In Congressus Numerantiuh®5(1994), pp. 116-128.

Constant Time Computation of
Minimum Dominating Sets

Marilynn Livingston Quentin F. Stout
Dept. of Computer Science Elec. Eng. and Comp. Sci.
Southern lllinois University University of Michigan
Edwardsville, IL 62026-1653 Ann Arbor, MI 48109-2122
Abstract

Let G be a graph and Ie?(n) denote an element from a one-parameter family of graphs, such as a path
of lengthn, a cycle of lengtln, or a complete binary tree of height We are concerned with determining
minimum dominating sets of graphs of the foéix P(n). Using dynamic programming and properties of
finite state spaces, we show a constant time algorithm to produce a minimum dominatingrsetmfn),
for fixed G and alln, for the one-parameter families mentioned. Previous researchers had used similar
techniques but obtained only linear-time algorithms. We also show how a closed form expression can be
obtained for the minimum domination number@fx P(n). We discuss extensions of the algorithm to the
determination of all minimum dominating sets fGix P(n), and to related problems of coverings, packings,
and codes. In addition, we discuss algorithm extensions to several different types of domination, including
perfect domination, and to other ways of composing graphs.

Key Words: codes, covering, domination, packing, matching, perfect domination, grid graph, product
graph, mesh, torus.

1 Introduction

Let G = (V, E) denote an undirected graph. A subsefbfertices is called @ominating sebf G if for
everyv € V — D there is some: € D such that(u,v) € E(G). Sometimes a dominating set is referred
to as avertex-vertex coverThe minimum cardinality of the dominating sets@fis called thedomination
numberof G and is denoted by(G).

The general problem of determinindG) for a given graph, and of finding a dominating sé? of
G of this minimum cardinality, has been an active area of research for many years [HL90]. When properly
stated, this problem has been shown to be NP-complete [GJ79], and remains so evéhisvresiricted to
certain simple classes of graphs. One example of this is the family of grid graphs, formed from products of
paths, wherd?, denotes the path with vertices. Then x n complete grid graphP,,, x P,, has vertex set
V={(,7) |1 <i<m,1<j<n}andan edge between pairs of verti¢eg) and(u, v) if and only
if | —ul + |7 —v| = 1. A grid graphis any subgraph of a complete grid graph. T. Leighton proved that
determining the domination number of an arbitary grid graph is NP-complete [Jo85]. The complexity of the
domination problem for complete grid graphs is not known, however.

*Partially supported by NSF/ARPA grant CCR-9004727

M. Jacobson and L. F. Kinch [JK84] found closed form expressions fé},, x P,) for m = 2,3, 4.
E. Cockayne, E. Hare, S. T. Hedetniemi, and T. Wimer [CHHW] reported that they had inductive proofs for
m = 2,3 and alln, and form = 4 with n = 4k. Using an IBM 3081 to perform exhaustive search, they
found exact values faP,, x P, form = 4and4 < n < 10,m = 5and5 <n < 8,m = 6, andn = 10, 11,
and used 20 CPU hours to determip@ x P;). In addition, they constructed elementary arguments to
establish the inequality

(n* +n—3)/5 <y(Py x P,) < (n* +4n —¢)/5

wherec is 16, 17, or 20, depending on the remaindemafodulo 5. E. Hare, S. Hedetniemi, and W.
Hare [HHH] gave & (n) algorithm for computingy(P,, x P,) for fixed m. Their algorithm was based

on dynamic programming techniques with an associated state table. Using an IBM 3081, one of their im-
plementations took one and a half minutes to construct the state table and then one additional minute to
computey(P; x Psp). Using a less memory-intensive implementation, they computéd x P) in 2.5
minutes andy(Ps x Pyg9) in approximately 7 minutes. In [SP87], H.G. Singh and R.P. Pargas described a
parallel implementation to compute the domination numbeP,pfx P,. They obtained results for, < 9

andn < 10. Time requirements became prohibitive far= 10, even for the 16-node FPS T series hyper-
cube. More recently, T.Y. Chang and W.E. Clark [CC93] gave a lengthy proof of a closed form expression
for v(P,, x P,) form = 5,6, thus extending the results of E. Hare [H89] tosall> 1 for these values of

m.

In this paper we show how to use the properties of finite state spaces, together with dynamic program-
ming, to produce &®(1) time algorithm for computingy(P,, x P,) for fixed m. In fact, we show how
to obtain closed form expressions fpfG x P,) for fixed graphG and alln. Moreover, we show how to
explicitly describe a minimum dominating set fGrx P, in terms of a regular grammar over states derived
from G. Using only an IBM PC, we have been able to rapidly replicate the earlier results mentioned above,
and obtain closed form expressions faiP,, x P,) for even largern than was previously considered.
Further details of the algorithm implementation, and tableg(&f,, x P,), will appear in [LS94].

Many domination-related concepts defined for arbitrary graphs enjoy easy solutions or at least fast algo-
rithms when restricted to the family of trees. S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar [HHL] give
an extensive coverage of domination and domination-related algorithms for trees, most of which are linear
time algorithms. The approach we describe in this paper can be easily modified to determine minimum
dominating sets fof/(G x P(n)) whenP(n) is a completeg-ary tree of height, for fixed¢ and alln.

Our approach can be adapted to allow different types of domination as well, such as perfect [LS90],
efficient [BBHS, BBS] and total domination [HL90], and still retain tB¢1) time complexity. We will
illustrate with an example of this in Section 3.2.

A closely related concept to dominating sets is that of packing.klst a positive integer. A subset
K C V is called ak-packingof the graphG = (V, E) if the distance between every pair of verticesin
is greater thark. The k-packing numbepf G is the cardinality of the largegt-packing of G. Note that
the 1-packing number a¥ is also known as thindependence numbef G, the largest size of a subset of
nonadjacent vertices @f. E. Hare and W. Hare [HH91] gave a linear time algorithm for determining the
2-packing number of the complete grid graBh x P, for fixedm. Recently, D.C. Fisher [F93] determined
the 2-packing number af,,, x P, for all m andn. He established a recursive inequality which enabled him
to deal with the cases fon > 8 with elementary arguments in the same spirit as those in [CHHW]. Several
cases had to be treated separately, some of which were handled with a branch and bound algorithm, others
by ad hoc arguments. Using the techniques outlined in this paper, we have found a closed form expression
for the 2-packing number a?,,, x P, for eachm < 9 and alln, which allowed us to produce a considerably
shorter and simpler determination of the 2-packing numbers fen@hdn. Further, our techniques easily
extend tok-packings ofG x P, for arbitraryG andk.

Figure 1: A dominating set foP, x Pg

S1 52 53 S4 S5 S¢St

- = &~ —] e
= — = — e 7

Figure 2:S,, states forP, x P,

2 An lllustrative Example

Before launching into the general description of the method, we illustrate it with a small example, show-
ing how to compute minimal dominating sets B x P,. Consider the graptP, x P and letS =
{(2,1),(1,3),(1,5),(2,5),(1,8), (2,8)} be one of its dominating setsS {s a minimal dominating set, but
is not a dominating set of minimum size.) This is shown in Figure 1, where each veges iabeled with
ae, and all other vertices are labeled with an arrow pointing to an elemehtludt dominates them.

At vertex(1,4) of Figure 1 there is a choice as to which dominating set element to point to. We force a
specific choice through the following interpretation of the labels, which will be critical for the constructions
in this paper. Vertexj, k) labeled

e means that vertefj, k) isin S,

1 means that vertefj, k) is not in.S but at least one of the verticég + 1, k) isin S,

< means that none of the verticesk), (£ 1, k) areinS, but(j,k — 1) isin S.

— means that none of the vertices k), (= 1, k), (j,k — 1) areinS, but(j,k + 1) isin S.

2.1 States

Note that if we consider any column of the graph we have a cogy @fith its vertices labeled by elements

of {e,1,<,—}. Such a labeling of, which can arise from a dominating setis x P for somek will

be called astate There aret? possible labelings, but some reflection upon the interpretation of the labels
shows that a labeling is a state if and only if it satisfies the following conditions:

(S—i) if one entry iss, then the other entry i€ or .
(S—ii) if one entry isf, then the other entry ie.

We will let S, denote the set of all labelings &% which satisfy these conditions. It is easy to verify tl§at
has 7 elements, given in Figure 2, where we show the states as column vectors of length 2. Note that all of
these states occur in Figure 1.

We will be constructing dominating sets fé%, x P, from dominating sets (and sets that nearly
nominate) forP, x P. To help in this, we use the notion sfate transitiondo describe which states are
possible for columrt + 1, given a particular state for colunin In general, it is possible to go from state
in column/ to states; in column/ + 1 if and only if the following conditions hold for all rows:

3

S1 59 S3 S4 S5 Se ST
s;01 0 0 0 O O O 1
s20 0 0 0 O O 1 1
s3] 0 0 0 O 1 0 1
s4/ 1 0 O O 1 1 1
ss| 0 10 O 1 1 1
ss] 0O 0O 1 O 1 1 1
s/ 0O 0 0 1 1 1 1

Figure 3: The State Transition Table

final
state

initial
state

Figure 4: The State Transition Graph B

(T-i) if s;(p) =—, thens;(p) = e.
(T=ii) if si(p) = o, thens;(p) #—.
(T=iii) if s;(p) =<, thens;(p) = o.

This information can be presented in the form ddtate transition table7;, given in Figure 3. The state
transition table consists of 7 rows and 7 columns in which a 1 appears ify mmlumnj if it is possible to
go directly from state; to states;, and a 0 otherwise.

States which could be the first column of a dominating set will be catigidl states denoted byZ,,
while those which could be the last column will be calfethl states denoted byF,. Note that a state is
initial if and only if it has no« entries, while a state is final if and only if it has re entries. We see from
Figure 2 thatZ, = {s1, s5, Sg, S7}, andFy = {s4, S5, ¢, S7}-

Let G, denote the directed graph (with loops) whose vertices are the stafigsaimd whose edges are
determined by the condition thét;, s;) is an edge if and only if>(s;, sj) = 1, for all s;,s; € Sp. We call
G- the state-transition grapHor the pairSs, 73, and illustrate it in Figure 4. Adding the identification of
the initial and final states, one has a precursor fifitge state automatqrthough no alphabet has yet been
specified.

2.2 State Sequences

Let S be a dominating set af,, = P» x P,. S induces a labeling of the vertices Gf, with elements of
{e,1,«,—}. The pair(G,,, S) can be associated with the sequence of states(«, as, ..., ay), where
columnj of G, has the stater; in S, induced byS. We call o the state sequence induced by the pair
(Gp, S) and express this by writing=,,, S) = a. For example, for the graph and dominating set given in
Figure 1, the induced state sequencésis s, s, S3, S7, 84, S1, S7)-

For any state sequenee = (a1, ..., ®,) induced by a dominating s&, we see that we must have
To(aj,ai41) = 1fori =1,2,...,n — 1. Furthermore, the first state, must be inZ,, and the final state
a, must be inF,. Thusa corresponds to a path &, of lengthn — 1, starting inZ, and ending inf,.

Let U denote a set of vertices ¢k, and, for; > 1, let P(U, j) denote the set of all paths @, of
lengthj — 1 which begin at a vertex i, and end at a vertex iti. We shall be particularly interested in the
case wherU is a single state or the set of final statesS'lis a dominating set of7,,, we see thatG,,, S)
determines an elemeptof P(F2,n). Conversely, ifp is an element ofP(F»,n), then the sequence af
vertices on the patp corresponds to a sequence of states as, . .., a,) which can be identified with a
unique dominating sed of P, x P,, where

A ={(4,7) | the element in theth row of stateu; ise}.

We express this relationship by writiqga1, as, . . ., ax)) = A or, equivalently((p)) = A. Thus,

there is a natural 1-1 correspondence between the dominating sétsafd the paths of length
n — 1 in the state-transition graply» which begin at an initial state and end at a final state.

Now, if we define theweightof the pathp, w(p), as the total number of entries in all the columns of its
associated state sequerieg, as, . . . , a,,), then we see thab(p) is just the cardinality of the set = ((p)).
Furthermore, the above 1-1 correspondence maps the minimum dominating Ggt®fo the minimum
weight paths inP(F;, n).

2.3 The Cost Matrix

We organize our computational process ifi & n matrix, C,,, which we call thecost matrix The element
Cn(i,7), in rowi and columny, contains the quantitiegs, j) and f (i, 7). The cosk(s, j) is defined as

(i) = minimum weight of the elements @ ({s;},j) if P({s;},7) #0
A= otherwise.

The quantityf (7, j) informs us of the most recent state from which we have made the transition to the
present state. More specifically, if> 2 anda = (a1, as,...,a;) is an element o ({s;}, j) of weight
c(i,7), then f(i,7) “points” to the second last vertex on the path If there is more than one such state
sequence of weight(7, j), we choose the smallest suehSo, for; > 2,

f(i,7) =k, where a;_; = s;.

To complete the definition of (i, 7), we setf (i, 1) =0for1 <i < 7.
Before we describe the recursive relations that existcfarj) and f(7,j), we need some additional
notation. Fors € Sy, let
Pred(s) ={w | w € Sy andTy(w, s) = 1}.

1 2 3 4 5 6 7

s1 00 o000 24 24 34 44 44
S9 oo 15 25 25 35 35 45
s3 | 00,0 1.6 26 26 36 36 406
S4 | 000 257 2:7 377 47 47 57
S5 1.0 25 2:3 33 3;3 43 43
Sg 1.0 25 22 32 32 42 472
s7 2.0 221 32 41 41 51 52

Figure 5: The Cost MatriK;

Then, since each elementBfs;,j + 1) can be viewed as consisting of an elemenPg§, j), for some

s € Pred(s;), with the edge frons;, to s; appended to the path, we have the following recursive relation
for thec(i, 5):

c(i,j +1) = w(si) +min{c(k,j) | sp € Pred(s;)}, for j >1, 1)
. _ w(s;) if s; € Iy
ci,1) = { 00 otherwise
The cost matrixC; is shown in Figure 5, where the entry in ré&nd columry is exhibited ag(i, j); f (4, 7).
Forj > 2, let the sequenck,, ks, . .., kj—1 be defined in terms of (¢, j) as follows:
kl = f(zaj)a and (2)
kt+1 = f(kt,]—t), fOflStS]—Q
Let (fi,;) denote the associated state sequeBge ,, ..., s, s;). It follows that

(fij+1) = (fr,j)si forj > 1.

To illustrate this notation, let us find a minimum dominating setPerx Ps; from C7. Arbitrarily choosing
s4 from among the four states i, with minimumc(4, 6) values, we use thé(s, 7) entries to find the state
sequence fyg) = (s1, s7, 54, 51, S7,54). The minimum dominating set faP, x Ps corresponding to this
minimum weight path ig(f46)) = {(1,2),(2,2),(1,5),(2,5)}.

2.4 Periodic Behavior

An examination of Figure 5 reveals that
c(i,7) = c(4,5) + 1

for all 7. We will refer to this behavior of the columns 6f, asperiodic for, once two columnsj; and
jo have the property that(s, j;) = c(, j2) + b for some constani and all1 < i < 7, it will be the case

that columns: andk + |71 — jo| must differ by this constarit for all £ > max(j1,j2). This relationship,
together with Equation 1, implies that

c(i,§) = { c(i,5) + [(j —5)/2] ifj=1 (mod?2)
’ + [(j —5)/2] otherwise

for j > 7, and alli. It follows thaty(G,,) = (”7‘51 + 3 forn > 5. A check of the cost matrix faf < n < 4

completes the proof of that
n+1

V(P x Po) = |

Now, let us turn to the construction of a minimum dominating setAoix P,. The periodic behavior
of thec(z, j) guarantees that

} forn > 1.

f(i,7) otherwise

f(i,j):{ £(i,6) ifj=0 (mod?2)

for 7 > 7 and alli. Thus, ifj is even and > 8, then Equation 2 becomes
ki = f(i,6)
k2t+e = f(k2t+6717 7T— 6)
fore = 0,1 andt > 1. Similarly, for j odd and; > 7, we obtain
ki = f(Za 7)
katre = f(kotye—1,6+¢€)

fore = 0,1 andt > 1. Consequently, the associated state sequef)fzes satisfy recurrence relations for
eachi. For example, taking = 5,

(f5,5) = (f5,5-4)52565355
for j > 10. Let# denote the sequenegsgssss, then
(f5.5) = (f5,6+(j—6 mod 4)>9L(j_6)/4J for 7 > 10.
Further, we may express the sequenggs) for6 < j <9 as

(fs0) = (foe)sessss = s50°

(fs,g) = (fe6)s3s5 = 555653850
(fs;7) = (f3.6)85 = 5653550
(fs6) = s5°0

Thus, from the periodic behaviour of the cost matrix, we see that, for,albt only can we give the
value ofy(P, x P,), but we can also describe explicitly a minimum dominating setfpix P, namely

((f5.n))-

3 The Algorithm

To extend our methods frols, x P, to G x P, for an arbitrary grapld:, we have to slightly generalize the
definition of state. A state is a labeling of the verticesith elements of{e, I, <, —}, satisfying the
restrictions

(') if a vertex is labele®, then its neighbors are all labeledr J.

(S'-ii) if a vertex is labeled, then at least one of its neighbors is labeted

The definitions of state transition, final state, and initial states are all exactly as they were in Section 2.
In Algorithm 3.1 we outline our algorithm for the cost matrix, from which we can compute domination
numbers and dominating sets of minimal size. As can be seen, both the time and space complexity of this
algorithm depend only on the gragh although each will be exponential in the sizethf

The proof that the periodic behavior must occur, forcing the loop in steps 5-13 to terminate, appears
in [LS94].

Algorithm 3.1 (Domination Algorithm)
The logical variable periodic remains false until we discover periodic behavior between two coKimns
and K of the cost matrix.

1 DetermineS, the set of stated,, the initial states,F, the final states, and/, the number of states.
2 Determine the state transition tabfe.

3 Compute column 1 of the cost matéig«, 1).

4 5.=1, periodic:= false

5 repeat

6 j=j+ 1.

7 fori:=1to N do

8 Computec(i, 7) and f (i, 7)

9 fort:=1toj—1do

10 If ¢(x,7) — e(x,t) is a constant vector then
11 periodic := true.
12 K1 = t, K2 = j

13 until periodic.

3.1 Main Theorem

When Algorithm 3.1 terminates, post-processing of the cost matrix gives the following result.

Theorem 3.1 Let G be an arbitrary graph. Then there are integer constant$> 1, ng > 0, ¢ > 1, andb;,
0 < i< m — 1, such that, for alln > ny,

v(G x P,) = a|n/m| + b;, wherei =n mod m.

Additionally, for all0 < i < m — 1, there are state$},j ands; ;, of G, wherel < j < ny + 4, and
1 < k < m, such that, for any. > ny, the set

?

Sn = ((87{17 cee 78%,n0+i7 (Si,17 cee 75i,m) (n=na)/m] >>
wherei = n mod m, is a dominating set aff x P,, with cardinalityy(G x P,).

Further, these constants and states are determined by Algorithm 3.1 in a time which depends solely on
G.O

We note that, while Theorem 3.1 emphasizes the asymptotic behavior, we also obtain the corresponding
results forn < ng during the running of the algorithm, and hence determif@ x P,,) for all n.

o _A
© Ty

Figure 6: Finite State Automaton for Perfect Domination

3.2 Perfect Domination

While we do not have space to show all of the variations that can be solved by this approach, we will
outline another example. One form of dominatiorp&fect dominationwhere a subsef of verticesV
of a graphG is a perfect dominating set if it is a dominating set, and for every pair of verticesn S,
N(u) N N(v) = 0, whereN (v) denotes the neighborhood setoi.e.,v and all vertices adjacent to Not
all graphs have perfect dominating sets: the smallest counterexample is a square of 4 vertices.

To determine thosé for which G x P, has a perfect dominating set, we need to modify the defini-
tions of states and of transitions. Still using a vertex labeling with the Igsels <, —}, with the same
interpretations, we impose the following restrictions on states:

(") if a vertex is labeled, then all of its neighbors are labelgd
(S"-ii) if a vertex is labeled;, then exactly one neighbor is labeled

For state transitions, we impose the following restrictions on going from stdtes ;, for all verticesp of
G:

(T"-i) s;(p) =— if and only if s;(p) = e.
(T"—ii) si(p) = eif and only if s;(p) =+<.

Figure 6 shows the automaton fGr= P,. From this, it is easy to see thBt x P, has a perfect dominating

set if and only if(n mod 2) = 1. We also see that states in which a pair of neighbors are both labeled

are both labeled, can never contribute to a solution because they can have no predecessor or successor,
respectively. Thus we can add the following restrictions to states without changing our results:

(S"iii) if a vertex is labeled—, then none of its neighbors are labeled
(S"-iv) if a vertex is labeled—, then none of its neighbors are labeked
Using this automaton specially constructed for perfect domination, we obtain:

Theorem 3.2 LetG be an arbitrary graph. Then there are integer constamgs> 1, m > 1, and (possibly
empty) setd C {1,...,no — 1} andJ C {0,...,m — 1}, such that7 x P, has a perfect dominating set
if and only if
nel ifn<ng
(n mod m) € J otherwise.

Further, these constants and sets can be determined by an algorithm whose running time depends solely on
G.

Proof: G x P, has a perfect dominating set if and only if there is a path of lemgth 1, starting at an

initial state and ending at a final state, in the state transition graph described above. It is well known that the
lengths of paths of accepting sequences in a finite state automaton can be written in the form given in the
theorem, and that they can be determined from the state transition graph.

4 Conclusion

We have shown that, for any gragh there is a closed-form formula for(G x P,) as a function ofa,

and that our algorithm finds this formula in time depending onlyzorurther, dominating sets of minimal

size can be given as a regular grammar over states deriveddrofe showed this by reducing the original
problem to one involving paths in a state space, and then solving this automata problem foy atllizing

dynamic programming and the periodic nature of the solution. While others had also noted that a state space
and dynamic programming could be used for this problem, apparently none had noticed that the periodic
properties of finite state spaces could be exploited to eliminate the time dependence on

By changing the definitions of the states (perhaps including labels of edges) and their transitions, this
approach can be extended to a great many other problems involving domination and domination-related
concepts such as packings, coverings, matchings, etc. For example, we can solve problems such as per-
fect domination, domination involving distances greater than 1, domination of nonconvex regions such as
knight's moves ([HH87]), independent domination, edge-edge domination, etc. For packings, we can solve
problems such a-packings, vertex-disjoint (or edge-disjoint) packings of subgraphs, etc. Covers can
include vertex covers, edge covers, covers by subgraphs, etc.

We can also change some of the information kept along with the dynamic programing, and use it to
answer various counting problems. For example, we can develop formulas for the number of dominating
sets, number of minimal dominating sets, number of dominating sets of minimal size, number of perfect
dominating sets, etc. We can count number of matchings, number of perfect matchings, and so on. Other
variations, still producing closed-form solutions, include repladiydoy completet-ary trees of height
(for fixed t), or by cycles ofn vertices. One can also vary the definition of product used, allowing us to
analyze, for example, grid graphs where each vertex is connected to its eight nearest neighbors, rather than
its four nearest neighbors.

Several of the extensions mentioned above will be explored in [LS94] and subsequent papers. Those
papers will include more details of material outlined here, including tables@f, x P,).

References

[BBHS] D.W. Bange, A.E. Barkauskas, L.H. Host, and P.J. Slater, “Efficient near-domination of grid
graphs”,Congressus Numerantius8 (1987) 83-92.

[BBS] D.W. Bange, A.E. Barkauskas, and P.J. Slater, “Efficient dominating sets in gratdications
of Discrete Mathemati¢®R.D. Ringeisen and F.S. Roberts, eds., SIAM (1988).

[CC93] T.Y.Chang and W.E. Clark, “The domination numbers ofitlve: and6 x n grid graphs”J. Graph
Theoryl7 (1993) 81-107.

[CHHW] E.J. Cockayne, E.O. Hare, S.T. Hedetniemi and T.V. Wimer, “Bounds for the domination number
of grid graphs”,Congressus Numerantiudy (1985) 217-228.

[F93] D.C. Fisher, “The 2-packing number of complete grid grapAss, Combinatoria36 (1993) 261—
270.

10

[GJ79] M.R. Garey and D.S. Johnso@omputers and Intractability. A Guide to the Theory of NP-
CompletenesdV.H. Freeman, San Francisco (1979).

[H89] E.O. Hare, “Algorithms for grid and grid-like graphs”. Ph. D. thesis, Dept. Comp. Sc., Clemson
University, Clemson, SC (1989).

[HH91] E.O. Hare and W.R. Harek*Packing ofP,, x P,”, Congressus Numerantiu@4 (1991) 33—-39.

[HH87] E.O.Hare and S.T. Hedetniemi, “A linear algorithm for computing the knight's domination problem
of ak x n chessboard’Congressus Numerantiu® (1987) 115-130.

[HHH] E.O. Hare, S.T. Hedetniemi and W.R. Hare, “Algorithms for computing the domination number of
k x n complete grid graphs’Congressus Numerantius® (1986) 81-92.

[HL90] S.T. Hedetniemi and R.C. Laskar, “Bibliography on domination in graphs and some basic defini-
tions of domination parameterdjscrete Math86 (1990) 257-277.

[HHL] S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, “Domination in trees: models and algorithms”,
Graph Theory with Applications to Algorithms and Computer ScieMcélavi, G. Chartrand, L.
Lesniak, D. Lick, and C. Wall, eds., (1985) Wiley, 423-442.

[JK84] M.S. Jacobson and L.F. Kinch, “On the domination number of products of graftssCombina-
toria 18 (1984) 33-44.

[Jo85] D.S. Johnson, “The NP-Completeness column: an ongoing guid&gorithmst (1985) 434-451.

[KYK] T. Kikuno, N. Yoshida, and Y. Kakkuda, “A linear algorithm for the domination number of a series-
parallel graph” Discrete Appl. Math.37 (1983) 299-311.

[LS90] M. Livingston and Q.F. Stout, “Perfect dominating se@tngressus Numerantiun® (1990) 187—
203.

[LS94] M. Livingston and Q.F. Stout, “Constant time computation of properties of product graph families”,
in preparation

[SP87] H.G. Singh and R.P. Pargas, “A parallel implementation for the domination number of a grid graph”,
Congressus Numerantiuf® (1987) 297-311.

11

