
RESEARCH CONTRJBUTJONS

Programming
Techniques
and Data Structures

Tree Rebalancing in Optimal
]ohn Bruno
Editor Time and Space

QUENTIN F. STOUT and BEllE L. WARREN

ABSTRACT: A simple algorithm is given which takes
an arbitrary binary search tree and rebalances it to form
another of optimal shape, using time linear in the
number of nodes and only a constant amount of space
(beyond that used to store the initial tree). This algorithm
is therefore optimal in its use of both time and space.
Previous algorithms were optimal in at most one of these
two measures, or were not applicable to all binary search
trees. When the nodes of the tree are stored in an array, a
simple addition to this algorithm results in the nodes
being stored in sorted order in the initial portion of the
array, again using linear time and constant space.

1. INTRODUCTION
A binary search tree is an efficient and widely used
structure to maintain ordered data. Because the
fundamental operations of insertion, deletion, and
searching require accessing nodes along a single
path from the root, for randomly generated trees of
n nodes (using the standard insertion algorithm), the
expected time to perform each of these operations is
@log(n)) [5]. Unfortunately, it is possible for a binary
tree to have very long branches, and the worst-case
time is 8(n). Further, there is experimental evidence
that if a tree is grown as a long intermixed sequence
of random insertions and deletions, as opposed to
just insertions, then the expected time is worse than
logarithmic [4].

This research was partially supported by National Science Foundation grants
MCS-83.01019 and DCR-8507851.

6) 1986 ACM 0001.0782/8ti,‘O900-0902 750

To avoid the worst-case linear time it is necessary
to keep the tree balanced, that is, the tree should not
be allowed to have unnecessarily long branches.
This problem has been studied intensely, and there
are many notions of balance and balancing strate-
gies, such as AVL trees, weight-balanced trees, self-
organizing trees, etc. [5]. Here we are concerned
with perhaps the simplest strategy; periodically re-
balance the entire tree into an equivalent tree of
optimal shape. This strategy has been discussed by
many authors, and several algorithms have been
presented [l, 3, 61; recently Chang and Iyengar [Z]
surveyed this work and presented additional algo-
rithms. No previous algorithm could rebalance an
arbitrary binary search tree in time linear in the
number of nodes, while using only a fixed amount of
additional space beyond that originally occupied by
the tree. The main result of this article is a simple
algorithm which accomplishes this.

One notion of “optimal shape” used in rebalancing
trees is that of perfect balance, which requires that at
each node p, the number of nodes in p’s left subtree
differs by no more than 1 from the number of nodes
in p’s right subtree. It is easy to see that in a per-
fectly balanced tree of n nodes the maximum depth
of the nodes is Llg(n)J, and for each depth 0 5 d <
tlg(n)J there are exactly zd nodes at depth d. (lg de-
notes log, and LxJ denotes the largest integer no
larger than x. The depth of a node is the number of
links which must be traversed in traveling from the
root to the node. The depth of the root is 0, and the

902 Commnnications of the ACM September 1986 Volume 29 Number 9

Research Contributions

/c” (4

0
(d)

W

fi
03

Ba; (c)

c?L (f)
FIGURE 1. All Route-Balanced Trees of Five Nodes

children of a node of depth d have depth d + 1.)
Using these properties, it is also easy to show that,
among all binary trees of n nodes, perfectly balanced
trees minimize the maximum depth of the nodes
and minimize the average depth of the nodes.
Therefore perfectly balanced trees have the best pos-
sible worst-case time and the best possible expected
case time for each standard tree operation.

However, perfectly balanced trees are not the larg-
est class of trees with all these properties. A binary
tree with n nodes, where all nodes are at depth
Llg(n)J or less, and where there are exactly zd nodes
at depth d for each depth 0 s d < Llg(n)l, will be
called route balanced. Route balanced trees are pre-
cisely those binary trees which minimize the maxi-
mum depth of the nodes and minimize the average
depth of the nodes. Every perfectly balanced tree is
route balanced, but not vice-versa. For example, in
Figure I, only trees b, c, d, and e are perfectly bal-
anced, but all six are route balanced. With the ex-
ception of Day [3], p revious authors concentrated on
creating perfectly balanced trees. Although perfect
balancing fits naturally into a top-down approach,
we know of no reason to prefer a perfectly balanced
tree over a route balanced tree, and our basic algo-
rithm creates route balanced trees. If for some rea-
son a perfectly balanced tree is needed. then a modi-
fied version of our basic algorithm, still requiring
only linear time and constant additional space, can
produce it. No previous algorithm produces a per-
fectly balanced tree using only constant additional
space.

Our algorithm proceeds in two phases. The binary
tree is first transformed into a “vine” in which each
parent node has only a right child and the nodes are
in sorted order. The vine is then transformed into a
route balanced tree. This strategy is the same as in
Day [3], but he requires that the initial tree be

threaded and we do not. Threading requires extra
space at each node to store a flag indicating whether
a pointer points to a child or to an ancestor. (In Day’s
case an extra sign bit is needed.)

Chang and Iyengar [2] assume that the nodes are
stored in an array, we do not. One of their algo-
rithms has the side benefit that when finished, the
nodes are stored in sorted order in the initial posi-
tions of the array. In Section 3 we show that an easy
addition to our algorithm will also accomplish this,
again using only linear time and constant additional
space.

Throughout, II will denote the number of nodes in
the tree. The algorithms do not require prior knowl-
edge of n.

2. REBALANCING
We will use the following declarations:

type nodeptr =
node =

f node ;
record right, left:

nodeptr;
lother components,
including the key]

end ;

Although we use this standard pointer implementa-
tion of trees, our algorithms require no special prop-
erties of pointers (nor of Pascal) and can be easily
modified for a variety of tree implementations with
no loss of efficiency.

A procedure tree-to-vine reconfigures the initial
tree into an increasing vine, and also returns a count
of the number of nodes. Then the procedure vine-
to-tree uses the vine and size information to create
a balanced tree. To simplify the algorithms, each
vine will have a pseudoroot which contains no data,

Rebalance Algorithm

procedure rebalance(var root: nodeptr);
[rebalance the binary search tree with
root *'root+'*, with the result also
rooted at "root4**. Uses the tree-to-vine
and vine-to-tree procedures.]

var pseudo-root: nodeptr;
size : integer;

begin (rebalance)
new (pseudo-root);
pseudo-roott.right := root;
tree-to-vine (pseudo-root, size);
vine-to-tree (pseudo-root, size);
root := pseudo-root+.right;
dispose (pseudo-root)
end ; jrebalance)

September 1986 Volume 29 Number 9 Communications of the ACM 903

Research Contributions

where the pseudoroot’s right pointer points to the
real root.

Tree-to-Vine
This algorithm proceeds top-down through the tree,
creating an initial portion which has been trans-
formed into a vine and a remaining portion of nodes
with larger keys which may require further transfor-
mation. A pointer “vine-tail” points to the tail of the
portion known to be the initial segment of the vine,
and a pointer “remainder” points to the root of the
portion which may need additional work. Remain-
der always points to vine-tail + right. When remain-
der is nil the procedure is finished. If remainder
points to a node with no left child, then that node
can be added to the tail of the vine. Notice that this
happens exactly n times. Finally, if remainder points
to a node with a left child then a rotation is per-
formed, as illustrated in Figur’e 2.

Any node initially reachable from the pseudoroot
via a path of right links retains this property after
the rotation. Further, after the rotation, the node
that was initially pointed to by remainder4 .left is
also reachable via right links. Since each rotation

TfeeAJii Atgomn

procedure tree-to-vine (root: nodeptr;
var size:
integer);

{transform the tree with pseudo-root
"roott" into a vine with pseudo-root
node uroot4W, and store the number of
nodes in "size"]

var vine-tail, remainder, tempptr:
nodeptr;

begin (tree-to-vine]
vine-tail := root;
remainder := vine-tailt.right;
size := 0;
while remainder # nil do

if remainder+.left = nil
then begin imove vine-tail down one)

vine-tail := remainder;
remainder := remaindert.right;
size := size + 1
end (then]

else begin {rotate]
tempptr := remainderf.left;
remainderf.left := tempptr+.righti
tempptrf.right := remainder;
remainder := tempptr;
vine-tail+.right := tempptr
end (else]

end; {tree-to-vine)

*
rotate

FIGURE 2. A Tree-to-Vine Rotation

increases by 1 the number of nodes reachable from
the pseudoroot via right links, at most n - 1 rota-
tions can occur (note that the root is reachable ini-
tially). Therefore the while-loop will be executed at
most 2n - 1 times, and at least n times, so tree-to-
vine runs in 8(n) time.

Vine-to-Tree
Two versions of vine-to-tree are given. Each modi-
fies a restricted version of a simple algorithm of Day
[3] which creates a complete ordered binary tree
from an ordered vine with 2” - 1 nodes, for some
positive integer m. (A complete binary tree is a route
balanced binary tree of 2”’ - 1 nodes, for some posi-
tive integer m. Such a tree has 2”‘-’ nodes at depth m
- 1, and is unique.) The kth step of this algorithm is
illustrated in Figure 3. Each triangle represents a
complete binary tree of Zk - 1 nodes, and each of the
2’ - 1 circles represents a spine node, where j + k =
m. Each white triangle is reattached to the right side
of the black spine node above and the resulting tree
is attached to the left side of the white spine node
below. The result is an ordered tree with 21-’ - 1

spine nodes and 2/-r complete subtrees of Zk+’ - 1

nodes each. We call this operation a compression.
Performing compression m - I times produces an
ordered complete binary tree.

When n + 1 is not an integral power of 2 we alter

+
compress

FIGURE 3. Compression

904 Communications of the ACM September 1986 Volume 29 Number 9

Research Contributions

the first step by reattaching only n - (2”g(“)’ - 1)
nodes. The result is a tree with 2L’g(“)’ - 1 spine
nodes and 2”stn)’ attached subtrees with either 0 or 1
node in them. Compression is then performed as
before Llg(n)J - 1 times, producing a route balanced
tree regardless of which nodes are reattached in the
first step.

The basic algorithm uses the first, third, fifth, etc.
nodes as the choices to reattach in the first step,
producing a route balanced tree in which all of the
deepest leaves are as far left as possible. This is
achieved by doing a compression on an initial por-
tion of the vine. Day’s algorithm also works for vines
of arbitrary length, producing trees in which the
deepest leaves tend toward the right. The sole rea-
son for our adjustment of his algorithm is to simplify
the discussion for perfectly balanced trees.

To produce a perfectly balanced tree it is neces-
sary to skip over some nodes in the first step, creat-
ing somewhat evenly spaced conceptual “holes” in
the lowest level of the final tree. Imagine a vine with
2”@)+” - 1 nodes. In such a vine the odd numbered
nodes would be the leaves in the final complete tree,
and the even numbered nodes would form the spine

after the first compression. The complete tree would
have I= 2 ‘M”+“-~ leaves. The actual tree will have
h = (2 We+‘)’ - 1) - n holes where the conceptual
tree had leaves. The ith hole with be at leaf position
Li*(l/h)J. Note that I L h, so different holes will be at
different leaf positions.

To see that the final tree will be perfectly bal-
anced, identify the jth leaf of the imagined tree with
the real interval [j, j + 1). The leaf positions associ-
ated with the left and right subtree of any node
correspond to disjoint half-open intervals of the
same length. Since the rational numbers l*(l/h),
2*(1/h), . . . , h*(l/h) = 1 are evenly spaced, the num-
ber of rational numbers falling into one of the half-
open intervals cannot differ by more than one from
the number falling into the other; consequently, the
number of holes in the two subtrees cannot differ by
more than one.

The algorithm for producing perfectly balanced
trees is obtained from the basic algorithm by re-
placing the first call to compression with a call to
perfect-leaves (p. 906). Since perfect-leaves goes se-
quentially through the vine, it runs in linear time.
Vine-to-tree uses only a constant amount of extra

VineJo-Tree Algorithm

procedure vine-to-tree (root: nodeptr; size: integer);
{convert the vine with "size" nodes and pseudo-root node V1root41* into a balanced
tree]

var leaf-count: integer;

procedure compression (root: nodeptr; count: integer);
{compress "count" spine nodes in the tree with pseudo-root "root4"]

var scanner, child: nodeptr;
i: integer;

begin {compression]
scanner := root;
for i := 1 to count do begin

child := scanner4.right;
scannerf.right := childf.right;
scanner := scanner4 .right;
child4.right := scanner4.left;
scanner4.left := child
end {for]

end; [compression]

begin [vine-to-tree]
leaf-count := size + , _ 2L1gcsize+l,l;

compression (root, leaf-count); {create deepest leaves)
size := size - leaf-count;
while size > 1 do begin

compression (root, size div 2);
size := size div 2
end (while)

end ; [vine-to-tree)

September 1986 Volume 29 Number 9 Communications of the ACM 905

Research Contributions

procedure perfectLeaves (root: tiodeptr; leaf-count, size: integer);
(position leaves in the vine with pseudo-root "roottn and *size" nodes so that the
final tree will be perfectly balanced)

var scanner, leaf: nodeptr;
counter, hole-count, next-hole, hole-index, leaf-positibns: integer;

begin (perfect-leaves1
if leaf-count > 0 then begin

leaf-positions :I ~rl~~siae+r)r-t;
hole-count := leaf-positions - leaf-count;
holeindex := f;
next-hole := leaf-positions div hole-count;
scanner := root; s
for counter := 1 to leaf-positiogs - 1 do

(the upper limit is leafqosit$onp -
position is always a hole)., 1 n_

2, and not leaf-positions, because the last
o :

if counter = nextjnole '(l(l_nn' _.
then begin d :_ n_

i
scanner := scannert.right; '
hole-index := hole2ndex.i 3;"
nexchole : =
end (then]

(hole-index‘ * ,keaf,positboys) d&v hole,couht
0

else begin e,
leaf := scannert.right;,:
scanner+.right := leaf+,x&ht;
scanner := scannerf.rightf,
scanner+.left := leaf;~:-“ ,
leaft.right := nil : ' 0
end {else through for) ;. 1

end (if) e : .n I
end; (perfect-leaves)

space, and runs in linear time, regardless of which
version is used, because each call to compression
runs in time linear in the number of spine nodes,
and at each step after the first, the number of spine
nodes after compression is less than half the number
before it.

3. SORTING
Sometimes a tree is implemented as an array of rec-
ords, where a pointer to a node is an index into the
array. (For FORTRAN-style implementations, in-
stead of an array of records one uses parallel arrays,
one for each of the record’s components.) In this
case, one of the algorithms in Chang and Iyengar [2]
provides a fringe benefit: when finished, the tree
occupies the first n positions of the array, and the
items are stored in sorted order. However, their algo-
rithm requires a significant amount of extra space,
as it first copies the entire array into an auxiliary
array. For such an implementation, a call to a new
procedure sort-vine, made between the calls to
tree-to-vine and vine-to-tree, also provides a
sorted array, while still using only linear time and

constant additional space. One note of caution: since
sort-vine moves the data, it cannot be used safely in
a pinned structure where there are additional
pointers pointing at nodes. All of the other proce-
dures can be used in such cases because they
change pointers rather than locations.

Sort-vine moves the vine so that its items are
stored in positions 1 . . . n. It proceeds top-down,
moving data from the vine into its desired position
in the array. The ith node from the vine is moved to
the ith position of the array by switching data parts.
It may be that position i held some other node of the
vine, in which case some pointer still points to i. To
ensure that this data can be found later, the left
pointer at position i is used to point to the position to
which the data has moved. (Since the vine uses only
right pointers, no pointer information is destroyed.)
In general, when the data of the next vine node is to
be moved, the right pointer of the previous node
points only to the data’s initial position in the array.
The variable “alias” is used to find the current loca-
tion of the data by following left pointers until a null
pointer is found. The final values of left and right

Communications of the ACM September 1986 Volume 29 Number 9

Research Contributions

soft-vi N!Jomm
procedure sort-vine (var root: nodeptr; size: integer);
(move the vine with pseudo-root "nodes[nodeptr]" into positions 1 . . . size of
*nodes", retaining the sorted order, and make "nodes[size + 11” the new pseudo-
root. The following declarations are assumed:
coast node-array-limit = {some positive integer L n);

null = 0; {equivalent of nil for pointers]
type nodeptr = null . . node-array-limit;

node = recorU left, right: nodeptr;
data: (includes everything else, including the key)

end;
var nodes: arrayif . . node-array-limit] of node;

var next-node, alias: nodeptr;
counter: integer;

begin (sort-vine]
next-node := nodes[root].right;
for counter := 1 to size do begin

alias := next-node;
while nodes[alias].left # null do alias := nodes[alias].left;
switch(nodes[alias].data, nodes[counter].data);
nodes[counter].left := alias;
next-node := nodes[nextdode].right
end ; (for1

{The remaining code sets up the pointers so that vine-to-tree can be used
unaltered. It can be eliminated if vine-to-tree is rewritten to use the fact that
the items are now sorted in positions 1 . . . size.)

for counter := 1 to size - 1 do begin
nodes[counter].right := counter -t 1;
nodes[counter].left := null
end; (for]

nodes[size].right := null;
nodes[size].left := null;
root := size + 1;
nodes[root].right := 1
end; {sort-vine)

(There should also be some allocation procedures to simulate the "new" and
WdisposeW procedures for pointer variables. Positions size + 2 . . .
node-array-limit should be made available for reallocation.)

pointers are computed and assigned in a single pass
through the relevant portion of the array after all
data components have been moved into their final
positions.

To see that the algorithm runs in linear time, note
that the number of iterations of the while-loop is
equal to the total number of temporary positions
(other than the initial one) occupied by the nodes
with the n - 1 largest keys. Since two nodes are
exchanged only when the one with the smaller key
is being moved into its final position, this number is
no greater than n - 1.

4. SUMMARY
We have presented a simple algorithm which takes
an arbitrary binary search tree and transforms it into
one which has the minimal worst and expected
depths of its nodes. Aside from producing an optimal
tree, our algorithm is also optimal in its use of time
and space, requiring only linear time and constant
additional space. Previous algorithms required more
time or space [2, 61, or both [I], or could not be
applied to arbitrary binary search trees [3]. The
basic algorithm produces a route balanced tree,
which should suffice for most applications. In case

September 1986 Volume 29 Number 9 Communications of the ACM 907

Research Contributions

there is a need for a perfectly balanced tree, we have
also provided a slightly more complicated algorithm
which produces one, again using only linear time
and constant additional space. This is the first algo-
rithm which produces perfectly balanced trees using
only constant additional space.

Finally, our last modification can be used when
the nodes are stored in an array. The tree is rebal-
anced, and the nodes are stored in sorted order in
the initial portion of the array. This modification
also uses only linear time and constant additional
space, unlike the Pz algorithm of Chang and Iyengar
[2], that sorts and rebalances in linear time, but
requires a second array.

Acknowledgments. We would like to thank the ref-
erees for several helpful comments.

REFERENCES
1. Bentley, J.L. Multidimensional binary search trees used for associa-

tive searching. Commun. ACM 78, 9 (Sept. 1975), 509-517.
2. Chang. H., and lyengar, S.S. Efficient algorithms to globally balance

a binary search tree. Commun. ACM 27,E (July 1984), 695-702.

3. Day, A.C. Balancing a binary tree. Compur. 1. 19, 4 (Nov. 1976).
360-361.

4. Eppinger. J.L. An empirical study of insertion and deletion in binary
search trees. Commun. ACM 26, 9 (Sept. 1983), 663-669.

5. Knuth. D.E. The Art of Computer Programming, Vol. 3: Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.

6. Martin, W.A., and Ness, D.N. Optimal binary trees grown with a
sorting algorithm. Commun. ACM 15, 2 [Feb. 1972). 88-93.

CR Categories and Subject Descriptors: E.l [Data]: Data Structures-
frees; F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems-sorting and searcking

General Terms: Algorithms
Additional Key Words and Phrases: optimal search, perfect balance,

rebalancing

Received 10/84; revised Z/86: accepted 6/86

Authors’ Present Addresses: Quentin F. Stout, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109. Bette L. Warren. Department of Mathematics, Eastern Michi-
gan University. Ypsilanti. MI 48197.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

1987 ACM
COMPUTER SCIENCE

CONFERENCE”
FEBRUARY 17-19 ST. LOUIS, MISSOURI

Quality Technical Program
Educational Exhibits
CSC Employment Register
National Scholastic

Programming Contest
SICCSE Technical Symposium

Attendance & Exhibits Information: Conference cochairs

ACM CSC ‘87, Conference Dept. Q At-Ian R. DeKock

11 West 42nd Street, New York, NY 10036 John W. Hamblen

B (212) 869-7440

908 Communications of the ACM September 1986 Volume 29 Number 9

