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Linear time algorithms are given for computing the chessboard 
distance transform for both pointer-based and linear quadtree rep- 
resentations. Comparisons between algorithmic styles for the two 
representations are made. Both versions of the algorithm consist 
of a pair of tree traversals. 0 I991 Academic PIW, IIIC. 

1. INTRODUCTION 

The (region) quadtree, shown in Fig. 1, is a widely 
studied data structure for representing digitized images. 
An extensive survey of quadtrees and their use in image 
processing and graphics appears in Samet [ 1,2]. Unfortu- 
nately, the two-dimensional nature of the information 
they store makes quadtree usage more subtle than, say, 
binary search tree usage, and efficient algorithms often 
demand special quadtree techniques. This problem is in- 
tensified by the fact that there are at least three distinct 
representations for the quadtree structure reported in the 
literature. Each has unique advantages and disadvan- 
tages, with the result that each representation has appli- 
cations for which it is most suited. The pointer-bused 
quadtree representation maintains the explicit tree struc- 
ture as illustrated by the tree of Fig. lb. The linear quad- 
tree [3] replaces the tree structure with a sorted linear list 
containing only the leaf nodes from the original tree. l The 
sort key is obtained by assigning to each leaf node an 
address derived by interleaving the bits of the x and y 
coordinates of the upper left pixel for the corresponding 
block in the image. The resulting records appear in the 
list in the same order as they would be visited by a depth- 

’ The method of [3] explicitly stores only the black nodes of a binary 
image. For simplicity, this paper assumes that all nodes are stored in the 
linear list; however, being a traversal, our linear quadtree algorithm 
could reconstruct the white nodes during processing if they were not 
stored explicitly. 

first traversal of the pointer-based quadtree. The DF- 
expression [4] is a third quadtree representation obtained 
by listing only the values of the nodes (both internal and 
leaf) in order as they occur when performing a preorder 
traversal of the tree structure. 

The pointer-based and linear quadtree representations 
are the two most often appearing in the literature as base 
representations for describing algorithms. The flavor of 
the resulting algorithms are often different, depending on 
which of the two representations is used. In the past, the 
pointer-based quadtree has typically been used for appli- 
cations where the entire image can be maintained in main 
memory. The linear quadtree is most appropriate for ap- 
plications where large images are maintained in disk files 
with portions brought into memory as needed. This is 
primarily due to the fact that good paging algorithms are 
now known for the linear representation (specifically, in- 
dex the list with a B-tree), but no effective paging algo- 
rithms have been presented for the pointer-based repre- 
sentation. 

Pointer-based algorithms are concerned with tree- 
oriented operations such as finding the father or son of a 
node, or neighbor-finding operations [5, 61. In compari- 
son, linear quadtree algorithms access the node list by 
means of list search and insertion operations. While algo- 
rithms for the two representations may appear quite dif- 
ferent, algorithms yielding a particular run time complex- 
ity for one representation can usually be converted to an 
equally efficient algorithm in the other representation 
(one example of such a conversion appears in Shaffer and 
Samet [7]). 

The purpose of this paper is twofold. First, linear time 
algorithms are provided to solve the problem of generat- 
ing the quadtree chessboard distance transform of Samet 
[8]. By providing such an algorithm, a linear time solution 
to the computation of the Quadtree Medial Axis Trans- 
form (QMAT) of Samet [9] is also implied since Samet’s 
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(a) (b) 

FIG. 1. A 4 x 4 image and its quadtree. 

algorithm generates the QMAT from the distance trans- 
form in linear time. While our algorithms are similar to 
previous ones, they are the first with linear worst-case 
times. Second, by presenting algorithms both in terms of 
pointer-based and linear quadtree representations, the 
similarities and differences of the two approaches can be 
appreciated. 

Section 2 provides further definitions for the data 
structures and terminology. Section 3 presents the dis- 
tance transform algorithm in terms of the pointer-based 
quadtree representation. Section 4 presents the distance 
transform algorithm in terms of the linear quadtree repre- 
sentation. Section 5 presents our conclusions. Finally, 
PASCAL-like pseudo-code for both distance transform 
algorithms is provided in the Appendix. 

2. DEFINITIONS AND FUNCTIONS 

Given a 2” x 2” image array of black or white pixels, its 
pointer-based quadtree representation is recursively con- 
structed as follows: the root represents the entire image, 
and if the entire image is white or black then the root is a 
white or black leaf, respectively.2 Otherwise, the root is a 
gray (inferior) node with pointers to its four children (de- 
noted NW, NE, SW, and SE) representing the four 2”-’ 
x 2”-i subimages in the quadrants. Two nodes are adja- 
cent if and only if neither is a descendant of the other and 
if the image squares they represent share an edge or cor- 
ner. In Fig. 1, b is adjacent to a and to the white pixel. 
The depth of the root is 0, and, recursively, the depth of a 
child of a node p is 1 more than the depth of p. 

Given nodes p and q, neither of which is a descendant 
of the other, we say that p is N (equivalently E, S, W) of 
q if some pixel in p’s image square is due north (south, 
east, west) of some pixel in q’s image square, and that p 
is NW (NE, SW, SE) of q if p is not N nor W (not N nor 
E, not S nor W, not S nor E) of q and some pixel in p’s 
image square is in the northwest (northwest, southwest, 

z While we describe all concepts and algorithms in terms of binary 
images, they are easily extended to multi-color images as well. 

southeast) quadrant of some pixel in q’s square. Direc- 
tion will mean one of N, E, S, W, NW, NE, SW, or SE. 
Notice that if neither p nor q is a descendant of the other, 
then there is a direction C such that p is C of q and q is 
-C of p, where -C is the direction opposite of C. In Fig. 
1, a is N of b, b is S of a, and the white pixel is also S of a. 

Throughout we use the phrase the C neighbor ofp, 
where p is a node and C is a direction. If p’s C edge or 
corner is on the border of the image then there is no such 
neighbor. Otherwise, the neighbor is the node (possibly 
gray) of greatest depth less than or equal to p’s which is 
adjacent to p in the indicated direction. In Fig. 1, a is the 
N neighbor of b, and b’s parent is the S neighbor of a. 
Neighbor means a C neighbor for some direction C. Note 
that if q is a neighbor of p, then depth(q) 5 depth(p) and q 
represents a square at least as large as the square p repre- 
sents. It is important to keep in mind that neighbor is not 
a symmetric relation, in that p can be a neighbor of q 
while q is not a neighbor of p. 

Most linear quadtree representations assume some 
sorted list implementation (such as a B-tree) is used that 
allows for efficient key search and dynamic record inser- 
tion and deletion. Our algorithm accesses the node list 
only by means of a visit to each node of the tree in order, 
combined with reconstruction of the identical node list in 
reverse order. Thus, the only list operations that need to 
be supported are some form of “next node” operation, 
and an operation that inserts a new node at the head of a 
list of output nodes.3 

3. POINTER-BASED DISTANCE TRANSFORM 
ALGORITHM 

The Chessboard or I, distance between two points a 
and b can be defined as max((a, - b,(, (aY - by/). Samet 
[8] studied the problem of assigning to each black node 
the smallest distance to a white node, where the distance 
from a black node b to a white node w, denoted d(b, w), 
is the 1, distance from the center point of the image 
square b represents to the nearest edge or corner of the 
image square w represents. The I, distance transform 
problem (also called the chessboard distance transform 
problem) is to determine dt(b) = min{d(b, w): w a white 
node} for each black node b. (If b is the root node, then 
dt(b) is defined to be infinite.) Figure 2 shows the dis- 
tances for the image in Fig. 1. 

Our pointer-based quadtree algorithm is based on 
“top-down quadtree traversals” as described in Samet 
[lo]. Top-down quadtree algorithms also appear in Jack- 

3 An alternative, though unusual, implementation for the linear quad- 
tree suitable for use in this algorithm could be created with simple stack 
operations. Nodes would be POPed off an input list, processed, and 
PUSHed onto an output list, thus reversing the node order. 
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FIG. 2. Distance to nearest white node for the black nodes of Fig. 1 

ins and Tanimoto [ll], Rosenfeld et al. [12] and Samet 
and Webber [13]. There are many such traversals, de- 
pending on the relative order in which nodes are to be 
visited. For example, one can visit all children after their 
parent (a postorder traversal), or before (a preorder tra- 
versal). For our purposes the parent/children ordering is 
immaterial since no work is ever performed at interior 
nodes, but the relative order in which different children 
are visited is important. In general, a stack is used to 
store a path to the root (either explicitly, or implicitly 
through recursion), where if an interior node is being 
visited then it causes its children to be visited, while if a 
leaf is being visited then some action is performed and 
the leaf is removed from the stack. “Top-down quadtree 
traversals” are distinguished from top-down tree travers- 
als such as preorder traversal by the property that a call 
to a node p also passes pointers to p’s eight or fewer 
neighbors. Note that if q is a child of p, then each of q’s 
neighbors is either (1) one of p’s neighbors, (2) one of p’s 
children, (3) or a child of one of p’s neighbors. Using this 
fact, q’s neighbors can be determined in constant time if 
p’s neighbors are known, and hence the overhead for an 
entire traversal can be performed in linear time. Since the 
distinguishing feature of “top-down quadtree travers- 
als,” compared to standard top-down tree traversals ap- 
plied to quadtrees, is the fact that each node is accompa- 
nied by its neighborhood, in the rest of the paper they will 
be called neighbored traversals. 

Throughout, N, B, and W will denote the total number 
of nodes, the number of black nodes, and the number of 
white nodes, respectively, in the quadtree. Time is al- 
ways the worst-case time measured as a function of N. 
Since B + W 5 N < (4/3) * (B + W), N = O(B + W). 

The average time for the algorithm presented by 
Samet [8] is O(N). Samet did not analyze the worst-case 
time of his algorithm, but it is easy to show that it is 
O(N + B * H), where H is the height of the quadtree. 
Samet [lo] states that the time of his algorithm “cannot 
be lowered by use of the top-down method since its com- 
putation time is not dominated by the cost of neighbor 

finding.” While this is true for average time under his 
assumption concerning the expected distribution of black 
nodes, the top-down method can be used to reduce the 
worst case time complexity. The algorithm described in 
this section is similar to Samet’s, but requires only linear 
time in the worst case. 

For a black node 6, radius(b) denotes the 1, radius of 
b’s square, i.e., radius(b) is half of the length of a side of 
the square. It should be clear that dt(b) z radius(b). Two 
properties about chessboard distances will be used later 
to prove the linear upper bound for our algorithm. 

Property 1. If p and q are adjacent black nodes then 
dt(p) 5 dt(q) + radius(p) + radius(q). To see why this is 
so, let q be a closest white node to q. The triangle in- 
equality shows that d(p, w) 9 d(q, w) + radius(p) + 
radius(q) (see Fig. 3), and since dt(p) I d(p, w) and 
dt(q) = d(q, w), this gives the result. 

Property 2. If p is a black node other than the root, 
then dt(p) < 3 * radius(p). This is because there must be 
a white node beneath p’s parent, and any such white 
node is within 3 * radius(p) of p. 

Both distance transform algorithms store with each 
black node p a field D (indicated as p.D in PASCAL 
notation) which is initially 03, and which equals dt(p) at 
the end of the algorithm. The value of p.D never in- 
creases, and at any time during the algorithm, if p.D < m 
then there is a white node w such that p.D = d(p, w). 

The pointer-based algorithm consists of two neigh- 
bored traversals, named NW-to-SE and SE-to-NW, 
which can be performed in either order. These are just 
mirror images of each other, interchanging the roles 
of north and south, and of east and west, so only the 
NW-to-SE traversal will be explained. In this traversal, 
when a node p is visited, all of the nodes in the NW, N, 
and W directions have already been visited. This is in- 
sured by visiting the children of each node in the order 
NW, NE, SW, and SE. If p is white, then for each black 
neighbor q in the E, SW, S, and SE directions, q.D is set 
equal to radius(q). If p is gray then its children are vis- 
ited. Finally, if p is black, first p.D is set equal to ra- 
dius(p) if any of its neighbors in the NW, N, NE, or W 

FIG. 3. The triangle inequality applied to chessboard distances 
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directions are white. Then for each black neighbor q in 
the E, SW, S, and SE, directions, q.D is set equal to the 
minimum of q.D and p.D + radius(p) + radius(q). 

Algorithm 1, named POINTER-TRANSFORM, en- 
codes the procedure described above. 

THEOREM. The 1, distance transform algorithm de- 
scribed above is correct and always$nishes in time linear 
in the number of nodes of the quadtree. 

Proof. The time is linear because each neighbored 
traversal uses linear time. For any black node p, either p 
is the root and initialization sets p.D = a~, or else there is 
some nearest white node w. This white node is in some 
direction C of p, and by Lemmas 1 and 2 below, at the 
end of the appropriate traversa1p.D = dt(p). Sincep.D is 
never less than dt(p), the distances are all correctly de- 
termined. Q.E.D. 

LEMMA 1. For each black node p, if a nearest white 
node is N or W of p then p.D = dt(p) at the end of the 
NW-to-SE traversal, and ifit is S or E of p then p.D = 
dt(p) at the end of the SE-to-NW traversal. 

Proof. Let w be a nearest white node top, where w is 
C of p for C E {N, E, S, W}. There is a pixel on the C 
border of p’s image square such that some pixel of w’s 
image square is C of the border pixel. Between w’s image 
square and this border pixel there are only black pixels, 
since w is a nearest white. Therefore there is a sequence 
ofblacknodesq,,. . . , qk (qk = p), where the C border 
of 4,‘s image square touches w’s image square, qitl is a 
-Cneighborofqiforlsisk- 1,and 

dt(qi+l) = d(qi+lT WI 

= d(qi, W) + radius(qJ + radius(qi+l) 

for1 silk- 1. 

(See Fig. 4a). Property 1 ensures that qi is larger than qi-1 
for i > 1. All of these claims are straightforward, except 
perhaps the fact that qi+i is a -C neighbor of qi, since 
this requires that depth(qi+l) I depth(qJ. To see that this 

(a) (b) 

FIG. 4. Paths from node p to the nearest white node W. 

is true, note that if it is false then d(qi+l , w) 2 radius(q;+J 
+ 2*radius(qJ 2 3*radius(qi+i). Since d(qi+l) < 3*ra- 
dius(qi+i) is always true, this would imply that w is not 
the closest white to qi+l , and hence not to p. 

During the visit to q1 in the appropriate traversal, ql.D 
is set equal to radius(qJ. This is because either w is a C 
neighbor of q1 and the visit to q1 sets q,.D, or q1 is a -C 
neighbor of w and the visit to w (which preceded the visit 
to ql) set ql.D. During the remainder of the traversal, qi 
is visited before qi+i , and the visit to qi results in qi+l.D 
being set equal to d(qi+l , w ). When i = k - 1, this sets 
p.D = d(p, w) = dt(p). Q.E.D. 

LEMMA 2. For each black node p, if a nearest white 
node is NW or NE ofp, then p.D = dt(p) at the end of the 
NW-to-SE traversal, while ifit is SE or SW of p, then 
p.D = dt(p) at the end of the SE-to-NW traversal. 

Proof. The proof is quite similar to that of the pre- 
vious lemma. If a nearest white node w is, say, NE of p, 
then there are a sequence of black squares ql, . . . , 
qk = p, and an integer j, 1 I j I k - 1, such that q1 is 
adjacent to w; each qi+i is a SW neighbor of qi forj I i 5 
k - 1; either each qi+i is a S neighbor of qi for 1 I i 2 j - 
l,oreachqi+IisaWneighborofqiforl~i~j- 1;and 

= d(qi, W) + radius(qJ + radius(qi+J 

forl:ilk- 1. 

(See Fig. 4b.) Once again, during the visit to q1 in the 
NW-to-SE traversal, 41.0 = radius(q,), and during the 
visit to qi the value of q/+*-D is set to the correct value. 

Q.E.D. 

It might appear that there is a problem in that when a 
leaf node that is a SE son of its parent is visited during the 
NW-to-SE traversal, its NE neighbor has not yet been 
visited and thus does not contain the correct distance 
transform value. However, once again, Property 1 en- 
sures that qi is larger than qi-1. The result is that no node 
qi ,j < i < k is a SE son. Likewise for NW sons during the 
SE-to-NW traversal. 

4. LINEAR QUADTREE DISTANCE 
TRANSFORM ALGORITHM 

This section presents a linear time two-pass chess- 
board distance transform algorithm for linear quadtrees. 
The two passes of this algorithm serve the same functions 
as the two traversals of the pointer implementation, visit- 
ing the leaf nodes in the same order, but accomplish their 
goals in a slightly different fashion. The first pass calcu- 
lates the distance transform for each node M with respect 
to those nodes that precede M in the node list (i.e., M’s 
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FIG. 5. The active border of a quadtree block decomposition after 
node 6 is processed. Dashed lines show the active border after node 7 is 
processed. 

value after the first pass will be the distance to the nearest 
WHITE node preceding M). This is accomplished by ex- 
amining the distance transform values of those blocks 
adjacent to M that have been processed already. M is 
then output to a temporary node list with its value set to 
the (partially calculated) distance transform. The nodes 
are output so that the result of the first pass will be a node 
list in reverse order from the input node list. The second 
pass calculates the distance transform for each node M 
with respect to those nodes that now precede M in the 
node list (i.e., those nodes that, in the original input tree, 
came after M). This ensures that each node examines all 
of its neighbors to deduce the correct distance transform 
value. The algorithm requires exactly two list searches 
and two list insertions for each node, with all searches 
performed in order and all insertions performed in the 
reverse of the input order (i.e., insertions to the head of 
the node list).4 

The primary difference between this algorithm and the 
one presented in Section 3 is that in the linear quadtree, 
neighbor information is not passed down to leaf nodes 
from the internal nodes. Instead, information about each 
node’s previously visited neighbors is stored in an active 
border table [14]. Since the node list is processed in or- 
der, the border of the region of the corresponding image 
consisting of the blocks that have already been processed 
has the shape of a staircase. For example, consider Fig. 5 
where the blocks have been assigned labels matching 
their order in the input list. The heavy line represents the 
state of the active border after block 6 is processed. The 
broken line along the southern and eastern border of 
block 7 shows the change in the active border after block 
7 is processed. The active border of a 2” x 2” image 

4 Alternatively, both passes could be performed working forward 
from the end of the node list, with all insertions being to the end of the 
newly created list. This may be preferable for disk-based processing. 

consists of sets of horizontal and vertical segments such 
that the total length of each of these sets is 2” pixel 
widths. Thus, a complete description of the neighboring 
nodes along the active border can be maintained using 
two tables each containing 2” records. 

The distance transform algorithm must visit corner- 
adjacent neighbors as well as side-adjacent neighbors. It 
is therefore necessary to maintain, in addition to two 
edge tables, a table containing the value at each potential 
node corner (referred to as a vertex in Samet and Tam- 
minen [14].) This allows the algorithm to retrieve effi- 
ciently the distance transform for a node’s NW neighbor 
in cases where neither edge table retains a record corre- 
sponding to the NW neighbor’s value (e.g., in Fig. 5 node 
1 is the NW neighbor of node 13). Since a vertex may fall 
anywhere within a range from 0 to 2” along the length of 
each axis (with the vertices at 0 being identical), the ver- 
tex table must be of size 2 . 2” + 1. A line segment with 
equation X = Y + c will intersect the active border only 
once; therefore, the vertex table can be organized to 
store the record for the vertex at (X, Y) in location c = 
2” + X - Y (2” is added to yield a range from 0 to 2 . 2”). 

Algorithm 2, named LINEAR-TRANSFORM, en- 
codes the procedure described in this section. As with 
Algorithm 1, a tree consisting of a single black leaf would 
have a distance transform value of =. Arguments very 
similar to those used in Theorem 1 of the previous section 
can be used to demonstrate the correctness of the algo- 
rithm. 

Since procedure DOPASS is executed twice for 
each node of the tree, the algorithm is O(N) if the sum 
of the calls to DOPASS are also O(N). Assuming that 
REVERSE-ORDER-INSERT (which inserts a node at 
the head of the node list) operates in constant time, the 
only point that must be considered is the cost of the two 
while loops. Each iteration of these loops represents a 
comparison between two neighboring blocks of the quad- 
tree, and each such neighbor pair is investigated exactly 
once on each traversal. For every pair of side adjacent 
leaf nodes M and M’, the smaller node (say M’) has no 
other neighbor along their common side other than M. 
Thus, the total number of side-adjacent pairs that must be 
examined is O(N), yielding a total cost for each traversal 
of O(N). 

As an example of how DOPASS processes a node, 
consider node 13 from Fig. 5 during pass 1. Since 13 is 
not white, trual’s value is initially set to m. W neighbors 
are checked first, beginning with node 8 (the W neighbor 
of 13’s upper left corner). Since 8’s D value + radius (and 
consequently the value stored in the edge table) is 1, trual 
is set to be 2. Since 8 is not 13’s only W neighbor, the 
edge table at 10’s upper right corner is also checked. This 
does not affect trual, nor does the check of 13’s SW 
neighbor (node 12). Visiting the N edge table provides the 
D value based on node 14, followed by a check on the NE 
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neighbor (node 5). Neither reduces 13’s D value. Finally, stead, these algorithms are complementary in that they 
the NW neighbor is checked and found to be white. Thus, provide a means whereby the distance transform may be 
13’s D value is set to 13’s radius. x-edge, y-edge, and computed in linear time in whichever representation is 
uert are updated to reflect 13’s final D value. selected. 

5. CONCLUSIONS 
APPENDIX 

Two linear time algorithms have been presented to cal- 
culate the chessboard distance transform for quadtrees. 
Algorithms have been presented for both the pointer- 
based and linear quadtree representations, where both 
algorithms make two passes through the quadtree, with 
the second pass in the reverse order of the first pass. 
While the algorithms are quite similar, some differences 
may be noted. The primary difference is in the method 
whereby neighbor information is provided to the current 
node. The pointer-based quadtree algorithm makes use of 
neighbored traversals, with each traversal supplying nec- 
essary neighbor information to each black node through 
parameters passed to the traversal function. The linear 
quadtree algorithm makes use of a set of active border 
tables to store all necessary information about neighbors 
of the current node. Accesses to the quadtree are in 
terms of list operations. 

A further difference between the two algorithms is that 
the linear quadtree algorithm is purely iterative, while the 
pointer-based quadtree algorithm is recursive (or stack- 
driven). The linear quadtree algorithm requires a “next 
node” operation to support a visit to each leaf node in 
order, and construction of an output tree where the value 
for each leaf is provided in reverse order. The pointer 
quadree algorithm requires a stack and an operation to 
access children. 

As mentioned previously, the choice between a 
pointer-based or linear quadtree representation is usually 
determined by whether the application is disk or RAM 
based. Thus it does not make sense to declare that one or 
the other of these representations is “better” since the 
application often determines which is appropriate. In- 

The algorithms presented in this appendix are written 
in PASCAL with the extension of the for (variable) in 
(set) construct. This construct iterates (variable) over 
each item in (set). In addition, the following operations 
are assumed to be predefined. 

GRAY, WHITE, and BLACK are boolean operations 
which are true iff the node value is gray (i.e., an internal 
node), white, or black, respectively. 

SON(node, quad) returns the son of node node in 
quadrant quad. SON1 is identical to SON except that if 
node is a leaf node, then node is returned instead of its 
son. 

QUAD(side, side) returns the quadrant bounded by the 
two sides; e.g., QUAD(N, W) = NW. 

OPQUAD(quad) and OPSIDE(side) return the 
opposite quadrant and side, respectively; e.g., 
OPQUAD(NW) = SE; OPSIDE(N) = S. 

CSIDE(side) and CCSIDE(side) return the side clock- 
wise and counter-clockwise to side, respectively; e.g., 
CSIDE(N) = E. 

SIDEl(quad) and SIDE2(quad) return the first and 
second sides adjacent to quad, respectively; e.g., 
SIDEl(NW) = N, SIDE2(NW) = W. 

WIDTH, RADIUS, XOF, Y-OF, and VALUE re- 
turn a node’s width, a node’s radius, x and y coordinates 
of a node’s upper left corner, and a node’s value, respec- 
tively. 

REVERSE-ORDERINSERT(out, x, y, width, color, 
0) appends to the head of list out a quadtree node with 
upper-left corner at (x, y), width width, color value color, 
and distance transform value D. 

ALGORITHM 1. Pointer-based quadtree chessboard distance transform algorithm. 

type 
direction = (N, E, S, W, NW, NE, SW, SE); 
neighbors = array [direction] of t NODE; 
corder = array [ 1. .4] of direction; 

end; 

{ Compute and return the distance transform for pointer-based quadtree intree. It is assumed that all .D components 
of black nodes are initially infinite. } 

procedure POINTER-TRANSFORM(intree : QUADTREE); 
var 

i : direction; 
nurray : neighbors; 
childorder : corder; 
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begin 
for i in (N, S, E, W, NW, NE, SW, SE) do naway[i] := nil; 
childorder[l]: =NW; childorder[2]: =NE; 
childorder[3]:=SW; childorder[4]:=SE; 
TRAVERSE(root, narray, childorder); { NW-to-SE traversal } 
childorder[l]:=SE; childorder[2]:=SW; 
childorder[3]: =NE; childorder[4]: =NW; 
TRAVERSE(root, narray, childorder) { SE-to-NW traversal } 

end; 

{ Perform a neighbored traversal, visiting the children in the order specified by childorder. } 
procedure TRAVERSE(node : t NODE; nurray : neighbors; childorder : corder); 
var 

d,child : direction; 
cnarray : neighbors; 

begin 
if WHITE(node) then begin 

for d in (SIDEl(childorder[4]), childorder[3], SIDE2(childorder[4]), childorder[4]) do 
if BLACK(nurruy[d]) then 

narray[d] t .D := RADIUS(narray[d]) 
end 
else if BLACK(node) then begin 

for d in (OPQUAD(childorder[4]), SIDEl(childorder[2]), childorder[3], 
SIDE2(childorder[3])) do 

if WHITE(nurray[d]) then 
node t .D : = RADIUS(node) 

for d in (SIDEl(childorder[4]), childorder[3], SIDE2(childorder[4]), childorder[4]) do 
if BLACK(nurruy[d]) then 

narray[d] t .D := min(nurruy[d] t .D, node 7 .D+RADIUS(node)+RADIUS(narray[d])) 
end 
else begin { GRAY node code derived from Samet [lo] } 

for i: = 1 to 4 do begin 
child: = childorder [i]; 
cnurruy[child] : = SONI(nurruy[child], QUAD(OPSIDE(child), CSIDE(chiZd))); 
cnarruy[QUAD(child, CSIDE(child))] : = SONI(nurruy[QUAD(child, CSIDE(child))], 

QUAD(OPSIDE(child), CCSIDE(child))); 
cnurruy[CSIDE(child)] : = SONI(nurruy[CSIDE(child)], QUAD(child, CCSIDE(chifd))); 
cnurruy[QUAD(OPSIDE(child), CSIDE(child))] : = SONI(nurruy[CSIDE(child)], 

QUAD(OPSIDE(child), CCSIDE(child))); 
cnarruy[OPSIDE(child)] := SON(node, QUAD(OPSIDE(child), CSIDE(child))); 
cnurruy[QUAD(OPSIDE(child), CCSIDE(child))] : = 

SON(node, QUAD(OPSIDE(child), CCSIDE(child))); 
cnarruy[CCSIDE(child)] : = SON(node, QUAD(child, CCSIDE(child))); 
cnurray[QUAD(child, CCSIDE(child))] : = 

SONI(narruy[child], QUAD(OPSIDE(child), CCSIDE(child))); 
TRAVERSE(SON(node, child), cnarray, childorder) 

end 
end 

ALGORITHM 2. Linear quadtree chessboard distance transform algorithm. 
type 

EDGE = record 
length : integer; { length of edge segment described } 
posit : integer; { coordinate of edge segment in other dimension } 
D : real { value of edge segment, i.e., the distance transform value along that segment) 

end; 
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var 
n : integer; { assume initialized as depth of the quadtree; i.e., width of quadtree = 2”) 
x-edge, y-edge : array [0..2”] of EDGE; 
verf : array [0..2 * 2”] of integer; { Vertex array } 

{ Compute the chessboard distance transform for each node of a quadtree. The value stored in the edge tables is the 
sum of the distance transform of the node along that edge plus its radius. The reason for this is that dt(node) = 
radius(node) + radius(neighbor) + dt(neighbor) } 

function LINEAR-TRANSFORM(intree : QUADTREE) : QUADTREE; 
var 

temp, outtree : QUADTREE; 
nd : f NODE: 

begin 
y-edge[O].length : = x-edge[O].length : = 2”; { initialize } 
y-edge[O].D : = x-edge[O].D : = vert[2”] : = m; 
y-edge[O].posit : = x-edge[O] .posit : = 0; 
foreach nd in intree do { first pass } 

DOPASS(temp, nd, X-OF(nd), Y-OF(nd), WIDTH(nd), true); 
y-edge[O].length : = x-edge[O].length : = 2”; { re-initialize } 
y-edge[O].D : = x-edge[O].D := vert[2”] := m; 
y-edge[O] .posit : = x-edge[O].posit : = 0; 
foreach nd in temp do { second pass } 

DOPASS(outtree, nd, X-OF(nd), Y-OF(nd), WIDTH(nd), false); 
LINEAR-TRANSFORM : = outtree 

end; 

{ Calculate the distance transform value with respect to the preceding nodes of a node with value trvul, upper left 
corner (fx, fy), and width width. The node with its resulting distance transform value will be inserted into linear 
quadtree out with its position modified so that the resulting file is in reverse order from the input file. Jirstp is ‘true’ 
iff this is the first pass. } 

procedure DOPASS(out : QUADTREE: nd: t NODE; fx, fy, width : integer; jirstp : boolean); 
var 

oldval, cur,, outval, newx, newy, oldcurr, trval : integer; 
begin 

if WHITE(nd) then trval := 0 else if$rstp then trval := ~0 else trval := nd t .D; 
if trval <> 0 then begin { non-white node-process distance transform } 

curr : = fy; { first do west (east) edge } 
while curr < jj~ + width do begin 

trval := min(trval, width/2 + y-edge[curr].D); { check each neighbor } 
oldcurr : = curr; curr : = curr + y-edge[curr].length 

end; { now oldcurr points to last segment of edge } 
vert[2” + fi - (fy + width)] : = y-edge[oldcurr].D; { NW of cm-r’s S neighbor } 
{ Check SW (NE) corner. If haven’t seen SW (NE) neighbor, don’t update. } 
if y-edge[fy].length > width then curr := fy; else curr := jj~ + width; 
if y-edge[curr].posit = fx then { We have visited the corner neighbor } 

trval := min(trva1, width/2 + y-edge[curr].D); 
curr := fx; { now do north (south) edge } 
while curr < fx + width do begin 

trval := min(trva1, width/2 + x-edge[curr].D); { check each neighbor } 
oldcurr := czar; curr := curr + x-edge[curr].length 

end; { now oldcurr points to last segment of edge } 
vert[2” -t fx + width - fi] := x-edge[oldcurr].D; { NW of curr’s E neighbor } 
{ now check NE (SW) corner } 
if x-edge[fx].length > width then curr : = fi; else curr : = fx + width; 
if x-edge[curr].posit = fy then trval : = min(trva1, width/2 + x-edge[currl.D); 
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{ Finally, do NW (SE) corner } 
trual := min(trual, width/2 + uert[2” + fx - fy]) 

end; { now, trval is set to be the distance transform value for the node } 
{ insert node into output tree (in reverse) ) 
newx := 2” - (fx + width); newy := 2” - (fi, + width); 
REVERSE-ORDERINSERT(out, newx, newy, width, VALUE(nd), trual); 
( update tables } 
if trual <> 0 then { if black node, then add radius } 

ma1 := ma1 + widthf2; { store transform + width in table > 
if x_edge[fx].length > width then begin {just updating part of segment } 

x-edge[ fx + width].length := x-edge[fx].length - width; 
x-edge[fx + width1.D := x-edge[fx].D; 
x-edge[fx + width].posit := x-edge[fi].posit 

end; 
x-edge[ fx].length : = width; x-edge[ fx].D : = trual; 
x-edge[ fx].posit : = x-edge[ fx].posit + width; 
if y-edge[fy].length > width then begin 

y-edge[fy + width].length := y-edge[fy].length - width; 
y-edge[fy + width1.D := y_edge[fy].D; 
y-edge[ fy + width] .posit : = y-edge[fy] .posit 

end; 
y-edge[fi].length := width; y_edge[fy].D := trual; 
y-edge[ fy] .posit : = y-edge[ fy] .posit + width; 
vert[2” + fx - fy] := trval 

end: 
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