This appears irAlgorithms and Theory of Computation Handbp@kd ed., 2009, M. Atallah, ed.,
46:1-18

Algorithmic Techniques For Regular Networks of Processors

Russ Millef and Quentin F. Stobit
@State University of New York at Buffalo an8University of Michigan

Introduction

This chapter is concerned with designing algorithms formirees constructed from multiple processors.
In particular, we discuss algorithms for machines in whioh processors are connected to each other
by some simple, systematic, interconnection patternsekample, consider a chess board, where each
square represents a processor (for example, a processtar ¢omone in a home computer) and every
generic processor is connected to its 4 neighboring proceg¢hose to the north, south, east, and west).
This is an example of mesh computerl network of processors that is important for both thecakti
and practical reasons.

The focus of this chapter is on algorithmic techniques.idtyt we define some basic termi-
nology that is used to discuss parallel algorithms and lgdiaichitectures. Following this introductory
material, we define a variety of interconnection networksluding the mesh (chess board), which are
used to allow processors to communicate with each other. 1¥dedefine an abstract parallel model
of computation, thd?RAM where processors are not connected to each other, but coicates di-
rectly with a global pool of memory that is shared amongstgtezessors. We then discuss several
parallel programming paradigms, including the use of Heylel data movement operations, divide-
and-conquer, pipelining, and master-slave. Finally, veewks the problem of mapping the structure of
an inherently parallel problem onto a target parallel declture. This mapping problem can arise in a
variety of ways, and with a wide range of problem structuhesome cases, finding a good mapping is
quite straightforward, but in other cases it is a computiy intractable NP-complete problem.

Terminology

In order to initiate our investigation, we first define somsib&rminology that will be used throughout
the remainder of this chapter.

Shared Memory versus Distributed Memory

In ashared memorgnachine, there is a single global image of memory that idatvai to all processors
in the machine, typically through a common bus, set of bysseswitching network, as shown in
Figure 1 (top). This model is similar to a blackboard, wheng processor can read or write to any
part of the board (memory), and where all communication fopmed through messages placed on
the board.

As shown in Figure 1 (bottom), each processor idistributed memorynachine has access
only to its private (local) memory. In this model, processoommunicate by sending messages to each
other, with the messages being sent through some form oftarcamnection network. This model is
similar to that used by shipping services, such as the UrStates Postal Service, Federal Express,
DHL, or UPS, to name a few. For example, suppose Tom inXityeeds some information from Sue in

city Y. Then Tom might send a letter requesting such informatiomfSue. However, the letter might
get routed from cityX to a facility (.e., “post office”) in city W, then to a facility in cityZ and finally

to the facility in cityY” before being delivered locally to Sue. Sue will now packagéhe information
requested and go to a local shipping facility in city which might route the package to a facility in
city @, then to a facility in cityR, and finally to a facility in cityX before being delivered locally
to Tom. Note that there might be multiple paths between soamd destination, that messages might
move through different paths at different times betweenstmme source and destination depending
on congestion, availability of the communication path, andorth. Also note that routing messages
between processors that are closer to each other in ternhe dfiterconnection network (fewer hops
between processors) typically require less time than isired to route messages between pairs of pro-
cessors that are farther apart (more hops between proséagerms of the interconnection network).
In such message-passing systems, the overhead and deléng significantly reduced if, for exam-
ple, Sue sends the information to Tom without him first retjngsthe information. It is particularly
useful if the data from Sue arrives before Tom needs to u$erithen Tom will not be delayed wait-
ing for critical data. This analogy represents an importautect of developing efficient programs for
distributed memory machines, especially general-purposehines in which communication can take
place concurrently with calculation so that the commuincatime is effectively hidden.

For small shared memory systems, it may be that the netwanldls that each processor can
access all memory cells in the same amount of time. For examphny symmetric multiprocessor
(SMP) systems have this property. However, since memomgstaRace, systems with a large number
of processors are typically constructed as modules & processor/memory pair) that are connected
to each other via an interconnection network. Thus, whilenorg may be logically shared in such
a model, in terms of performance each processor acts assiflisiributed, with some memory being
“close” (fast access) to the processor and some memory bBiirig'slow access) from the processor.
Notice the similarity to distributed memory machines, vehtitere is a significant difference in speed
between a processor accessing its own memory versus a pooeEsessing the memory of a distant
processor. Such shared memory machines are called NUMAuniborm memory access) machines,
and often the most efficient programs for NUMA machines aneeldped by using algorithms effi-
cient for distributed memory architectures, rather thangisnes optimized for uniform access shared
memory architectures.

Efficient use of the interconnection network in a parallenpater is often an important con-
sideration for developing and tuning parallel programsr &le, in either shared or distributed
memory machines, communication will be delayed if a packétformation must pass through many
communication links. Similarly, communication will be dged by contention if many packets need to
pass through the same link. As an example of contention atkaih a distributed memory machine
configured as a binary tree of processors, suppose thataltecessors on one side of the machine
need to exchange values with all leaf processors on the sitierof the machine. Then a bottleneck
occurs at the root since the passage of information prodeegisequential manner through the links
in and out of the root. A similar bottleneck occurs in a systéthe interconnect is merely a single
Ethernet-based bus.

Both shared and distributed memory systems can also stdfardontention at the destinations.
In a distributed memory system, too many processors mayltsinaously send messages to the same
processor, which causes a processing bottleneck. In adsh@mory system, there may be memory
contention, where too many processors try to simultangaesld or write from the same location.

Another common feature of both shared and distributed mgsyatems is that the programmer
has to be sure that computations are properly synchronieedhat they occur in the correct order. This
tends to be easier in distributed memory systems, whereprackssor controls the access to its data,

and the messages used to communicate data also have trefemtesf communicating the status of
the sending processor. For example, suppose procégssrcalculating a value, which will then be
sent to processaR. If the program is constructed so th&tdoes not proceed until the message from
W arrives, then it is guaranteed of using the correct valudéndalculations. In a shared memory
system, the programmer needs to be more careful. For exampglee same scenarid}’ may write
the new value to a memory location thatreads. However, iR reads beford?” has written, then it
may proceed using the wrong value. This is known agca condition where the correctness of the
calculation depends on the order of the operations. To al@dvarious locking or signaling protocols
need to be enforced so thAtdoes not read the location until aftéf has written to it. Race conditions
are a common source of programming errors, and are oftenudifto locate because they disappear
when a deterministic, serial debugging approach is used.

Memory

Interconnection Network

cache cache| cache cache
CPU CPU CPU CPU

Interconnection Network

CPU CPU CPU CPU
cache cachel cache e cache
mem mem mem mem

Figure 1: Shared memory (top) and distributed memory (bottmachines.

Flynn’s Taxonomy

In 1966, Michael Flynn classified computer architecturethwespect to thénstruction streamthat
is, the sequence of operations performed by the computdriterdata streamthat is, the sequence
of items operated on by the instructions [Flynn, 1966]. Wktensions and modifications to Flynn’'s
taxonomy have appeared, Flynn’s original taxonomy [Fii8V 2] is still widely used. Flynn charac-
terized an architecture as belonging to one of the following classes.

e Single-Instruction Stream, Single-Data Stream (SISD)
e Single-Instruction Stream, Multiple-Data Stream (SIMD)

e Multiple-Instruction Stream, Single-Data Stream (MISD)

3

e Multiple-Instruction Stream, Multiple Data Stream (MIMD)

Standard serial computers fall into thmgle-instruction stream, single data stream (SISBfjegory,

in which one instruction is executed per unit time. This ie #o-called “von Neumann” model of
computing, in which the stream of instructions and the stref data can be viewed as being tightly
coupled, so that one instruction is executed per unit tingdduce one useful result. Modern “serial”
computers include various forms of modest parallelism eirtexecution of instructions, but most of
this is hidden from the programmer and only appears in the fof faster execution of a sequential
program.

A single-instruction stream, multiple-data stream (SIMBachine typically consists of multi-

ple processors, a control unit (controller), and an intenextion network, as shown in Figure 2. The

|

PE n
t

e

r

PE c
(o)

n

n

PE e
C

Controller t
|

0]

PE n
N

e

t

w

(o)

r

PE K

Figure 2: A SIMD machine.RE is used to represent a processing element.)

control unit stores the program and broadcasts the ingingcto all processors simultaneously. Active
processors simultaneously execute the identical ingdrucin the contents of each active processor’s
own local memory. Through the use ofreask processors may be in either an active or inactive state
at any time during the execution of the program. Masks caryhardically determined, based on local
data or the processor’s coordinates. Note that one sidetadf having a centralized controller is that
the system is synchronous, so that no processor can exeseterd instruction until all processors are
finished with the first instruction. This is quite useful igatithm design, as it eliminates many race
conditions and makes it easier to reason about the statusa#gsors and data.

Multiple-instruction stream, single-data stream (MISmDachines consist of two or more pro-
cessors that simultaneously perform not necessarilyichrnnstructions on the same data. This model
is rarely implemented.

A multiple-instruction stream, multiple-data stream (MIMDachine typically consists of mul-
tiple processors and an interconnection network. In cehtmathe single-instruction stream model, the
multiple-instruction stream model allows each of the pssces to store and execute its own program,

4

providing multiple instruction streams. Each processttfes its own data on which to operate. (Thus,
there are multiple data streams, as in the SIMD model.) Q##processors are executing the same
program, but may be in different portions of the program gtgiven instant. This is theingle-program
multiple-data (SPMD3¥tyle of programming, and is an important mode of prograngnfiecause it is
rarely feasible to have a large number of different progréonslifferent processors. The SPMD style,
like the SIMD architectures, also makes it somewhat sintplezason about the status of data structures
and processors.

MIMD machines have emerged as the most commonly used ggnaabse parallel comput-
ers, and are available in a variety of configurations. Botreth and distributed memory machines
are available, as are mixed architectures where small nisadigorocessors are grouped together as a
shared memory symmetric multiprocessor, and these SMHiglaee together in a distributed memory
fashion.

Granularity

When discussing parallel architectures, the tgramularity is often used to refer to the relative number
and complexity of the processors. filse-grained machingypically consists of a relatively large num-
ber of small, simple processors (in terms of local memory @rdputational power), while eoarse-
grained machingypically consists of relatively few processors, each ofchhs large and powerful.
Fine-grained machines typically fall into the SIMD categawhere all processors operate in lockstep
fashion (.e., synchronously) on the contents of their own small, loca¢ymory. Coarse-grained ma-
chines typically fall into the shared memory MIMD categomjere processors operate asynchronously
on the large, shared, memory. Medium-grained machinesypieatly built from commodity micro-
processors, and are found in both distributed and sharedomyemodels, almost always in MIMD
designs.

For a variety of reasons, medium-grained machines cuyrelothinate the parallel computer
marketplace in terms of number of installations. Such nrediwained machines typically utilize com-
modity processors and have the ability to efficiently perfas general-purpose (parallel) machines.
Therefore, such medium-grained machines tend to havepeoi&tfmance advantages over systems uti-
lizing special-purpose processors. In addition, they dao @xploit much of the software written for
their component processors. Fine-grained machines dreuttito use as general-purpose computers
because it is often difficult to determine how to efficientigtdbute the work to such simple proces-
sors. However, fine-grained machines can be quite effeictitzessks such as image processing or pattern
matching.

By analogy, one can also use the granularity terminologyestdbe data and algorithms. For
example, a database is a coarse-grained view of data, wdnlgdering the individual records in the
database is a fine-grained view of the same data.

Interconnection Networks

In this section, we discuss interconnection networks tretiaed for communication among processors
in a distributed memory machine. In some cases, all commatiaitis handled by processors sending
messages to other processors that they have a direct cmmiectwhere messages destined for proces-
sors farther away must be handled by a sequence of interteqafiacessors. In other other cases the
processors send messages into, and receive messages tirotteraonnection network composed of
specialized routers that pass the messages. Most largarsyase the latter approach. We use the term
nodeto represent the processors, in the former case, or thersdatthe latter case.e., in any system,

messages are passed from node to node in the interconneetioark.

First, we define some terminology. Thegree of node? is the number of other nodes that
is directly connected to via bi-directional communicatlarks. (There are straightforward extensions
to systems with uni-directional links.) Thdegree of the networls the maximum degree of any node
in the network. Thalistancebetween two nodes is the number of communication links oroaest
path between the nodes. Themmunication diametesf the network is the maximum, over all pairs
of nodes, of the distance between the nodes. ibection bandwidttof the network corresponds to
the minimum number of communication links that need to beowsd (or cut) in order to partition
the network into two pieces, each with the same number ofsio@eals for interconnection networks
include minimizing the degree of the nodes (to minimize tost ©f building them), minimizing the
communication diameter (to minimize the communicatioretiior any single message), and maximiz-
ing the bisection bandwidth (to minimize contention whemgnaessages are being sent concurrently).
Unfortunately, these design goals are in conflict. Otherartgmt design goals include simplicity (to
reduce the design costs for the hardware and software) atabdity (so that similar machines, with a
range of sizes, can be produced). We informally call simgédedle interconnectiomegular networks
Regular networks make it easier for users to develop optichnde for a range of problem sizes.

Before defining some network modeis(, distributed memory machines characterized by their
interconnection networks, or the interconnection netwmsdd in a shared memory machine), we briefly
discuss thearallel random access machine (PRAMhich is an idealized parallel model of computa-
tion, with a unit-time communication diameter. The PRAM isteared memory machine that consists
of a set of identical processors, where all processors hait«timme access to any memory location. The
appeal of a PRAM is that one can ignore issues of communitatieen designing algorithms, focusing
instead on obtaining the maximum parallelism possible depto minimize the running time necessary
to solve a given problem. The PRAM model typically assumei\ViGstrategy, so that operations are
performed synchronously. If multiple processors try toudiameously read or write from the same
memory location, then a memory conflict occurs. There arerséwariations of the PRAM model
targeted at handling these conflicts, ranging from the EBxstuRead Exclusive Write (EREW) model,
which prohibits all such conflicts, to Concurrent Read Corent Write (CRCW) models, which have
various ways of resolving the effects of simultaneous 8rit®ne popular intermediate model is the
concurrent read exclusive write (CREW) PRAM, in which cament reads to a memory location is
permitted, but concurrent writes are not. For example, ssoteom is usually conducted in a CREW
manner. In the classroom, many students can read from tlegdaard simultaneously (concurrent
read), while if several students are writing simultanepus! the blackboard, they are doing so in dif-
ferent locations (exclusive write).

The unit-time memory access requirement for a PRAM is ndiabba (.e., it is not realistic
for a large number of processors and memory). However, gtioig parallel programs, it is sometimes
useful to describe a PRAM algorithm and then either perforstegwise simulation of every PRAM
operation on the target machine, or perform a higher-lemellgtion by using global operations. In
such settings, it is often useful to design the algorithmafpowerful CRCW PRAM model, since often
the CRCW PRAM can solve a problem faster or more naturallp tra EREW PRAM. Since one is
not trying to construct an actual PRAM, objections to thdiclifty of implementing CRCW are not
relevant; rather, having a simpler and/or faster algoriththe dominant consideration.

In the remainder of this section, several specific interestion networks are defined. See
Figure 3 for illustrations of these. The networks definedhis section are among the most com-
monly utilized networks. However, additional networks @éappeared in both the literature and in
real machines, and variations of the basic networks destiilere are numerous. For example, many
small systems use only a bus as the interconnection netwdr&ré only one message at a time can

be transmitted), reconfigurable meshes extend the capabilif standard meshes by adding dynamic
interconnection configuration [Li and Stout, 1991], and Cheetworks have properties between those
of completely connected crossbar systems and hypercubes.

Ring

In aring network, then nodes are connected in a circular fashion so that #dedirectly connected to
nodesR; 1 andR;,1 (the indices are computed modutpso that node®, and R,,_; are connected).
While the degree of the network is only 2, the communicati@meter is|n/2], which is quite high,
and the bisection bandwidth is only 2, which is quite low.

Meshes and Tori

Then nodes of a2-dimensional square mestetwork are configured so that an interior nddg; is
connected to its four neighbors, nodBs_; ;, Riy1,j, R j—1, andR; j41. The four corner nodes are
each connected to their 2 neighbors, while the remainingesidldat are on the edge of the mesh are
each connected to 3 neighbors. So, by increasing the defiibe metwork to 4, as compared to
the degree 2 of the ring, the communication diameter of theor& is reduced t®(,/n —1), and
the bisection bandwidth is increased . The diameter is further reduced, 20/n/2], and the
bisection bandwidth is increased, 2¢/n, in a 2-dimensional toruswhich has all the connections of
the 2-dimensional mesh plus connections between the ficslamt nodes in each row and column.
Meshes and tori of higher dimensions can be constructedrenthe degree of d-dimensional mesh
or torus is2d, and, whem is a perfectd™™ power, the diameter is eithei(n!/¢ — 1) or d|n'/?/2],
respectively, and the bisection bandwidth is either1)/4 or 2n(4-1)/4 respectively. Notice that the
ring is a 1-dimensional torus.

For a 2-dimensional mesh, and similarly for higher-dimenal meshes, the mesh can be rect-
angular, instead of square. This allows a great deal of fléxiin selecting the size of the mesh, and
the same flexibility is available for tori as well.

Hypercube

A hypercubewith n nodes, where: is an integral power of 2, has the nodes indexed by the indeger
{0,...,n — 1}. Viewing each integer in this range as lagf, n)-bit string, two nodes are directly
connected if and only if their indices differ by exactly one Bome advantages of a hypercube are that
the communication diameter is orlyg, n and the bisection bandwidth ig/2. A disadvantage of the
hypercube is that the number of communication links neegegblbh node grows dsg, n, unlike the
fixed degree for nodes in ring and mesh networks. This makdifficult to manufacture reasonably
generic hypercube nodes that could scale to extremely taegdhines, though in practice this is not a
concern because the cost of an extremely large machine Wweypdohibitive.

Tree

A complete binary tre®f heightk, & > 0 an integer, hass = 2! — 1 nodes. The root node is
at level 0 and th&” leaves are at levél. Each node at level, ...,k — 1 has two children and one
parent, the root node does not have a parent node, and ttes latlevek do not have children nodes.
Notice that the degree of the network is 3 and that the comeation diameter ik = 2|log, n].
One severe disadvantage of a tree is that when extensive goitation occurs, all messages traveling
from one side of the tree to the other must pass through thegaosing a bottleneck. This is because
the bisection bandwidth is only 1. Fat trees, introduced bisérson [Leiserson, 1985], alleviate this

7

~
~ ~ I’ -
~ ~
~ - -
~ = =
~ ~ >
~ -~ -~
~ > ~
~ ~ - ~
~ PR —
~ - _ - ~ -

Figure 3: Sample interconnection networks (from top todrait ring, mesh, hypercube, and tree.

problem by increasing the bandwidth of the communicatiokdinear the root. This increase can
come from changing the nature of the links, or, more easijyusing parallel communication links.
Other generalizations of binary trees include compledey trees of height, where each node at level
0,...,k — 1 hast children. There arét**! —1)/(t — 1) nodes, the maximum degreetis- 1, and the
diameter ik = 2|log, n].

Designing Algorithms

Viewed from the highest level, many parallel algorithms pineely sequential, with the same overall
structure as an algorithm designed for a more standardatsedmputer. That is, there may be an input
and initialization phase, then a computational phase, hed &n output and termination phase. The
differences, however, are manifested within each phaseeXample, during the computational phase,
an efficient parallel algorithm may be inherently differémim its efficient sequential counterpart.

For each of the phases of a parallel computation, it is oftafull to think of operating on
an entire structure simultaneously. This is a SIMD-stylprapch, but the operations may be quite
complex. For example, one may want to update all entries im@ixntree, or database, and view this
as a single (complex) operation. For a fine-grained mactivie might be implemented by having a
single (or few) data item per processor, and then using dyppaeallel algorithm for the operation. For
example, suppose anx n array A is stored on am x n 2-dimensional torus, so that(i, ;) is stored
on processor’; ;. Suppose one wants to replace each valgg j) with the average of itself and the
four neighborsA(i—1, j), A(i+1, j), A(i, j—1) and A(4, j+1), where the indices are computed modulo
n (i.e., “neighbors” is in the torus sense). This average filteriag be accomplished by just shifting
the array right, left, up, and down by one position in the $oand having each processor average the
four values received along with its initial value.

For a medium- or coarse-grained machine, operating oneestiiuctures is most likely to be
implemented by blending serial and parallel approachessu@h an architecture, each processor uses
an efficient serial algorithm applied to the portion of théada the processor, and communicates with
other processors in order to exchange critical data. Fanpeg suppose the x n array of the previ-
ous paragraph is stored irpax p torus, where evenly dividesn, so thatA(i, j) is stored in processor
Plip/n),1jp/n]- Then, to do the same average filtering4neach processary ; still needs to communi-
cate with its torus neighboiB; 1 ;, P ;+1, but now sends them either the leftmost or rightmost column
of data, or the topmost or bottommost row. Once a processeives its boundary set of data from
its neighboring processors, it can then proceed seriattyuthh its subsquare of data and produce the
desired results. To maximize efficiency, this can be peréatiny having each processor send the data
needed by its neighbors, then perform the filtering on thegfahe array that it contains that does not
depend on data from the neighbors, and then finally perfoatfiliering on the elements that depend
on the data from neighbors. Unfortunately, while this maxes the possible overlap between commu-
nication and calculation, it also complicates the prograoabise the order of computations within a
processor needs to be rearranged.

Global Operations

To manipulate entire structures in one step, it is usefulaeeha collection of operations that perform
such manipulations. Theggobal operationsmay be very problem-dependent, but certain ones have
been found to be widely useful. For example, the averageififeexample above made use of shift
operations to move an array aroun8roadcastis another common global operation, used to send
data from one processor to all other processors. Extensiotie broadcast operation include simul-

taneously performing a broadcast within every (predeteechiand distinct) subset of processors. For
example, suppose matri has been partitioned into submatrices allocated to diftgueocessors, and
one needs to broadcast the first rowAso that if a processor contains any elements of coléhen

it obtains the value ofi(1,). In this situation, the more general form of a subset-baseddzast can
be used.

Besides operating within subsets of processors, many lgtgieations are defined in terms
of a commutative, associative, semigroup operatolExamples of such semigroup operators include
m ni mum mexi mum or, and, sum andpr oduct . For example, suppose there is a set of values
V(i), 1 < i < n, and the goal is to obtain the maximum of these values. Thewould represent
maximum, and the operation of applyirg to all n values is callededuction If the value of the
reduction is broadcast to all processors, then it is sonestikmown aseport. A more general form
of the reduction operation involves labeled data iteines,each data item is embedded in a record that
also contains a label, where at the end of the reduction tperée result of applyings to all values
with the same label will be recorded in the record.

Global operations provide a useful way to describe majooastin parallel programs. Further,
since several of these operations are widely useful, theyfien made available in highly optimized
implementations. The language APL provided a model forredwd these operations, and some par-
allel versions of APL have appeared. Languages such as Griiflg Machines Corporation, 1991],
UPC [El-Ghazawi, Carlson, Sterline, Yellick, 2005], OpellMDpenMP Architecture Review Board, 2005],
and FORTRAN 90 [Brainerd, Goldberg, and Adams, 1990] alseige for some forms of global oper-
ations, as do message-passing systems such as MPI [SoirHD#s-Lederman, Walker, and Dongarra,
1995]. Reduction operations are so important that mostlpbzang compilers detect them automati-
cally, even if they have no explicit support for other globpkrations.

Besides broadcast, reduction, and shift, other importaiadoperations include the following.

Sort: Let X = {zg,z1,...,2,—1} be an ordered set such that< z;,1, forall0 <i < n — 1. (That
is, X is a subset of a linearly ordered data type.) Given thathitkéements ofX are arbitrarily
distributed among a set pfprocessors, the sort operation will (re)arrange the mesnisfeX’ so
that they are ordered with respect to the processors. Tletes sorting, elementsy, . .., x|,)
will be in the first processor, elements, /1, - - -, |2,/ Will be in the second processor, and
so forth. Note that this assumes an ordering on the process®well as on the elements.

Merge: Suppose that sef3; and D, are subsets of some linearly ordered data type [andnd D are
each distributed in an ordered fashion among disjoint dgtsogessors?; and?Ps,, respectively.
Then the merge operation combings and D- to yield a single sorted set stored in ordered
fashion in the entire set of process@s= P; U Ps.

Associative Read/Write: These operations start with a setroésterrecords indexed by unique keys.
In the associative read, each processor specifies a key asdupnwith the data in the master
record indexed by that key, if such a record exists, or elsagifidicating that there is no such
record. In the associative write, each processor specifley and a value, and each master
record is updated by applying to all values sent to it. (Master records are generated faegs
written.)

These operations are extensions of the CRCW PRAM operatibimsy model a PRAM
with associative memory and a powerful combining operaf@mnconcurrent writes. On most
distributed memory machines the time to perform these moveegful operations is within a
multiplicative constant of the time needed to simulate theall concurrent read and concurrent
write, and the use of the more powerful operations can r@ssignificant algorithmic simplifi-
cations and speedups.

10

Compression: Compression moves data into a region of the machine whermnalpinterprocessor
communication is possible. For example, compressgiitgms in a fine-grain two-dimensional
mesh will move them to &% x v/k subsquare.

Scan (Parallel prefix): Given a set of values;, 1 < ¢ < n, thescancomputation determines =
a1 ®as ® -+ ® a4, for all <. This operation is available in APL. Note that the hardwaatdre
known as “fetch-and-op” implements a variant of scan, whepg is ® and the ordering of the
processors is not required to be deterministic.

All-to-all broadcast: Given dataD(7) in processok, every processoj receives a copy ab(q), for all
i#j.

All-to-all personalized communication: Every processol; has a data itenD(i, j) that is sent to
processot;, for all ¢ # j.

Example: Maximal Point Problem

As an example of the use of global operations, consider thewfimg problem from computational
geometry. LetS be a finite set of planai.€., 2-dimensional) points. A point = (p;,p,) in S'is a
maximal poinof S'if p, > ¢, orp, > gy, for every point(q,, g¢,) # pin S. Themaximal point problem
is to determine all maximal points 6f. See Figure 4. The following parallel algorithm for the nmaai
point problem was apparently first noted by Atallah and GobdAtallah and Goodrich, 1986].

@
@
OO
O O
O
© @
O o O
O O O
O
O O
O O
O O O O
@
O O
O

Figure 4: The maximal points of the set are shaded.

1. Sort then planar points in reverse order hycoordinate, with ties broken by reverse order by
y-coordinate. Leti,,,) denote the coordinates of thé point after the sort is complete. There-
fore, after sorting, the points will be ordered so that & j then eitheri, > j, ori, = j, and
by > Jy-

2. Use a scan on thig values, where the operationis taken to be maximum. The resulting values
{L;} are such thaL; is the largesy-coordinate of any point with index less than

11

3. The point(i,, i,) is an extreme point if and only if, > L;.
The running timel’(n) of this algorithm is given by
T(n) = Sort(n) 4+ Scan(n) + O(1) , (1)

whereSort(n) is the time to sort items andScan(n) is the time to perform scan. On all parallel archi-
tectures known to the authorS¢an(n) = O(Sort(n)), and hence on such machines the time of the al-
gorithm is®©(Sort(n)). Itis worth noting that for the sequential model, [Kung, tie; and Preparata, 1975]
have shown that the problem of determining maximal poingsikard as sorting.

Divide-and-Conquer

Divide-and-conquer is a powerful algorithmic paradigmt #veploits the repeated subdivision of prob-
lems and data into smaller, similar problems/data. It idequseful in parallel computation because
the logical subdivisions into subproblems can correspomhysical decomposition among processors,
where eventually the problem is broken into subproblemsdtmeach contained within a single pro-
cessor. These small subproblems are typically solved byfiieat sequential algorithm within each
processor.

As an example, consider the problem of labeling the figurea bfack/white image, where
the interpretation is that of black objects on a white backgd. Two black pixels are defined to be
adjacentif they are vertical or horizontal neighbors, acohnectedf there is a path of adjacent black
pixels between them. Migure (i.e., connected compongris defined to be a maximally connected set
of black pixels in the image. The figures of an image are salibiabeledif every black pixel in the
image has a label, with two black pixels having the same l&leld only if they are in the same figure.

We utilize a generic parallel divide-and-conquer solufimnthis problem, given, for example,
in [Miller and Stout, 1996], p. 30. Suppose that thex n image has been divided infosubimages, as
square as possible, and distributed one subimage per porcé&sach processor labels the subimage it
contains, using whatever serial algorithm is best and ulsibgls that are unique to the processor (so
that no two different figures can accidentally get the sarhel)a For example, often the label used is
a concatenation of the row and column coordinates of oneeopitkels in the figure. Notice that so as
long as the global row and column coordinates are used, tiedslavill be unique. After this step, the
only figures that could have an incorrect global label ars¢hibat lie in two or more subimages, and
any such figures must have a pixel on the border of each subih&gin (see Figure 5). To resolve
these labels, a record is prepared for each black pixel obdhder of a subimage, where the record
contains information about the pixel's position in the irmagnd its current label. There are far fewer
such records than there are pixels in the original imagegstcontain all of the information needed to
determine the proper global labels for figures crossingmsabes. The problem of reconciling the local
labels may itself be solved via divide-and-conquer, reggigtmerging results from adjacent regions,
or may be solved via other approaches. Once these labeldbbaneesolved, information is sent back
to the processors generating the records, informing thettmegbroper final label.

One useful feature of many of the networks described in thBaseon Interconnection Net-
works is that they can be divided into similar subnetworksa imanner that matches the divide-and-
conquer paradigm. For example, if the component labeliggriahm just described were performed on
a mesh computer, then each subregion of the image wouldspomd to a subsquare of the mesh. As
another example, consider an implementation of quicksol bypercube. Suppose a pivot is chosen
and that the data is partitioned into items smaller than & pnd items larger than the pivot. Further,
suppose that the hypercube is logically partitioned into sawbcubes, where all of the small items are
moved into one subcube and all of the large items are movedhetother subcube. Now, the quicksort

12

N

M
<A

| /®
The 14 labels shown were generated after each quadrantipedats own, local, labeling algorithm.

While the labels are unique, they need to be resolved glpkdétice that once the labels are resolved
(not shown), the image will have only 5 unique labels, cqroesgling to the 5 figures.

Figure 5: Divide-and-Conquer for Labeling Figures

routine may proceed recursively within each subcube. Bsethe recursive divide-and-conquer occurs
within subcubes, all of the communication will occur withire subcubes and not cause contention with
the other subcube.

Master-Slave

One algorithmic paradigm based on real-world organizgparadigms is the master-slave (sometimes
referred to as manager-worker) paradigm. In this approawh processor acts as the master, directing
all of the other slave processors. For example, many brandhibound approaches to optimization
problems keep track of the best solution found so far, as agedl list of subproblems that need to be
explored. In a master-slave implementation, the mastemtaias both of these items and is responsible
for parceling out the subproblems to the slaves. The slaresegponsible for processing the sub-
problems and reporting the result to the master (which veitedmine if it is the current best solution),
reporting new subproblems that need to be explored to théemasd notifying the master when it
is free to work on a new subproblem. There are many variationthis theme, but the basic idea is
that one processor is responsible for overall coordinatiml the other processors are responsible for
solving assigned subproblems. Note that this is a variathe@SPMD style of programming, in that
there are two programs needed, rather than just one.

Pipelining and Systolic Algorithms

Another common parallel algorithmic technique is based odeis that resemble an assembly line. A
large problem, such as analyzing a number of images, maydeiinto a sequence of steps that must
be performed on each image.d, filtering, labeling, scene analysis). If one had three @ssors, and

if each step takes about the same amount of time, one coutdtsirst image on the first processor
that does the filtering. Then the first image is passed on toéhe processor for labeling, while the
first processor starts filtering the second image. In the tiine step, the initial image is at the third
processor for scene analysis, the second image is at thadsgcocessor for labeling, and the third
image is at the first processor for filtering. This form of gesing is callegipelining and it maps
naturally to a parallel computer configured as a linear &firay a 1-dimensional mesh or, equivalently,
a ring without the wraparound connection).

This simple scenario can be extended in many ways. For exaraplin a real assembly line,
the processors need not all be identical, and may be optihfiaretheir task. Also, if some task takes
longer to perform than others, then more than one proceasdoe assigned to it. Finally, the flow may
not be a simple line. For example, an automobile assemblyepsomay have one line working on the
chassis, while a different line is working on the engine, anmghtually these two lines are merged. Such
generalized pipelining is calleslystolic processingFor example, some matrix and image-processing
operations can be performed in a two-dimensional systadinmar (see [Ullman, 1984]).

Mappings

Often, a problem has a natural structure to be exploited doalfelism, and this needs to be mapped
onto a target machine. Several examples follow.

e The average filtering problem, discussed in the section agigding Algorithms, has a natural
array structure that can easily be mapped onto a mesh compiuteowever, one had the same
problem, but a tree computer, then the mapping might be mwrk complicated.

14

e Some artificial intelligence paradigms exploit a blackloel#te communication mechanism that
naturally maps onto a shared memory machine. However, &tbiwacd-like approach is more
difficult to map onto a distributed-memory machine.

¢ Finite-element decompositions have a natural structurer@dy calculations at each grid point
depend only on values at adjacent points. A finite-elemepitageh is frequently used to model
automobiles, airplanes, and rocket exhaust, to name a fewettr, the irregular (and perhaps
dynamic) structure of such decompositions might need to &gped onto a target parallel archi-
tecture that bears little resemblance to the finite-elergadt

e A more traditional example consists of porting a parallgjoathm designed for one parallel
architecture onto another parallel architecture.

In all of these examples, one starts with a source strudtateneeds to be mapped onto a target
machine. The goal is to map the source structure onto thettarghitecture so that calculation and
communication steps on the source structure can be efficipatformed by the target architecture.
Usually, the most critical aspect is to map the calculatiofitthie source structure onto the processors of
the target machine, so that each processor performs theaamant of calculations. For example, if
the source is an array, and each position of the array ragigesalculations that need to be performed,
then one tries to map the array onto the machine so that alkepsors contain the same number of
entries. If the source model is a shared-memory paradigmagénts reading from a blackboard, then
one would map the agents to processors, trying to balancethputational work.

Besides trying to balance the computational load, one msgttey to minimize the time spent
on communication. The approaches used for these mappipgad®n the source structure and target
architecture, and some of the more widely used approackatismussed in the following subsections.

Simulating Shared Memory

If the source structure is a shared memory model, and thettarghitecture is a distributed memory
machine, then besides mapping the calculations of the samto the processors of the target, one must
also map the shared memory of the source onto the distribbo&dory of the target.

To map the memory onto the target machine, suppose thatateeneemory location. .. n—1
in the source structure, amprocessors in the target. Typically one would map locatibns |n/p—1|
to processof of the target machine, locationg/p| ... [2n/p — 1] to processoi, and so forth. Such
a simple mapping balances the amount of memory being sietulat each target processor, and makes
it easy to determine where data is located. For exampleaifgget processor needs to read from shared
memory location, it sends a message to target processprn | asking for the contents of simulated
shared memory location

Unfortunately, some shared memory algorithms utilizeasemnemory locations far more often
than others, which can cause bottlenecks in terms of gatititg in and out of processors holding the
popular locations. If popular memory locations form contigs blocks, then this congestion can be
alleviated by stripping (mapping memory locatioto processoi mod p) or pseudo-random mapping
[Rau, 1991]. Replication (having copies of frequently réachtions in more than one processor) or
adaptive mapping (dynamically moving simulated memonatmns from heavily loaded processors
to lightly loaded ones) are occasionally employed to reliegngestion, but such techniques are more
complicated and involve additional overhead.

15

Simulating Distributed Memory

It is often useful to view distributed memory machines agphgsa Processors in the machine are rep-
resented by vertices of the graph, and communication limkkeé machine are represented by edges in
the graph. Similarly, it is often convenient to view the sture of a problem as a graph, where vertices
represent work that needs to be performed, and edges repkedees that need to be communicated
in order to perform the desired work. For example, in a fieiemment decomposition, the vertices of
a decomposition might represent calculations that neeé felformed, while the edges correspond to
flow of data. That is, in a typical finite-element problem,liete is an edge from vertgxto vertex

¢, then the value of at timet depends on the values gfandp at timet¢ — 1. (Most finite-element
decompositions are symmetric, so tipadit timet would also depend oaq at timet — 1.) Questions
about mapping the structure of a problem onto a target aatiite can then be answered by considering
various operations on the related graphs.

An ideal situation for mapping a problem onto a target aettitre is when the graph repre-
senting the structure of a problem is a subgraph of the graplesenting the target architecture. For
example, if the structure of a problem was represented asrgected string ap vertices and the target
architecture was a ring of processors, then the mapping of the problem onto the acthitewould
be straightforward and efficient. In graph terms, this idbed through the notion of embedding. An
embeddingf an undirected grap& = (V, F) (i.e., G has vertex set and edge<”) into an undirected
graphG’ = (V', E’) is a mappingp of V into V' such that

e every pair of distinct vertices, v € V, map to distinct vertices(u), ¢(v) € V', and
e for every edgdu,v} € E, {¢(u), #(v)} is an edge ing’.

Let G represent the graph corresponding to the structure of deprofp.e., the source structurpand
let G’ represent the graph corresponding to the target archieediotice that if there is an embedding
of G into G’, then values that need to be communicated may be transrittasgingle communication
step in the target architecture represented-hyThe fact that embeddings map distinct vertice&'db
distinct vertices ofz’ ensures that a single calculation step for the problem camidated in a single
calculation step of the target architecture.

One reason that hypercube computers were quite populatisidny graphs can be embedded
into the hypercube (graph). An embedding of the one-dinmexsiring of size2? into ad-dimensional
hypercube is called d-dimensional Gray codeln other words, if{0, 1}? denotes the set of ad-bit
binary strings, then thé-dimensional Gray cod€; is a 1-1 map of). .. 2¢ — 1 onto {0, 1}¢, such that
G4(j) andGy((j + 1) mod2?) differ by a single bit, for0 < j < 2¢ — 1. The most common Gray
codes, calledeflected binaryGray codes, are recursively defined as followgis a 1-1 mapping from
{0,1,...,2¢ — 1} onto{0, 1}, given byG; (0) = 0, G1(1) = 1, and ford > 2,

[0G4 () 0<z<2l—1
gd(x) = { 1gd_1(2d —1— x) 2d—1 <z< 2d —1. (2)

Alternatively, the same Gray code can be defined in a nonseufashion agj,;(z) = = @ |z/2],
wherez and|z /2] are interpreted aé bit strings. Further, the inverse of the reflected binargyGrode
can be determined by

G Wo- . Ya—1) =0 ... T4_1, 3)

wherexg_1 = yg—1, andz; =yg—1 @ --- dy; for0 <i < d— 1.
Meshes can also be embedded into hypercubesM_be ad-dimensional mesh of siz@; x
mg X --- X mg, and letr = 3>¢ [log, m;]. ThenM can be embedded into the hypercube of size

16

2". To see this, let; = [logy m;], for 1 < i < d. Let ¢ be the mapping of mesh node;, ..., a,)

to the hypercube node which has as its label the concaten&tip(a,) - ... - G, (aq), whereG,,

denotes any;-bit Gray code. Them is an embedding. Wrapped dimensions can be handled using

reflected Gray codes rather than arbitrary ones. (A niésis wrappedin dimensionj if, in addition

to the normal mesh adjacencies, vertices with indices ofdhe (a,...,a;-1,0,aj41,...,aq) and

(a1,...,a5-1,mj — 1,aj41,...,aq) are adjacent. A torus is a mesh wrapped in all dimensions.) If

dimensionj is wrapped andn; is an integral power of 2, then the mappinguffices. If dimensiory

is wrapped andn; is even, but not an integral power of 2, then to ensure thdirteand last nodes in

dimension;j are mapped to adjacent hypercube nodesguset replaces, . (a;) with
{ Gr,(a;) if 0 <a; <m;/2—1 @

gTj(aj + 2" — mj) if ’I’)’Lj/2 < a; < mj; — 1,

whereg, . is ther;-bit reflected binary Gray code. This construction ensunasd, (m;/2 — 1) and
Gr, (2" — m;/2) differ by exactly one bit (the highest order one), which im&iensures that the
mapping takes mesh nodes neighboring in dimengianhypercube neighbors.

Any treeT can be embedded into(dI'| — 1)-dimensional hypercube, whef€| denotes the
number of vertices ifT’, but this result is of little use since the target hypercuexponentially larger
than the source tree. Often one can map the tree into a m@enaaly sized hypercube, but it is a
difficult problem to determine the minimum dimension neededl there are numerous papers on the
subject.

In general, however, one cannot embed the source structioréhie target architecture. For
example, a complete binary tree of height 2, which contaipsogéessors, cannot be embedded into a
ring of any size. Therefore, one must consider weaker mapgpivhich allow for the possibility that
the target machine has fewer processors than the sourcdpaadot contain the communication links
of the source. Aveak embeddingf a directed source graphi = (V, E) into a directed target graph
G’ = (V' E') consists of

e amapg, of Vinto V', and

e a map¢. of E ontopathsin G’, such that if(u,v) € E then¢.((u,v)) is a path fromp,,(u) to
¢y (V).

(Note that ifG is undirected, each edge becomes two directed edges thabenmayapped to different
paths inG’. Most machines that are based on meshes, tori, or hypertawesthe property that a
message from processérto processor) may not necessarily follow the same path as a message sent
from processor) to processol, if P and(are not adjacent.) The map shows how computations
are mapped from the source onto the target, and thegpapows the communication paths that will
be used in the target.

There are several measures that are often used to desceilopiahity of a weak embedding
(¢w, Pe) Of G into G, including the following.

Processor Load: the maximum, over all vertices' € V', of the number of vertices iY mapped
onto v’ by ¢,. Note that if all vertices of the source structure represkatsame amount of
computation, then the processor load is the maximum cortipoéh load by any processor in the
target machine. The goal is to make the processor load asatgsossible td/|/|V’|. If vertices
do not all represent the same amount of work, then one shaddabeled vertices, where the
label represents the amount of work, and try to minimize tagimum, over all vertices’ € V/,
of the sum of the labels of the vertices mapped anto

17

Link Load (Link Congestion): the maximum, over all edggs/,v’) € E’, of the number of edges
(u,v) € E such that(v/,v") is part of the pathy.((u,v)). If all edges of the source structure
represent the same amount of communication, then the latkdepresents the maximum amount
of communication contending for a single communicatiok limthe target architecture. As for
processor load, if edges do not represent the same amownrhaofignication, then weights should
be balanced instead.

Dilation: the maximum, over all edges:,v) € E, of the path length of.((u,v)). The dilation
represents the longest delay that would be needed to serakihgle communication step along
an edge in the source, if that was the only communicationgaegnformed.

Expansion: the ratio of the number of vertices ¢ divided by the number of vertices @¢f. As
was noted in the example of trees embedding into hyperclée® expansion is impractical.
In practice, usually the real target machine has far fewecgssors than the idealized source
structure, so expansion is not a concern.

In some machines, dilation is an important measure of conation delay, but in most mod-
ern general-purpose machines itis far less important Isecaach message has a relatively large start-up
time that may be a few orders of magnitude larger than thepiendink traversed. Link contention may
still be a problem in such machines, but some solve this lbrgasing the bandwidth on links that would
have heavy contention. For example, as noted eaftietrees[Leiserson, 1985] add bandwidth near
the root to avoid the bottlenecks inherent in a tree architec This increases the bisection bandwidth,
which reduces the link contention for communication thairhomatches the basic tree structure.

For machines with very large message start-up times, dienimber of messages needed be-
comes a dominant communication issue. In such a machinenagenerely try to balance calculation
load and minimize the number of messages each processa tesend, ignoring other communica-
tion effects. The number of messages that a processor resesd can be easily determined by noting
that processorg andg communicate if there are adjacent vertieeandv in the source structure such
that ¢, mapsu to p andwv to q.

For many graphs that cannot be embedded into a hyperculbe atreenonetheless useful weak
embeddings. For example, keeping the expansion as closasts Jossible (given the restriction that a
hypercube has a power of 2 processors), one can map the derhjlary tree onto the hypercube with
unit link congestion, dilation two, and unit processor emtion. See, for example, [Leighton, 1992].

In general, however, finding an optimal weak embedding favergsource and target is an NP-
complete problem. This problem, sometimes known asrthpping problemis often solved by various
heuristics. This is particularly true when the source stmecis given by a finite-element decompaosition
or other approximation schemes for real entities, for irhstases the sources are often quite large and
irregular. Fortunately, the fact that such sources oftere lan underlying geometric basis makes it
easier to find fairly good mappings rather quickly.

For example, suppose the source structure is an irreguidrepresenting the surface of a
3-dimensional airplane, and the target machine is a 2-diineal mesh. One might first project the
airplane onto the:-y plane, ignoring the-coordinates. Then one might locate a mediactoordinate,
call it z, where half of the plane’s vertices lie to the leftoénd half to the right. The vertices may then
be mapped so that those that lie to the lefE@re mapped onto the left half of the target machine, and
those vertices that lie to the right efare mapped to the right half of the target. In the left halfhaf t
target, one might locate the medigftoordinate, denotegl, of the points mapped to that half, and map
the points abovg to the top-left quadrant of the target, and map points belaavthe bottom-left. On
the right half a similar operation would be performed for flménts mapped to that side. Continuing in
this recursive, divide-and-conquer manner, eventualytinget machine would have been subdivided

18

down into single processors, at which point the mapping doave been determined. This mapping
is fairly straightforward, balances the processor loadi sughly keeps points adjacent in the grid
near to each other in the target machine, and hence it doesanable approximation of minimizing
communication time. This technique is knownrasursive bisectioningand is closely related to the
serial data structure known a¥ed tree[Bentley, 1975].

An approach which typically results in less communicatignoi form a linear ordering of the
vertices via their coordinates orspace-filling curveand then divide the vertices into intervals of this
ordering. Typically either Z-ordering (aka Morton-ordeg) or Peano-Hilbert curves are used for this
purpose. Peano-Hilbert curves are also used as orderirne pfocessors in meshes, where they are
sometimes callegroximity orderinggMiller and Stout, 1996], p. 150.

Neither recursive bisectioning nor space-filling curvesimize the number of messages sent
by each processor, and hence if message start-up time & fyjgh it may be better to use recursive
bisectioning where the plane is cut along only, say,itfeis at each step. Each processor would end
up with a cross-sectional slab, with all of the source vegim given range af-coordinates. If grid
edges are not longer than the width of such a slab, then eackgsor would have to send messages
to only two processors, hamely the processor with the sl#éetteft and the processor with the slab to
the right.

Other complications can arise because the nodes or edgesto§gurces may not all represent
the same amount of computation or calculation, respegtivelwhich case weighted mappings are
appropriate. A variety of programs are available that perfsuch mappings, and over time the quality
of the mapping achieved, and the time to achieve it, hasfsigntly improved. For irregular source
structures, such packages are generally superior to wkawould achieve without considerable effort.

A more serious complication is that the natural source &iraanay be dynamic, adding nodes
or edges over time. In such situations one often needs tontigally adjust the mapping to keep the
computational load balanced and keep communication minifiitais introduces additional overhead,
which one must weigh against the costs of not adjusting thaiamce. Often the dynamical remappings
are made incrementally, moving only a little of the data toect the worst imbalances. Deciding how
often to check for imbalance, and how much to move, typicadpends quite heavily on the problem
being solved.

Research Issues and Summary

The development of parallel algorithms and efficient patglrograms lags significantly behind that
of algorithms and programs for standard serial computeings Makes sense due to the fact that com-
mercially available serial machines have been availabi@pproximately twice as long as have com-
mercially available parallel machines. Parallel commtimcluding distributed computing, cluster
computing, and grid computing, is in a rapidly growing phasigh important research and develop-
ment still needed in almost all areas. Extensive theoieditd practical work continues in discovering
parallel programming paradigms, in developing a wide rawfgefficient parallel algorithms, in devel-
oping ways to describe and manage parallelism through negusges or extensions of current ones,
in developing techniques to automatically detect paiatiel and in developing libraries of parallel
routines.

Another factor that has hindered parallel algorithm dgwelent is the fact that there are many
different parallel computing models. As noted earlierh@ectural differences can significantly affect
the efficiency of an algorithm, and hence parallel algorghmave traditionally been tied to specific
parallel models. One advance is that various hardware dihwlase approaches are being developed to
help hide some of the architectural differences. Thus, omglmave, say, a distributed memory machine,

19

but have a software system that allows the programmer to iwi@gva shared memory machine. While
it is true that a programmer will usually only be able to aghi¢he highest performance by directly

optimizing the code for a target machine, in many cases &aisleperformance can be achieved without
tying the code to excessive details of an architecture. frigis allows code to be ported to a variety of
machines, encouraging code development. In the past,stxtecode revision was needed every time
the code was ported to a new parallel machine, strongly diaging many users who did not want to

plan for an unending parade of changes.

Another factor that has limited parallel algorithm devetmmnt is that most computer scientists
were not trained in parallel computing and have a limiteddedge of domain-specific areas (chem-
istry, biology, mechanical engineering, civil enginegtiphysics, and architecture, to name but a few).
As the field matures, more courses will incorporate paratehputing and the situation will improve.
There are some technological factors that argue for the feeadpid improvement in the training of
programmers to exploit parallelism. The history of expdramrowth in the clock rate of processors
has come to a close, with only slow advances predicted fofutuee, so users can no longer expect
to solve ever more complex problems merely through impram@min serial processors. Meanwhile,
cluster computers, which are distributed memory systemsrevthe individual nodes are commodity
boards containing serial or small shared memory units, bageme common throughout industry and
academia. These are low cost systems with significant cangppower, but unfortunately, due to the
dearth of parallel programmers, many of these systems ackamgy to run concurrent serial programs
(known asembarrassingly parallgbrocessing), or to run turnkey parallel programs (such tebdaes).

Parallelism is also becoming the dominant improvementenctpabilities of individual chips.
Some graphics processing units (GPUSs) already have ovendrdul simple computational units that
are vector processing systems, which can be interpreteti@ementing SIMD operations. There is
interest in exploiting these in areas such as data mininghantkric vector computing, but so far this
has primarily been achieved for proof of concept demornstiat Most importantly, standard serial
processors are all becoming many-core chips with paratielputing possibilities, where the number
of cores per chip is predicted to have exponential growthfoltimnately it is very difficult to exploit
their potential, and they are almost never used as paralapaters. Improving this situation has
become an urgent problem in computer science and its apiptida problems in the disciplinary fields
that require large multi-processor systems.

Defining Terms

Distributed memory: Each processor only has access to only its own private jlecamory, and
communicates with other processors via messages.

Divide-and-conquer: A programming paradigm whereby large problems are solvedeapmposing
them into smaller, yet similar, problems.

Global operations: Parallel operations that affect system-wide data strastur

Interconnection network: The communication system that links together all of the pssors and
memory of a parallel machine.

Master-slave (manager-worker): A parallel programming paradigm whereby a problem is broken
into a collection of smaller problems, with a master procesgeping track of the subproblems and
assigning them to the slave processors.

Parallel Random Access Machine (PRAM)A theoretical shared-memory model, where typically the
processors all execute the same instruction synchronaastyaccess to any memory location occurs
in unit time.

Pipelining: A parallel programming paradigm that abstracts the noticencassembly line. A task is

20

broken into a sequence of fixed subtasks corresponding tstéiiens of an assembly line. A series
of similar tasks is solved by starting one task through thetesk sequence, then starting the next task
through as soon as the previous task has finished its firsistubAt any point in time, several tasks are
in various stages of completion.

Shared memory: All processors have the same global image of (and accesh tftlae memory.

Single Program Multiple Data (SPMD): The dominant style of parallel programming, where all of
the processors utilize the same program, though each hasritdata.

21

References

[Akl and Lyon, 1993] Akl, S.G. and Lyon, K.A. 199Farallel Computational GeometrnPrentice-
Hall, Englewood Cliffs, NJ.

[Atallah and Goodrich, 1986] Atallah, M.J. and Goodrich,TM1986. Efficient parallel solutions to
geometric problemslournal of Parallel and Distributed Computir)(1986): 492-507.

[Bentley, 1975] Bentley, J. 1975. Multidimensional binagarch trees used for associative searching,
Communications of the ACYB(9): 509-517.

[Brainerd, Goldberg, and Adams, 1990] Brainerd, W.S., Geld, C., and Adams, J.C. 199Bro-
grammers Guide to FORTRAN 9dcGraw-Hill Book Company, New York, NY.

[Flynn, 1966] Flynn, M.J. 1966. Very high-speed computiggtemsProc. of the IEEE54(12): 1901—
19009.

[Flynn, 1972] Flynn, M.J. 1972. Some computer organizatiand their effectivenestEEE Transac-
tions on ComputersC-21:948-960.

[JaJa, 1992] JaJa, J. 19% Introduction to Parallel AlgorithmsAddison-Wesley, Reading, MA.

[Kung, Luccio, and Preparata, 1975] Kung, H.T., Luccio,aad Preparata, F.P. 1975. On finding the
maxima of a set of vectorgpurnal of the ACM22(4): 469-476.

[Leighton, 1992] Leighton, F.T. 1992ntroduction to Parallel Algorithms and Architectures: rAys,
Trees, Hypercubedorgan Kaufmann Publishers, San Mateo, CA.

[Leiserson, 1985] Leiserson, C.E. 1985. Fat-trees: Unmalenetworks for hardware-efficient super-
computing,|EEE Transactions on ComputeiS-34(10):892—901.

[Li and Stout, 1991] Li, H. and Stout, Q.F. 1991. Reconfiglee®MD parallel processor$roceed-
ings of the IEEE79:429-443.

[Miller and Stout, 1996] Miller, R. and Stout, Q.F. 1998arallel Algorithms for Regular Architec-
tures: Meshes and Pyramidghe MIT Press, Cambridge, MA.

[OpenMP Architecture Review Board, 2005] OpenMP Archileat Review Board, 20050penMP
Application Program Interface

[Quinn, 1994] Quinn, M.J. 1994arallel Computing Theory and PracticéicGraw-Hill, Inc., New
York, NY.

[Rau, 1991] Rau, B.R. 1991. Pseudo-randomly interleaveshang Proc. 18th Int’l. Symp. Computer
Architecture 1991, 74-83.

[Reif, 1993] Reif, J., ed. 199FBynthesis of Parallel Algorithm#$/organ Kaufmann Publishers, San
Mateo, CA.

[Snir, Otto, Huss-Lederman, Walker, and Dongarra, 1995}, 3., Otto, S.W., Huss-Lederman, S.,
Walker, D.W., and Dongarra, J. 1999PI: The Complete Referenc&éhe MIT Press, Cambridge,
MA.

22

[Thinking Machines Corporation, 1991] Thinking Machinesr@oration. 1991.C* Programming
Guide Version 6.0.2, Cambridge, MA.

[Ullman, 1984] Ullman, J.D. 1984 Computational Aspects of VLSComputer Science Press,
Rockville, MD.

[ElI-Ghazawi, Carlson, Sterline, Yellick, 2005] El-Ghazaw., Carlson, W., Sterling, T., Yellick, K.
2005.UPC: Distributed Shared Memory Programminiphn Wiley and Sons, New York, NY.

23

Further Information

A good introduction to parallel computing at the undergetduevel iParallel Computing: Theory and
Practiceby Michael J. Quinn. This book provides a nice introductiorparallel computing, including
parallel algorithms, parallel architectures, and pargfegramming languagesParallel Algorithms
for Regular Architectures: Meshes and PyramigsRuss Miller and Quentin F. Stout focuses on fun-
damental algorithms and paradigms for fine-grained mashitieadvocates an approach of designing
algorithms in terms of fundamental data movement operstimeluding sorting, concurrent read, and
concurrent write. Such an approach allows one to port dlgus in an efficient manner between ar-
chitectures. Introduction to Parallel Algorithms and Architectures: rAys, Trees, Hypercubds a
comprehensive book by F. Thomson Leighton that also focosdme-grained algorithms for several
traditional interconnection networks. For the readerrggted in algorithms for the PRAM\N Intro-
duction to Parallel Algorithmdby J. JaJa covers fundamental algorithms in geometrphgitzeory, and
string matching. It also includes a chapter on randomizgdrehms. Finally, a new approach is used in
Algorithms Sequential & Parallddy Miller and Boxer, which presents a unified approach to setial
and parallel algorithms, focusing on the RAM, PRAM, Mesh,pEscube, and Pyramid. This book
focuses on paradigms and efficient implementations acressiety of platforms in order to provide
efficient solutions to fundamental problems.

There are several professional societies that sponsoemdes, publish books, and publish
journals in the area of parallel algorithms. These includgeAssociation for Computing Machinery
(ACM), which can be found at http://www.acm.orghe Institute for Electrical and Electronics En-
gineers, Inc. (IEEE)which can be found at http://www.ieee.org, and 8wxiety for Industrial and
Applied Mathematics (SIAMjvhich can be found at http://www.siam.org.

Since parallel computing has become so pervasive, mostutemgcience journals cover work
concerned with parallel and distributed systems. For exanope would expect a journal on program-
ming languages to publish articles on languages for shadory machines, distributed memory
machines, networks of workstations, and so forth. For sgyeurnals, however, the primary focus is
on parallel algorithms. These journals include doarnal for Parallel and Distributed Computingub-
lished by Academic Press (http://www.apnet.com), |ElEE Transactions on Parallel and Distributed
Systemshttp://computer.org/pubs/tpds), and for results thatlmmexpressed in a condensed foRa-
allel Processing Lettergpublished by World Scientific. Finally, several comprediea journals should
be mentioned that publish a fair number of articles on pairalgorithms. These include tHEEE
Transactions on Computerdournal of the ACMandSIAM Journal on Computing

Unfortunately, due to very long delays from submission tbljgation, most results that appear
in journals (with the exception dParallel Processing Lettejsare actually quite old. (A delay of 3-5
years from submission to publication is not uncommon.) Reoesults appear in a timely fashion in
conferences, most of which are either peer or panel revielMed first conference devoted primarily to
parallel computing was thaternational Conference on Parallel Processing (ICP®Rhich had its inau-
gural conference in 1972. Many landmark papers were predexitiCPP, especially during the 1970s
and 1980s. This conference merged with th&ernational Parallel Processing Symposium (IPPS)
(http://lwww.ippsxx.org), resulting in thinternational Parallel and Distributed Symposium (IPDPS)
(http://www.ipdps.org). IPDPS is quite comprehensivehattin addition to the conference, it offers a
wide variety of workshops and tutorials.

A conference that tends to include more theoretical algorstis theACM Symposium on Par-
allelism in Algorithms and Architectures (SPA@}tp://www.spaa-conference.org). This conference is
an offshoot of the premier theoretical conferences in cdprpscience ACM Symposium on Theory
of Computing (STOCAndIEEE Symposium on Foundations of Computer Science (FOC&)nfer-
ence which focuses on very large parallel systenf8Gs XY (http://www.supercomp.org), where XY

24

represents the last two digits of the year. This conferenueades the presentation of the Gordon
Bell Prize for best parallelization. Awards are given iniwas categories, such as highest sustained
performance and best price/performance. Other relevariernces include thimternational Super-
computing Conferencéhttp://www.supercomp.de), and thEEE International Conference on High
Performance Computinghttp://www.hipc.org).

Finally, the IEEE Distributed Systems Online site, htgs@nline.computer.org, contains links
to conferences, journals, people in the field, bibliographon parallel processing, on-line course mate-
rial, books, and so forth.

25

