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ABSTRACT: A simple algorithm is given which takes 
an arbitrary binary search tree and rebalances it to form 
another of optimal shape, using time linear in the 
number of nodes and only a constant amount of space 
(beyond that used to store the initial tree). This algorithm 
is therefore optimal in its use of both time and space. 
Previous algorithms were optimal in at most one of these 
two measures, or were not applicable to all binary search 
trees. When the nodes of the tree are stored in an array, a 
simple addition to this algorithm results in the nodes 
being stored in sorted order in the initial portion of the 
array, again using linear time and constant space. 

1. INTRODUCTION 
A binary search tree is an efficient and widely used 
structure to maintain ordered data. Because the 
fundamental operations of insertion, deletion, and 
searching require accessing nodes along a single 
path from the root, for randomly generated trees of 
n nodes (using the standard insertion algorithm), the 
expected time to perform each of these operations is 
@log(n)) [5]. Unfortunately, it is possible for a binary 
tree to have very long branches, and the worst-case 
time is 8(n). Further, there is experimental evidence 
that if a tree is grown as a long intermixed sequence 
of random insertions and deletions, as opposed to 
just insertions, then the expected time is worse than 
logarithmic [4]. 
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To avoid the worst-case linear time it is necessary 
to keep the tree balanced, that is, the tree should not 
be allowed to have unnecessarily long branches. 
This problem has been studied intensely, and there 
are many notions of balance and balancing strate- 
gies, such as AVL trees, weight-balanced trees, self- 
organizing trees, etc. [5]. Here we are concerned 
with perhaps the simplest strategy; periodically re- 
balance the entire tree into an equivalent tree of 
optimal shape. This strategy has been discussed by 
many authors, and several algorithms have been 
presented [l, 3, 61; recently Chang and Iyengar [Z] 
surveyed this work and presented additional algo- 
rithms. No previous algorithm could rebalance an 
arbitrary binary search tree in time linear in the 
number of nodes, while using only a fixed amount of 
additional space beyond that originally occupied by 
the tree. The main result of this article is a simple 
algorithm which accomplishes this. 

One notion of “optimal shape” used in rebalancing 
trees is that of perfect balance, which requires that at 
each node p, the number of nodes in p’s left subtree 
differs by no more than 1 from the number of nodes 
in p’s right subtree. It is easy to see that in a per- 
fectly balanced tree of n nodes the maximum depth 
of the nodes is Llg(n)J, and for each depth 0 5 d < 
tlg(n)J there are exactly zd nodes at depth d. (lg de- 
notes log, and LxJ denotes the largest integer no 
larger than x. The depth of a node is the number of 
links which must be traversed in traveling from the 
root to the node. The depth of the root is 0, and the 
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FIGURE 1. All Route-Balanced Trees of Five Nodes 

children of a node of depth d have depth d + 1.) 
Using these properties, it is also easy to show that, 
among all binary trees of n nodes, perfectly balanced 
trees minimize the maximum depth of the nodes 
and minimize the average depth of the nodes. 
Therefore perfectly balanced trees have the best pos- 
sible worst-case time and the best possible expected 
case time for each standard tree operation. 

However, perfectly balanced trees are not the larg- 
est class of trees with all these properties. A binary 
tree with n nodes, where all nodes are at depth 
Llg(n)J or less, and where there are exactly zd nodes 
at depth d for each depth 0 s d < Llg(n)l, will be 
called route balanced. Route balanced trees are pre- 
cisely those binary trees which minimize the maxi- 
mum depth of the nodes and minimize the average 
depth of the nodes. Every perfectly balanced tree is 
route balanced, but not vice-versa. For example, in 
Figure I, only trees b, c, d, and e are perfectly bal- 
anced, but all six are route balanced. With the ex- 
ception of Day [3], p revious authors concentrated on 
creating perfectly balanced trees. Although perfect 
balancing fits naturally into a top-down approach, 
we know of no reason to prefer a perfectly balanced 
tree over a route balanced tree, and our basic algo- 
rithm creates route balanced trees. If for some rea- 
son a perfectly balanced tree is needed. then a modi- 
fied version of our basic algorithm, still requiring 
only linear time and constant additional space, can 
produce it. No previous algorithm produces a per- 
fectly balanced tree using only constant additional 
space. 

Our algorithm proceeds in two phases. The binary 
tree is first transformed into a “vine” in which each 
parent node has only a right child and the nodes are 
in sorted order. The vine is then transformed into a 
route balanced tree. This strategy is the same as in 
Day [3], but he requires that the initial tree be 

threaded and we do not. Threading requires extra 
space at each node to store a flag indicating whether 
a pointer points to a child or to an ancestor. (In Day’s 
case an extra sign bit is needed.) 

Chang and Iyengar [2] assume that the nodes are 
stored in an array, we do not. One of their algo- 
rithms has the side benefit that when finished, the 
nodes are stored in sorted order in the initial posi- 
tions of the array. In Section 3 we show that an easy 
addition to our algorithm will also accomplish this, 
again using only linear time and constant additional 
space. 

Throughout, II will denote the number of nodes in 
the tree. The algorithms do not require prior knowl- 
edge of n. 

2. REBALANCING 
We will use the following declarations: 

type nodeptr = 
node = 

f node ; 
record right, left: 

nodeptr; 
lother components, 
including the key] 

end ; 

Although we use this standard pointer implementa- 
tion of trees, our algorithms require no special prop- 
erties of pointers (nor of Pascal) and can be easily 
modified for a variety of tree implementations with 
no loss of efficiency. 

A procedure tree-to-vine reconfigures the initial 
tree into an increasing vine, and also returns a count 
of the number of nodes. Then the procedure vine- 
to-tree uses the vine and size information to create 
a balanced tree. To simplify the algorithms, each 
vine will have a pseudoroot which contains no data, 

Rebalance Algorithm 

procedure rebalance(var root: nodeptr); 
[rebalance the binary search tree with 
root *'root+'*, with the result also 
rooted at "root4**. Uses the tree-to-vine 
and vine-to-tree procedures.] 

var pseudo-root: nodeptr; 
size : integer; 

begin (rebalance) 
new (pseudo-root); 
pseudo-roott.right := root; 
tree-to-vine (pseudo-root, size); 
vine-to-tree (pseudo-root, size); 
root := pseudo-root+.right; 
dispose (pseudo-root) 
end ; jrebalance) 
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where the pseudoroot’s right pointer points to the 
real root. 

Tree-to-Vine 
This algorithm proceeds top-down through the tree, 
creating an initial portion which has been trans- 
formed into a vine and a remaining portion of nodes 
with larger keys which may require further transfor- 
mation. A pointer “vine-tail” points to the tail of the 
portion known to be the initial segment of the vine, 
and a pointer “remainder” points to the root of the 
portion which may need additional work. Remain- 
der always points to vine-tail + right. When remain- 
der is nil the procedure is finished. If remainder 
points to a node with no left child, then that node 
can be added to the tail of the vine. Notice that this 
happens exactly n times. Finally, if remainder points 
to a node with a left child then a rotation is per- 
formed, as illustrated in Figur’e 2. 

Any node initially reachable from the pseudoroot 
via a path of right links retains this property after 
the rotation. Further, after the rotation, the node 
that was initially pointed to by remainder4 .left is 
also reachable via right links. Since each rotation 

TfeeAJii Atgomn 

procedure tree-to-vine (root: nodeptr; 
var size: 
integer); 

{transform the tree with pseudo-root 
"roott" into a vine with pseudo-root 
node uroot4W, and store the number of 
nodes in "size"] 

var vine-tail, remainder, tempptr: 
nodeptr; 

begin (tree-to-vine] 
vine-tail := root; 
remainder := vine-tailt.right; 
size := 0; 
while remainder # nil do 

if remainder+.left = nil 
then begin imove vine-tail down one) 

vine-tail := remainder; 
remainder := remaindert.right; 
size := size + 1 
end (then] 

else begin {rotate] 
tempptr := remainderf.left; 
remainderf.left := tempptr+.righti 
tempptrf.right := remainder; 
remainder := tempptr; 
vine-tail+.right := tempptr 
end (else] 

end; {tree-to-vine) 

* 
rotate 

FIGURE 2. A Tree-to-Vine Rotation 

increases by 1 the number of nodes reachable from 
the pseudoroot via right links, at most n - 1 rota- 
tions can occur (note that the root is reachable ini- 
tially). Therefore the while-loop will be executed at 
most 2n - 1 times, and at least n times, so tree-to- 
vine runs in 8(n) time. 

Vine-to-Tree 
Two versions of vine-to-tree are given. Each modi- 
fies a restricted version of a simple algorithm of Day 
[3] which creates a complete ordered binary tree 
from an ordered vine with 2” - 1 nodes, for some 
positive integer m. (A complete binary tree is a route 
balanced binary tree of 2”’ - 1 nodes, for some posi- 
tive integer m. Such a tree has 2”‘-’ nodes at depth m 
- 1, and is unique.) The kth step of this algorithm is 
illustrated in Figure 3. Each triangle represents a 
complete binary tree of Zk - 1 nodes, and each of the 
2’ - 1 circles represents a spine node, where j + k = 
m. Each white triangle is reattached to the right side 
of the black spine node above and the resulting tree 
is attached to the left side of the white spine node 
below. The result is an ordered tree with 21-’ - 1 

spine nodes and 2/-r complete subtrees of Zk+’ - 1 

nodes each. We call this operation a compression. 
Performing compression m - I times produces an 
ordered complete binary tree. 

When n + 1 is not an integral power of 2 we alter 

+ 
compress 

FIGURE 3. Compression 
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the first step by reattaching only n - (2”g(“)’ - 1) 
nodes. The result is a tree with 2L’g(“)’ - 1 spine 
nodes and 2”stn)’ attached subtrees with either 0 or 1 
node in them. Compression is then performed as 
before Llg(n)J - 1 times, producing a route balanced 
tree regardless of which nodes are reattached in the 
first step. 

The basic algorithm uses the first, third, fifth, etc. 
nodes as the choices to reattach in the first step, 
producing a route balanced tree in which all of the 
deepest leaves are as far left as possible. This is 
achieved by doing a compression on an initial por- 
tion of the vine. Day’s algorithm also works for vines 
of arbitrary length, producing trees in which the 
deepest leaves tend toward the right. The sole rea- 
son for our adjustment of his algorithm is to simplify 
the discussion for perfectly balanced trees. 

To produce a perfectly balanced tree it is neces- 
sary to skip over some nodes in the first step, creat- 
ing somewhat evenly spaced conceptual “holes” in 
the lowest level of the final tree. Imagine a vine with 
2”@)+” - 1 nodes. In such a vine the odd numbered 
nodes would be the leaves in the final complete tree, 
and the even numbered nodes would form the spine 

after the first compression. The complete tree would 
have I= 2 ‘M”+“-~ leaves. The actual tree will have 
h = (2 We+‘)’ - 1) - n holes where the conceptual 
tree had leaves. The ith hole with be at leaf position 
Li*(l/h)J. Note that I L h, so different holes will be at 
different leaf positions. 

To see that the final tree will be perfectly bal- 
anced, identify the jth leaf of the imagined tree with 
the real interval [j, j + 1). The leaf positions associ- 
ated with the left and right subtree of any node 
correspond to disjoint half-open intervals of the 
same length. Since the rational numbers l*(l/h), 
2*(1/h), . . . , h*(l/h) = 1 are evenly spaced, the num- 
ber of rational numbers falling into one of the half- 
open intervals cannot differ by more than one from 
the number falling into the other; consequently, the 
number of holes in the two subtrees cannot differ by 
more than one. 

The algorithm for producing perfectly balanced 
trees is obtained from the basic algorithm by re- 
placing the first call to compression with a call to 
perfect-leaves (p. 906). Since perfect-leaves goes se- 
quentially through the vine, it runs in linear time. 
Vine-to-tree uses only a constant amount of extra 

VineJo-Tree Algorithm 

procedure vine-to-tree (root: nodeptr; size: integer); 
{convert the vine with "size" nodes and pseudo-root node V1root41* into a balanced 
tree] 

var leaf-count: integer; 

procedure compression (root: nodeptr; count: integer); 
{compress "count" spine nodes in the tree with pseudo-root "root4"] 

var scanner, child: nodeptr; 
i: integer; 

begin {compression] 
scanner := root; 
for i := 1 to count do begin 

child := scanner4.right; 
scannerf.right := childf.right; 
scanner := scanner4 .right; 
child4.right := scanner4.left; 
scanner4.left := child 
end {for] 

end; [compression] 

begin [vine-to-tree] 
leaf-count := size + , _ 2L1gcsize+l,l; 

compression (root, leaf-count); {create deepest leaves) 
size := size - leaf-count; 
while size > 1 do begin 

compression (root, size div 2); 
size := size div 2 
end (while) 

end ; [vine-to-tree) 
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procedure perfectLeaves (root: tiodeptr; leaf-count, size: integer); 
(position leaves in the vine with pseudo-root "roottn and *size" nodes so that the 
final tree will be perfectly balanced) 

var scanner, leaf: nodeptr; 
counter, hole-count, next-hole, hole-index, leaf-positibns: integer; 

begin (perfect-leaves1 
if leaf-count > 0 then begin 

leaf-positions :I ~rl~~siae+r)r-t; 
hole-count := leaf-positions - leaf-count; 
holeindex := f; 
next-hole := leaf-positions div hole-count; 
scanner := root; s 
for counter := 1 to leaf-positiogs - 1 do 

(the upper limit is leafqosit$onp - 
position is always a hole)., 1 n_ 

2, and not leaf-positions, because the last 
o : 

if counter = nextjnole '( l(l_nn' _. 
then begin d :_ n_ 

i 
scanner := scannert.right; ' 
hole-index := hole2ndex.i 3;" 
nexchole : = 
end (then] 

(hole-index‘ * ,keaf,positboys) d&v hole,couht 
0 

else begin e, 
leaf := scannert.right;,: 
scanner+.right := leaf+,x&ht; 
scanner := scannerf.rightf, 
scanner+.left := leaf;~:-“ , 
leaft.right := nil : ' 0 
end {else through for) ;. 1 

end (if) e : .n I 
end; (perfect-leaves) 

space, and runs in linear time, regardless of which 
version is used, because each call to compression 
runs in time linear in the number of spine nodes, 
and at each step after the first, the number of spine 
nodes after compression is less than half the number 
before it. 

3. SORTING 
Sometimes a tree is implemented as an array of rec- 
ords, where a pointer to a node is an index into the 
array. (For FORTRAN-style implementations, in- 
stead of an array of records one uses parallel arrays, 
one for each of the record’s components.) In this 
case, one of the algorithms in Chang and Iyengar [2] 
provides a fringe benefit: when finished, the tree 
occupies the first n positions of the array, and the 
items are stored in sorted order. However, their algo- 
rithm requires a significant amount of extra space, 
as it first copies the entire array into an auxiliary 
array. For such an implementation, a call to a new 
procedure sort-vine, made between the calls to 
tree-to-vine and vine-to-tree, also provides a 
sorted array, while still using only linear time and 

constant additional space. One note of caution: since 
sort-vine moves the data, it cannot be used safely in 
a pinned structure where there are additional 
pointers pointing at nodes. All of the other proce- 
dures can be used in such cases because they 
change pointers rather than locations. 

Sort-vine moves the vine so that its items are 
stored in positions 1 . . . n. It proceeds top-down, 
moving data from the vine into its desired position 
in the array. The ith node from the vine is moved to 
the ith position of the array by switching data parts. 
It may be that position i held some other node of the 
vine, in which case some pointer still points to i. To 
ensure that this data can be found later, the left 
pointer at position i is used to point to the position to 
which the data has moved. (Since the vine uses only 
right pointers, no pointer information is destroyed.) 
In general, when the data of the next vine node is to 
be moved, the right pointer of the previous node 
points only to the data’s initial position in the array. 
The variable “alias” is used to find the current loca- 
tion of the data by following left pointers until a null 
pointer is found. The final values of left and right 
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soft-vi N!Jomm 
procedure sort-vine (var root: nodeptr; size: integer); 
(move the vine with pseudo-root "nodes[nodeptr]" into positions 1 . . . size of 
*nodes", retaining the sorted order, and make "nodes[size + 11” the new pseudo- 
root. The following declarations are assumed: 
coast node-array-limit = {some positive integer L n); 

null = 0; {equivalent of nil for pointers] 
type nodeptr = null . . node-array-limit; 

node = recorU left, right: nodeptr; 
data: (includes everything else, including the key) 

end; 
var nodes: arrayif . . node-array-limit] of node; 

var next-node, alias: nodeptr; 
counter: integer; 

begin (sort-vine] 
next-node := nodes[root].right; 
for counter := 1 to size do begin 

alias := next-node; 
while nodes[alias].left # null do alias := nodes[alias].left; 
switch(nodes[alias].data, nodes[counter].data); 
nodes[counter].left := alias; 
next-node := nodes[nextdode].right 
end ; (for1 

{The remaining code sets up the pointers so that vine-to-tree can be used 
unaltered. It can be eliminated if vine-to-tree is rewritten to use the fact that 
the items are now sorted in positions 1 . . . size.) 

for counter := 1 to size - 1 do begin 
nodes[counter].right := counter -t 1; 
nodes[counter].left := null 
end; (for] 

nodes[size].right := null; 
nodes[size].left := null; 
root := size + 1; 
nodes[root].right := 1 
end; {sort-vine) 

(There should also be some allocation procedures to simulate the "new" and 
WdisposeW procedures for pointer variables. Positions size + 2 . . . 
node-array-limit should be made available for reallocation.) 

pointers are computed and assigned in a single pass 
through the relevant portion of the array after all 
data components have been moved into their final 
positions. 

To see that the algorithm runs in linear time, note 
that the number of iterations of the while-loop is 
equal to the total number of temporary positions 
(other than the initial one) occupied by the nodes 
with the n - 1 largest keys. Since two nodes are 
exchanged only when the one with the smaller key 
is being moved into its final position, this number is 
no greater than n - 1. 

4. SUMMARY 
We have presented a simple algorithm which takes 
an arbitrary binary search tree and transforms it into 
one which has the minimal worst and expected 
depths of its nodes. Aside from producing an optimal 
tree, our algorithm is also optimal in its use of time 
and space, requiring only linear time and constant 
additional space. Previous algorithms required more 
time or space [2, 61, or both [I], or could not be 
applied to arbitrary binary search trees [3]. The 
basic algorithm produces a route balanced tree, 
which should suffice for most applications. In case 
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there is a need for a perfectly balanced tree, we have 
also provided a slightly more complicated algorithm 
which produces one, again using only linear time 
and constant additional space. This is the first algo- 
rithm which produces perfectly balanced trees using 
only constant additional space. 

Finally, our last modification can be used when 
the nodes are stored in an array. The tree is rebal- 
anced, and the nodes are stored in sorted order in 
the initial portion of the array. This modification 
also uses only linear time and constant additional 
space, unlike the Pz algorithm of Chang and Iyengar 
[2], that sorts and rebalances in linear time, but 
requires a second array. 
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