which visitsall vertices is maximal.

By inspectioni; = 0 suffices for the cask = 3 andi; = L%J suffices for all other cases.

Lemma3.1.4k > 4?‘1 is a necessary condition for the existence #flaS; with more than one vertex for
CCCk.

ProOOE If a PDS; with more than one element exists 8€C,, then the shortest path between any two
elements in thaPDS; is at leas2d + 1. Because that distance is at most the diamet€2@€;, when

kE>4,2d+1< L% — 2|, and immediatelyl < % Whenk = 3, the diameter is 6, and the maximum
allowable distance for RDS; is 2; thus, the lemma follows.

3.1.2 Isolated Points for Certain Values of!

Letd = 8, and, thereforek > 6, and the vertices

v = 101091
ny = 101041
ne = 0010%-91
ny = 101041

are well-defined.

Now, v is not covered by (within distanceé of) the zero ofCCC;. This is the first application of the
distance calculation lemma; so, explicitly: the shortest walk orkthgcle from0 to 0 which visits vertices

in {0,1,2,k — 1} has lengtt6 (by inspection — recall that is least 6, making a cycle tour at least as long

as the walk given by the vertex sequeriéel, 2, 1,0,k — 1,0)); thus, the distance from the zero@€C,,

towv is 6 + 3 (the number of hypercube edges traversed and/or the number of high bits in the location of the
supervertex containing).

However, all of the neighbors af (exactlyni, no, andng) are covered by the zero aECC;, (this also
follows from the distance calculation lemma). Since any vertex which caversgst also cover at least one
of its neighbors, the vertexis isolated. (In fact, this is a stronger condition — for every vetteguch that
d(v,v1) = d, any path of lengtll connectings; andv mustincludea vertex which is covered by the zero.)
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Thus, it is not possible, wheath = 8, to select a set of vertices which cover all vertice€@C; without
some vertex being covered at least twice. Hence, wher8, noPDS; exists forCCCy.

Similarly, whend = 10 andv = 1010*-%10, ord = 13 andv = 10110%~710, v can be shown to be
isolated. In both cases, the zero@EC;, does not cover, but does cover all three neighborswof

Not every value ofi whered > 5 will produce a vertex which is not covered by the zero, but has all three
neighbors covered by the zero. However, it will be possible to demonstrate a vevtggh is not covered

by the zero and a sé&t of vertices which are covered by the zero so that every vertex which covatsst
cover some vertex iis.

Ford = 5, letv = 010%~3)1 and letB be the sefbg, b1, b, b3} whereby = 100%*-31, b; = 11030,
by = 010%=3)1, andb; = 010(*—3)1. Every vertex in3 is covered by the zera, is not, and all vertices in
B {v} are well defined.

Let v; be any vertex which covers. If d(v,v;) < 5, v; must coverb, and bz as well asv. Other-

wise, d(v,v1) = 5 and, ifv; does not cover eithdr, andbs, d(1105=2)1,v;) = 4. Moreover, either
d(110%—3)1,v) = 3ord(110% 31, v;) = 3. Assume that(110%—3)1, v;) = 3; sinced(110¢ 31, b,) =

1, d(by,v1) = 4. Otherwised(110%=3)1,v;) = 3; sinced(110%=3)1,by) = 1, d(B;,v;) = 4. Thus, any
vertex which covers must cover some vertex il andv is isolated.

A similar argument suffices for the cage= 7 with
v =0010% 91 and B = {0010(’“*‘“1, 000091, 0o10tk-1, 0010”“*‘90}.

Thus, whend € {5,7,8,10, 13}, an isolated vertex exists, and it is not possible to constririDg; for
CCCy.

3.1.3 Isolated Points for Large Values of]

Letd = 3n+2m+i wheren, m, andi are integer values such that> m > 7 > 0. Note that appropriate val-
ues forn, m, and: can be chosen to produce any positive integer except thdde n3, 4, 5,7, 8, 10, 13}.

Let v denotel 1M k—m-n-1)1(m) Sjnce
4(3n +2m +1)
5

m—+1

5

k>

> 2n+m+
2n+m—+1
> n+m+1

V

thisv is well-defined.

Now, the length of the shortest walk on thecycle from 0 to O which visits all vertices in
H={m-km-k+1,...,k—1,0,1,...,n}is the minimum oft (corresponding to a complete cycle

tour) and2n + 2m (any other walk must visit both andk — m and, since it is closed, each edge will be
included twice). Sincé& > 2n + m + 4 andm > 4 implies that2n +2m > 2n+m +4,2n+m =iisa

lower bound on the length of that walk. Thus, by the distance calculation lemma, the distance from the zero
of CCCy towis atleast{2n + m + i) + (n +m + 1), which is greater thad. Thus,v is not covered the

zero of CCC,.

Let B,, be the set
{BOB1 ...B, 1B, 0k 0B, By :Vj € H,B; € {0, 1}}
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and let,,, be the set
{B0B1 B 0% OB B k... Be_1 :Vj € H,B; € {0, 1}}

and letB = B, U By,.

Both 1" 1glk—m—n—1)1(m) gnd1(n+i)gk—m-—n-1)1(m-1) gre covered by the zero GfCC,, (the length

of the shortest walk from O ta in the k-cycle which includes vertices froif is at most: + 2m; the length

of the shortest walk from 0 t& — m in the k-cycle which includes vertices froff is at most2n + m;
(n+2m)+(n+m+1) < (2n+m)+ (n+m+1) < d). Thus, by the corollary to the distance calculation
lemma, it follows that every element #fis also covered by the zero GICCy.

Let vy be any vertex irCCC,, within d distance ofv. Leti; denote the cycle index af;, and letH; be
the set of bit positions where supervertices containigdv; differ. Now, choose a vertey, from B,, and
a vertexb,, from B,,, such thatvj € H, the jth bit of the location of the supervertex containiiygandb,,,
agrees with the corresponding bit of the supervertex containing

If H, ~ H (the set of indices fronH; which do not appear ifif) is empty, bothb, andb,, lie in the
same supervertex as and, immediately, at least one &f andb,,, is within distanced of v, (v is within
distanced of the vertex with cycle index 0). Otherwise, the shortest walk onittoycle fromi; to O
which visits all vertices fromH; ~ H ends with a path from eithet or ¥ — m to 0. Thus, there is
a walk on thek-cycle starting at, visiting every vertex inH; ~ H, and ending at eithet or k — m
which is shorter. Sincél; ~ H C Hy, one of eithemn,, or b, is closer tov; thanv. Since any vertex
which coversv also covers some vertex already covered by the zetG@QE;, if d is any value not in
{1,2,3,4,5,7,8,10,13} ~ {5,7,8,10,13}, noPDS; exists containing more than one element@@C;,.
COMMENT: Whend < 5, itis possible to show that no isolated vertices exist.

3.2 Nonexistence of Perfect Dominating Sets far < d < 4

LetC(d, k) be the number of vertices BCC,, covered by a single vertex. By the isomorphic properties of
CCCy, C(d, k) is a constant for fixe@ andd. In fact, it will be shown that wheh > 2d, C(d, k) depends
only on the value of.

For most of the remaining cases, wher d < 4, C(d, k) will shown later to contain an odd prime factor
which either does not divide or is greater thad. Both conditions preclude the existence &?RS; for
CCCy. The first is shown immediately with the following lemma:

Lemma 3.2.1 If there exists &2DS; for CCC, and C(d, k) contains an odd prime factgs, thenk is
divisible byp.

PROOF There aré: x 2* vertices inCCCy. Each element in theDS; must cover exactly' (d, k) vertices;
SO0, C dk (the number of vertices inRDYS;) is an integer, and the lemma follows.

The structure of the argument for the second will be to show that a necessary condition for the existence of
aPDSg; for CCC, whenk is a multiple of exactlyn factors of an odd prime such thaip > 2d is that

the number of elements in tiRDS; must be divisible by™ (this is triviaIIy true whem = 0). Therefore,

for any primep > 2d, given thatk contains exactly: factors ofp, £ o C(d ) must be an integer — implying

immediately that”(d, k) cannot contain any prime factor greater tizan Hence, ifC'(d, k) does contain a
prime factorp greater tharzd, noPDS; exists forCCC,,.
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3.2.1 Necessary Definitions

By the automorphisms d€CC,, if some vertex with index covers exactly vertices with indexj, then
every vertex with index covers exactly: vertices with indey. The following definitions make that property
explicit and offer a straightforward method of calculating the value.of

Definition 3.2.1 LetC(d, k); be the number of distinct subsehE of
{0, ...,k — 1} such that there exists a walk of lengthon thek-cycle which starts at inded, visits all
vertices inH, and ends at index subject tox + |H| < d.

Lemma 3.2.2 C(d, k); is the number of distinct vertices with indgxn CCC;,  which are withind dis-
tance of a single vertex with an indelx

ProoFE This follows from the distance calculation lemma. Withtaken as a set of bit positions, each
distinct subset off uniquely describes a supervertex location witBi@C,, and, together with, a unique
vertex inCCC,,.

Corollary 3.2.1 The number of vertices covered by a single vert&xi, k), is

k-1

> C(d, k);

1=0

Corollary 3.2.2 For all ¢,5 € {0,...,k — 1}, the number of distinct vertices with indéxvhich can be
covered by a single vertex with indgxs C'(d, k) (4+i—j mod k)-

CLARIFICATION: This follows from the automorphisms QfCC,. If a vertex with index; coversc vertices
with index i, then a vertex with indexj + xz mod k) coversc vertices with indexi + xz mod k). It now
follows that, for large values of, C(d, k) does not depend oh. Since our concern is now with a finite
set of values ofi, the set of values of’'(d, k) and C(d, k); under consideration will also be finite (and
calculable by the method implicit in the definition ©d, k) ;).

Lemma3.2.3 Forall k > 2d, C(d, k); = C(d,2d + 1);.

PROOF Whenk > 2d, the value ofC(d, k); does not depend ofa No walk of length at mosd starting
atd visits any vertex outside of the s8t= {0,1,...,2d — 1,2d}. Immediately, any? ¢ S need not be
considered andlj & S, C(d,k); = 0.

Corollary 3.2.3 Forall £ > 2d, C(d, k) = C(d,2d + 1).
Corollary 3.2.4 Forall j > 2d, C(d,2d + 1); = 0.

Now, given that a single vertex with indgxcovers exacthC'(d, k) (44i—j mod k) Vertices with index, if X

is the number of elements irRDS; for CCCy, with indexj, then the sum oveirof X;C(d, k) (4+i—j mod k)

is total number of vertices iIRCC, with index i. This property and similar necessary conditions can be
expressed as matrix relationships. The following definition will be useful in that regard.
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8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10
10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10
10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11
11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6

6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1

1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0 0

0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0 0

0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0 0

0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0 0

0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0 0

0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0 0

0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0 0

0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0 0

0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0 0

0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1 0

0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6 1

1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11 6

6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10 11
11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10 10
10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8 10
10 10 11 6 1 0 0 0 0 0 0 0 0 0 0 1 6 11 10 10 8

Figure 3: ExampleM (5,21)

Definition 3.2.2 For all n > 2d 4 1, let M (d, n) denote then X n matrix such thatM (d, n); ; =
C(d’ 2d + 1)(d+i—j mod n)-

An example of such a matrix is shown in figure 3.

3.2.2 Properties ofM(d, p™)

Examining the definition, we find tha/ (d,n); ; = M(d,n)(i+1 mod n),(j+1 mod n)- IN €SSENCE, €ach row
of M(d,n) is the previous row “shifted” right (with wrap-around). Other properties of interest are:

Lemma 3.2.4 Each rowR in M (d,n) is nonzero, has no negative entries, and, in fact, has at least two
distinct nonzero entries.

PROOFE Applying the calculation method implicit in the definition 6f(d,2d + 1), C(d,0) = 1 and
C(d,1) = d + 1. Let R be thejth row of M (d,n), and, WLOG, assumg > d, the(j — d)th entry inR,
M(d,n)(;—ay ), is Land thej —d + 1)thentry inRisd + 1.

Lemma 3.2.5 Whenn = gp wherep > 2d, each rowR in M (d, n) has the property that for alj, the
tth entry inR is nonzero for at most one value®E 5 (mod p).

PRoOOF Recalling thatC'(d,2d + 1); = 0 for all j > 2d + 1, thenC(d, 2d + 1) (41i—j mod n) NONZErO
implies thatd +i — j mod n is less thar2d + 1 and, therefore, less thanIf io =4; (mod p), butiy # iy
(mod p)q, then at most one af + iy — j mod pg andd + i; — 7 mod pq is less tharp. By the definition,
at most one oM (d, n);, ; andM (d, n);, ; is nonzero.

Lemma 3.2.6 M (d, n) has rank at leash — 2d.
PROOF By inspection, the rowd throughn — d — 1 are in diagonal form. (Whep € {d,d+1,...,

n—d—1}andi < j—d,d+i—j isanelementof2d +1 —n,2d +2 —n,...,—1}. Sincen > 2d+1,
(d+’l—j mod n) > 2d +1 andM(d,n)i,j = 0)

12



Theorem 3.2.1 Letn be a positive integet)/ (d, p") is regular wherp > 2d andp is prime.

PROOF. Let L be the isomorphism froriR(®") to itself which sends théh standard basis vectérto the
(¢ + 1 mod p™)th standard basis vector.

Treating L purely as a linear transformation, the minimum polynomiallo ;(\) = A*") — 1. (The
minimum polynomial of a linear transformatiah is the nonzero polynomial of least degree such that
Vo, (u(L))(v) = 0 %) Verification is immediate since both(®") andI,(,o) are the identity transformation,
thus

Vo € R, (u(1p))(v) = (I = I (v) = I (v) = I} (v) = 0

Minimality follows from consideration of the operation of any nonzero polynomial of degree lesg'than
on a standard basis vector.

Now, for any nonzero vectos, the order ofv with respect to a linear transformatidn is the nonzero
polynomial 1, of least degree such thgt,(L))(v) = 0. The minimum polynomial is a multiple of the
order of any vector; thus, for any nonzero veatoe R(*"), the only possible values fgr, are factors of
AP") — 1. As shown in appendix 3.4, a complete factorization&f) — 1 is

-1
{A—1}U{pZAW> :jE{O,l,...,n—l}}.
=0

DefineS(v) as the subspace spanned {b&(") (v) :mn > 0}. (Formally, S(v) is an invariant subspace of

R(*™), the cyclic space relative tb generated by the vector) The degree of the order ofis the rank of
the subspacé(v). (Let u, have degree, y,(L)(v) = 0 implies thatL(") (v) is a linear combination of
vectors from

{L(")(v) :Ogngr—l}.

Sinceu, (L)(v) has minimal degree, there does not exjsK r such thatL.(v) is a linear combination of
vectors from{L(") (v):0<n<ry— 1}. Thus,S(v) has

{II()”) (v) : 0 < n < r— 1, wherer is the degree oﬂv}

as a basis, and, directly, the rank&fv) is the number of vectors in that basis)

Now consider the order aR, an arbitrary row of\/ (d,p"). S(R) is, by definition, the subspace &f?")
spanned by the row vectors df (d, p") (L) (R) is also a row inM (d, p™)) for arbitraryi; and for any row
R'in M(d,p™), there exists ansuch thatR’ = L()(R)). Thus, degree gi is the rank ofM (d, p™).

SinceR is nonzero and has no negative entrigg’ —* + \*"~2 + ... + X\ 4+ 1)(L)(R) is a nonzero vector
andur is not a factor of\?" =1 + A\P" =2 4 ... + X + 1. Thus,ur must be a multiple ofX — 1).

Recall thatR has two distinct nonzero entries and that forjalheith entry inR is nonzero for at most one
value ofi = j (mod p). Thus,

p(n=1)_1
R’:( > A(im) (L)(R)
1=0

*Thenth standard basis vector f&#™ is the unique vecto?’ € R™ with thenth entry, the only nonzero entry, equal to 1. As
used here, the enumeration of positions begins with 0; thu$tthetandard basis vector denotéso, .. .).
“The definition often includes the restriction that the leading coefficient must be 1 to avoid ambiguity.

13



is a nonzero vector with at least two distinct entries. Immediaiely;- 1)(L) applied to that vector is
nonzero. Since

pn=1)_1
(A=D@L)(ER) = ((/\—1)(/3))(( > A(i”))(L)>(R)
1=0

pn—1_1
= ((X—l)( > W”’))(L)(R)
=0

AP — 1
- (zan) o

is a nonzero vectoy z has(3-7_, ) as a factor.

Since the rank oM (d, p™) is at leasp™ — 2d, ur cannot be a factor of
AP 1
Py A6)

for j > 1 since, otherwise, the degree;of would bep™ — (p—1)p? which, whenj > 1is less thap™ — 2d.
Thus, .z must include(>°-?—; A(")) as a factor for aljj > 0.

It follows that the order o must be\(’") —1. The degree of. ; beingp”, the rank ofM (d, p™) is therefore
p" and, sinceM (d, p™) is ap™ x p™ matrix, M (d, p™) is regular (invertible).

3.2.3 The Relation ofM (d, k) to a PDS; for CCCy
Now the regularity ofM (d, p™) is applied to show the following theorem:

Theorem 3.2.2 Letk = ¢p™ wherep is an odd prime such that > 2d, andn and ¢ are positive integers.
If there exists #DS; for CCCy, then the number of elements in RBS; must be divisible by™.

PROOF Letk, p, n, andq be as described, and define fifeindex of a vertex as its cycle indaxod p”
(this notation is purely for convenience of expression). Now, the proof can be expressed in the following
two lemmas.

Lemma 3.2.7 M (d, p™);,; is the number of distinct vertices@CC,, with p™-index; which can covered
by a single vertex witlp™-indexs

PROOF. By an earlier lemma, the number of distinct vertices with ingewhich can be covered by a
single vertex with index is C(d, k)(44i—j mod pn); therefore, forj € {0,...,p" — 1}, the number of
vertices with an index equivalent tH modulo p™ which can be covered by a single vertex with index
i (WLOG, p"-index i) is ¢_g C(d, k) (aritepm—j mod ky- NOW, C(dy k) (dyitepm—j mod k) IS ZEFO when
d+ i+ ¢p" — jmod > 2d + 1, implying that, C(d, k) (4i+epm—j mod k) IS NONZero for at most value of
Z. In fact, Zz;é C(d, k)(d+i+lp"fj mod k) = C(d, k)(d«ki*j mod pn)- BecauseZM(d,pn)i’j = C(d, 2d +
1)(d+i—j mod pr) = C(d, k) (44i—j mod pn), the lemma follows.

Definition 3.2.3 Let X be any set of vertices fro@CC,; and letX denote the column vector ®* whose
ith entry, X, is the number of elements X with p™-indexz.

14



. T
Lemma 3.2.8 If X is aPDS, thenM (d, k) x X = (2kq 2kg ... 2kq) .

PrRooOE If X is aPDS;, then every vertex irCCC;, with p™-index j must be covered by exactly one
vertex fromX. The number of distinct vertices with*-index j covered by a single vertex wigi*-index

i is M(d, k); ;; the number of elements iX with p"-indexi is X;. No vertex inCCC;, is covered by
more one element oX’; so, M (d, k); ; multiplied by)?i. must be the total number of distinct vertices with
p™-indexi covered by the vertices iX with p™-index j. It follows that if R; is the jth row of M (d, p"),
thenRjX must be the total number of distinct vertices withindex j covered by the seX. SinceX is a
PDS;, this be must the total number of verticesGEC; with p”-indexj. The lemma then follows from
the definition of matrix multiplication and the fact that there are exa®flyertices inCCC;, with any
arbitrary index; — and, thus2¥¢ vertices with any arbitrary™-indexi.

_ _ T
SinceM (d,p™) is regular, any” length column vecto¥” such thatM (d, k) x Y = (2kq 2kg ... qu)
must have uniform entries. (One solution f&ris

( 2kg 2’“61 - 2kg )T
SV M(dp)iy S Mty S, M(d,pn)iy

Immediately, sincél (2d, p™) is invertible, this is theonly solution.) Noting that the entries iX must be
integers, it follows that the sum of the entriesXhmust be an integer which is divisible . Under the
assumptions stated earlier, the number of verticeX jran arbitraryPDS; for CCCy, is the sum of the
entries inX; thus, the number of elements in an arbitrRHS; for CCC, must be divisible by™.

Theorem 3.2.31f C(d, k) has any prime factop > 2d, noPDS; exists forCCCy.

PrROOF. Recall that the number of elements in &RS; for CCC, must bec’ﬁ 7y an integer. For any
primep > 2d, k can be written as= ¢p™ wheren is a honnegative integer a@da positive integer not
divisible byp. By the above, for anPDS; for CCCy, for any primep > 2d, C(d ) must be an integer for

some value of not divisible byp.

3.2.4 Specific Cases

Now, listing the calculated values 6f(d, k) in Table 5 (and noting that fdr > 2d, C'(d, k) = C(d, 2d+1)),
there are exactly two cases wheréd, k) does not either contain a primpe> 2d or any primep wherek

is not divisible byp — whend = 2 andk = 3 and whernd = 3 andk = 5. This are small graphs, and an
exhaustive search reveals that, in these cases as well, there does noP&&gt dor CCC,.. Hence, for all

d > 1,noPDS; exists forCCC,.

COMMENT: Whend = 5, C(d,2d + 1) is 84. While a similar matrix argument exists, the one given here
does not suffice. Also, it is not clear whether or the matrix argument could be generalized to handle arbitrary
values ofd. Thus, both arguments seem necessary.

3.3 Other Points of Interest:

There may be some extended results which limit the number of ways in wii€tamay be constructed
for CCCy(k # 5). Essentially, the obvious rotations, reflections, and alternate choicesaiodb (such
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Table 5: Calculated values 6f(d, k)

\ |d=2|d=3[d=4]
8 14 20
9 17 28
10 20 36
10 21 39
22 42
43
44

T T T | T T T
1]
OO NOO AW

thatk = 3 x a + 4 x b) using the above scheme might be shown to form all possible perfect dominating sets
for d = 1 and certain values df. No immediate application of this result is known to the authors.

The existence and patterns generated by isolated points may have some application to the problem of finding
generalized dominating numbers — the size of the minimal set of vertices which dominates the graph with
distanced.

Also, the matrix argument may be generalized to include other graphs, and has some application to the
problem of dominating numbers. Work is currently in progress on Tori and related graphs.

3.4 Summary

Standard perfect dominating sets exist and be easily constructed for cube-connected cycles of any order
other than 5. However, for greater distances, no perfect dominating sets with more than one element exist
for any cube-connected cycle. In fact, fér> 4, an isolated vertex exists, indicating that the size of a
minimal dominating set will be much larger than optimal. (Hok d < 4, a corresponding argument
cannot be easily constructed.)

Appendix A Complete Factorization of \*") — 1

Since

|
-

3
—

p .

AP = (= ([T A))
§=0 i

i
=)

it will be sufficient to show that each element in

-1
{A—l}U{pX:A(W) j € {0,1,...,n—1}}
=0

is irreducible in order to obtain a complete factorization. The following lemma will be useful for that
purpose:

16



Lemma .0.1 For all integersm, n, ¢, 3 and primep,

m \ _ : ') m — ipJ mo
() =5()(325) e

PROOF By induction onj. Noting that

is an identity, assume that

(2)=5()(nmn) omar

for all m, n,: and primep. Then, smce< > =0 (mod p) whens is not divisible byp,

)= () (e )= () () o

Now, by repeated application of
—pl —
(2)=(77 )+ (0) o
n n n—p

Lemma .0.2 For all nonnegative integers, Zf;ol A(P) s irreducible wherp is prime.

the lemma follows.

PROOF. This is a straightforward application of the Eisenstein irreducibility criteria. 2Let A — 1 and
substitute. Immediately, the resulting polynomial is monic and has constanptekihthat is now required
to show that it is irreducible is show that all the other coefficients are divisiblge. bijhe nth coefficient

is E’-’;Ol ww’ . Using the above identity, ww’ = Z@:o v 0 which is nonzero only
¢ n n 12 n — £p’

. ) imJ i
whenn = f¢p’ for somel. Whenn = ¢p7, | P | = 2 (mod p) and thenth coefficient is
n

2 ) or < Eil ) modulop. Thus, ifn is not(p — 1)p?, then thenth coefficient is

divisible byp. Thus, a complete factorization af?") — 1 is

equivalent toy?~ | <

-1
{A—1}U{pZAW> :jE{O,l,...,n—l}}.
=0
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