
In Proc. 2nd Symp. Frontiers Massively Parallel Computation(1988), pp. 491–494.

FAULT TOLERANCE OF ALLOCATION SCHEMES IN
MASSIVELY PARALLEL COMPUTERS

Marilynn Livingston� Quentin F. Stouty

Department of Computer Science Dept. of Elec. Eng. and Comp. Sci.
Southern Illinois University University of Michigan

Edwardsville, IL 62026-1653 Ann Arbor, MI 48109-2122

Abstract

This paper examines the problem of locating and allocating
large fault-free subsystems in multiuser massively parallel
computer systems. Since the allocation schemes used in such
large systems cannot allocate all possible subsystems a reduc-
tion in fault tolerance is experienced. We analyze the effect
of different allocation methods including the buddy and Gray-
coded buddy schemes for the allocation of subsystems in the
hypercube and in the 2-dimensional mesh and torus. Both
worst case and expected case performance is studied. Gen-
eralizing the buddy and Gray-coded systems, we introduce a
new family of allocation schemes which exhibits a significant
improvement in fault tolerance over the existing schemes and
which uses relatively few additional resources. For purposes
of comparison, we study the behavior of the various schemes
on the allocation of subsystems of218 processors in the hy-
percube, mesh, and torus consisting of220 processors. Our
methods involve a combination of analytic techniques and
simulation.

Keywords fault tolerance, allocation, hypercube computer,
mesh, torus, buddy system.

1 Introduction

Parallel computers incorporating thousands of processors
must be able to tolerate faulty processors and communica-
tion links if they are to achieve a usable mean-time-to-failure.
In these large systems, processor allocation is needed for both
multiuser environments, such as is provided with the NCUBE
series of hypercubes, and for single user systems with multi-
ple subtasking capabilities. In such a computing environment

�Partially supported by National Science Foundation grant CCR-8808839
yPartially supported by National Science Foundation grant DCR-8507851

and an Incentives for Excellence Award from Digital Equipment Corporation

the problem of locating and allocating large fault-free subsys-
tems is computation-intensive and, as a consequence, in prac-
tice some allocation scheme which recognizes only a subset
of the existing subsystems is used. The allocation scheme of-
ten has a dramatic effect on the fault tolerance of the system,
thus forcing a trade-off to be made between space and compu-
tation time devoted to the allocation scheme versus minimum
acceptable level of fault tolerance of the system.

In this paper we examine allocation schemes for large
subcubes of a hypercube and large subsquares of a two-
dimensional mesh and torus, considering worst case and ex-
pected case fault tolerance of the interconnection network,
and the reduction in fault tolerance caused by the fact that the
allocation scheme used cannot allocate all subsystems. We
focus on the allocation of large subsystems because we be-
lieve that most massively parallel machines are purchased in
order to support large tasks as opposed to hundreds of simul-
taneous users with small tasks. For comparative purposes we
analyze allocating a subcube or subsquare of218 processors
in a machine of220 processors.

In ad-dimensional hypercube there are
�
d
q

�
2d�q subcubes

of dimensionq, calledq-subcubes, and each processor be-
longs to

�
d
q

�
of them. Thus in a hypercube of220 proces-

sors a faulty processor makes 190 of the existing 760 18-
subcubes faulty. The smallest number of faulty processors
which makes all subcubes containingm processors faulty in
a hypercube containingn processors is denoted byQw(n;m).
Analogously, the expected number of processor faults which
makes all subcubes of sizem faulty is denoted byQe(n;m),
where we assume that faults are independent and uniformly
distributed. We find thatQe(n;m) is significantly larger
thanQw(n;m) and, in particular,Qw(2

20; 218) = 8 while
Qe(2

20; 218) � 24:5. A discussion of these functions and
their analogs for the 2-dimensional mesh and torus is included
in Section 2.

Current hypercube allocation schemes do not allocate all
q-subcubes but instead employ some form of thebuddy sys-
temapproach, where the onlyq-subcubes allocated are those

consisting of all processors determined by arbitrarily fixing
the high-orderd � q address bits. There are only2d�q such
q-subcubes and each processor is in exactly one of them.
Using Bw(n;m) and Be(n;m) to denote the worst case
and expected case number of faults needed to make all the
buddy system subcubes of dimensionblgmc faulty, one has
Bw(2

20; 218) = 4 andBe(2
20; 218) � 8:3. Thus the use

of the buddy system allocation scheme results in a consider-
able reduction in fault tolerance. In Section 3 we discuss the
fault tolerance properties of the buddy system along with sev-
eral variants including adouble buddy system(DB), aGray-
coded buddy system(G), and adouble Gray-coded buddy sys-
tem(DG) defined for the hypercube, and the 2-dimensional
mesh and torus.

In Section 3.3 we introduce a new family of allocation
schemes which generalizes both the buddy and Gray-coded
buddy systems and exhibits improved fault tolerance with rel-
atively little increase in search time. The best of these, de-
notedDA2, allocates only 48 subcubes of dimension 18 in
a 20-dimensional hypercube, and yetDA2

e(2
20; 218) � 15.

ThusDA2 achieves more than half of the fault tolerance of
the hypercube in which all 760 subcubes of dimension 18 are
allocable.

For purposes of comparison, we include in Section 4 sim-
ulation results for the hypercube with220 processors and the
various schemes for allocation of subsystems possessing218

processors.

2 Subsystems

Throughout,lg meanslog2. We usen to denote the total
number of processors in the system, and for convenience of
notation, supposen is an even power of two. LetM(n) de-
note a two-dimensional square mesh with grid pointsf(x; y) :
1 � x; y � p

ng, where two grid points are connected if and
only if their coordinates differ by one in exactly one coordi-
nate position. The corresponding

p
n�pn two-dimensional

torus will be denoted byT (n). It has the same grid points
asM(n), and includes the connections ofM(n), but in ad-
dition its boundary points(x; 1) and(x;

p
n) are adjacent as

are(1; y) and(
p
n; y) for 1 � x; y � p

n. We will denote by
Q(n) thed-dimensional hypercube withn = 2d nodes which
are the binaryd-tuples and where twod-tuples are connected
if and only if they differ in exactly one position.

The meshM(n) has(
p
n�pm+1)2 subsquares of sizep

m � p
m, the torusT (n) hasn such subsquares, while

the hypercubeQ(n) has
�
d
q

� � 2d�q subcubes of dimension
q, whered = lg n. Thus we see that bothM(n) andT (n)
have�(n1:5) square subsystems whereasQ(n) has�(3d) =
�(nlg 3) subcubes.

Let us now examine the worst case and expected case fault
tolerance when all subsystems of a given size are allocable.

Denote byMw(n;m) the smallest number of faulty proces-
sors which make all subsquares ofM(n) with m processors
faulty, and letMe(n;m) denote theexpectednumber of faulty
processors which must occur before all subsquares withm
processors are faulty, assuming that faults are independent
and uniformly distributed. The expressionsTw(n;m) and
Te(n;m) denote the corresponding quantities for the torus
T (n) andQw(n;m) andQe(n;m) denote the corresponding
quantities for the hypercubeQ(n).

It is straightforward to establish that the functions
M(n;m), T (n;m), and Q(n;m) are monotone non-
decreasing functions ofn and monotone non-increasing func-
tions ofm. We state these results without proof in the follow-
ing.

Proposition 2.1 If n0 > n, d0 > d, m0 > m, andn � m0

then

(i) Mw(n
0;m)�Mw(n;m) andMw(n;m

0)�Mw(n;m),

(ii) Me(n
0;m) > Me(n;m) andMe(n;m

0) < Me(n;m),

(iii) Tw(n
0;m) � Tw(n;m) andTw(n;m0) � Tw(n;m),

(iv) Te(n
0;m) > Te(n;m) andTe(n;m0) < Te(n;m),

(v) Qw(d
0;m) � Qw(d;m) andQw(d;m

0) � Qw(d;m),

(vi) Qe(d
0;m) > Qe(d;m), andQe(d;m

0) < Qe(d;m).

2

The values ofMw(n;m) andTw(n;m) are relatively easy
to determine. To illustrate form = n=4, subdivide the

p
n�p

n mesh into four
p
n=4 �

p
n=4 submeshes, designate a

faulty processorp0 in one of the submeshes and designate
its translate as faulty in each of the other submeshes. This
results in every square submesh of sizen=4 being faulty, and
the same fault pattern also makes every square submesh of the
torusT (n) faulty. On the other hand, since the 4 subsquares
are nonoverlapping, at least 4 faulty processors are required
to cause them to be faulty. Using this reasoning, it follows
that

Mw(n; n=4
i) = Tw(n; n=4

i) = 4i

for any natural numberi.
In the case of the hypercube the functionQw(n;m) is

much more difficult to compute. However, it is known [1, 2]
thatQw(n; n=4) is the minimum positive integerr such that�

r�1
br=2c�1

� � lg n which yields

Qw(n; n=4) = 8:

Thus, while in a square mesh or torus of1024�1024 proces-
sors, as few as 4 faulty processors can make every512� 512
submesh faulty, in a 20-dimensional hypercube consisting of
the same number of processors, at least 8 processors must

become faulty before all 18-dimensional subcubes become
faulty. As the number of processors increases, this difference
becomes more pronounced since it has been shown [1, 2] that

Qw(n; n=4) = lg lg n+
1

2
lg lg lg n+O(1):

We used simulation to investigate the expected number of
faulty processors that make the analogous subsystems faulty.
The 1024 � 1024 mesh and torus was approximated by the
continuous unit square, and the512� 512 submesh by a con-
tinuous1

2
� 1

2
square. In each trial, faults were successively

generated randomly and uniformly in the unit square until no
fault-free subsquare of size1

2
� 1

2
remained. The results of

100,000 trials yielded the following:

Me(2
20; 218) � 13:54; and Te(2

20; 218) � 19:89 :

For the 20-dimensional hypercube we used a simulation with
10,000 trials and found that

Qe(2
20; 218) � 24:50:

The program developed for this simulation, which will be de-
scribed in Section 4, can also produce mean-time-to-failure
values by incorporating a given probability distribution for
the faults.

3 Allocation Schemes

In comparison with the 2-dimensional mesh and torus, the hy-
percube displays a high degree of fault tolerance with respect
to large subsystems. However, this advantage is lost when
only a small subset of the existing subsystems are allocable.
In this section we will describe a few analytic results that in-
dicate how the buddy system, and other allocation schemes,
affect the fault tolerance properties of the hypercube, mesh,
and torus.

3.1 Allocation Schemes for Hypercubes

Most allocation schemes for the hypercube employ thebuddy
systemapproach, where the onlyq-subcubes allocated in
Q(2d) are those of the forma1a2 : : : ad�q � : : : �, that is, the
high-orderd � q address bits are fixed in each allocableq-
subcube. There are2d�q of these subcubes and they form a
partition ofQ(2d). We will useBQw(n;m) andBQe(n;m)
to denote the worst case and expected case number, respec-
tively, of faults needed to make all the buddy system subcubes
of sizem faulty.

To obtain a good upper bound forBQe(n;m), we con-
sider the following model: balls are tossed at random intox
identical boxes until each box contains at least one ball. Sup-
pressing details, we can show that the expected number of

balls required is
Px�1

j=0
x

x�j . The balls correspond to faults,
and the boxes represent the disjoint subcubes allocated by the
buddy system. Thusx = n=m. The number of balls required
is a slight overestimate of the number of faults required be-
cause a subcube with one or more faults is slightly less likely
to acquire another fault. From this model we have the follow-
ing.

Theorem 3.1 For n � m � 2 and bothn andm even powers
of 2,

(i) BQw(n;m) = n=m,

(ii) BQe(n; n=2) � 3 andlimd!1BQe(n; n=2) = 3,

(iii) BQe(n;m) � n
m

�
ln 2 lg(nm) +O(1)

�
.

2

Several allocation schemes which are more fault toler-
ant than the buddy system have been proposed. For exam-
ple, two “orthogonal” buddy systems, which we calldouble
buddy systems(DB), can be used to allocatem-subcubes of
the forma1a2 : : : ad�m � : : : � and� : : : � am+1 : : : ad. With
twice the number of subcubes allocated and roughly twice the
overhead in the allocation algorithm we shall see an increase
of approximately 25% in fault tolerance. In general, mul-
tiple buddy systems use multiple permutations of the index
set f1; 2; : : : ; dg, and for each permutation� they allocate
m-subcubes by fixing index positions�(1) : : : �(d �m) and
varying the remainingm indices.

Another class of allocation schemes for the hypercube in-
volve the use of the Gray code numbering of the nodes of
Q(n). Let gd denote the binary reflected Gray code map
from f0 : : :2d � 1g to d-bit strings. A singleGray-coded
buddy system, denoted byG here, allocatesq-subcubes that
arise as pairs of(q�1)-subcubes of the formfa1 : : : ad�q+1�
: : : �; b1 : : : bd�q+1�: : : �g, whereg�1d�q+1(a1 : : : ad�q+1) and

g�1d�q+1(b1 : : : bd�q+1) are consecutive mod2d�q+1. An ap-
proximate analysis of the behavior of the Gray-coded buddy
system can be obtained through the use of a model in which
x identical boxes are arranged in a ring and balls are tossed at
random into the boxes until no two adjacent boxes are empty.
Herex = 2d�q+1, which is the number ofq-subcubes al-
locable by schemeG. While it is straightforward to show
thatlimd!1GQe(2

d; 2d�k) is trapped between2kk ln 2 and
2k+1(k ln 2+O(1)), we can obtain a more exact description.
Let p(x; i) denote the conditional probability that there are
two adjacent empty boxes, given thati balls have been tossed
at random into the boxes. We have evaluatedp(x; i) which,
in turn, gives an explicit expression for the limiting behavior
of GQe(n;m) as stated in the following.

Theorem 3.2 For n � m � 2 and bothn andm even powers
of 2,

(i) GQw(n; n=4) = n=4,

(ii) GQe(n; n=2) � 3 2
3

andlimn!1GQe(n; n=2) = 3 2
3
,

(iii) GQe(n;m) � Px�1
j=0 p(x; i)

x
x�j , where x = n=m

and p(x; i)
�
x
i

�
=

�
x
i

� � �
i

x�i

� � �
i�1

x�i�1

�
, and

limn!1GQe(n; n=x) =
Px�1

j=0 p(x; i)
x

x�j .

2

Multiple Gray-coded buddy systems combine Gray codes
with the multiple index permutations of multiple buddy sys-
tems. We will useDG to denote the double Gray-coded
buddy system which allocatesq-subcubes from pairs of(q �
1)-subcubes in which the firstd� q + 1 index positions have
been fixed together with the pairs of(q � 1)-subcubes in
which the lastd � q + 1 index positions have been fixed.
Chen and Shin [4] have suggestedDG as an improved allo-
cation scheme forQ(n).

To obtain corresponding analytic results forDB andDG,
we can use the same model but the analysis involves the con-
sideration of many special cases. We have resorted to simula-
tion to help us understand the performance of these schemes
and will report the results in Section 4.

3.2 Allocation Schemes for the Mesh and
Torus

A buddy system for the allocation of square submeshes con-
taining m nodes inM(n) is analogous to that described
for hypercubes. There aren=m subsquares of dimensionsp
m � p

m allocated and these are of the formf(x; y) :
(j � 1)

p
m+1 � x � j

p
m; (k� 1)

p
m+1 � y � k

p
mg

for 1 � j; k � p
n=m. So, for example, ifm = n=4, there

are only 4 allocable square submeshes containingn=4 pro-
cessors. In the worst case we see that only 4 faulty proces-
sors are needed to make every buddy system submesh of size
n=4 faulty. Assuming the faults are randomly and uniformly
distributed, the expected number of faulty processors needed
to make every buddy system submesh of sizen=4 faulty can
be found by considering the same model as that used for the
buddy system for hypercubes. This gives an expected value
of approximately8 1

3
. The same arguments hold for the torus,

as we state in the following.

Theorem 3.3 For n � m � 2, and bothn andm even pow-
ers of 2,

(i) BMw(n;m) = BTw(n;m) = n=m,

(ii) BMe(n;m) = BTe(n;m) � n
m

�
ln(nm) +O(1)

�
.

2

The Gray-coded buddy system forM(n) andT (n) is the
same as the double buddy systemDB here.M(n) is parti-
tioned into square submeshes consisting ofm=4 nodes each

andG allocates a square submesh of sizem when that sub-
mesh arises as a2 � 2 array of the smallerm=4 submeshes
in the partition. ThusG allocates a total of(2

p
n=m � 1)2

m-node square submeshes forM(n) and a total of4n=m for
T (n).

Whenn=m is an integral power of 4 the buddy systems are
already worst-case optimally fault tolerant for the mesh and
torus, and hence alsoGMw(n;m) = GTw(n;m) = n=m.
To obtain analytic estimates ofGMe(n;m) andGTe(n;m),
the same probability model as used in the case of the hyper-
cube can be utilized here. However, the number of configu-
rations to handle becomes large and we have not carried the
computations out but rather have resorted to simulation stud-
ies instead. In the study, we approximatedM(n) andT (n)
by the continuous unit square, and the

p
n=4 �p

n=4 sub-
mesh by a continuous1

2
� 1

2
square as we described in Sec-

tion 2. The results of 100,000 trials gave

GMe(n; n=4) � 10:0 and GTe(n; n=4) � 11:7:

3.3 A New Family of Allocation Schemes

We will describe here a new family of allocation schemes for
the hypercube and note that an analogous family can be de-
scribed for the 2-dimensional mesh and torus.

Let k � 1, and consider an allocation schemeAk that, for
a givend andq, will allocateq-subcubes whose nodes ared-
tuples in which the lastq � k bits are arbitrary and the first
d�q+k bits are the nodes of ak-subcube inQ(2d�q+k). For
example,A2 will allocate 18-subcubes inQ(220) of the form
a1a2a3a4 � : : : � in which thelast 16 components are�’s and
where two of theai have values 0 and 1 and the other twoai
are equal to�. Thus,A2 allocates 24 subcubes of dimension
18. ThedoubleA2 family, denoted byDA2, allocates a set
of q-subcubes ofQ(n) which consist of the set ofq-subcubes
allocated byA2 together with a corresponding set in which
thefirst 16 components are�’s and the last four components
are chosen in an analogous way to the first four components
forA2. In general,Ak allocates

�
d�q+k

k

�
2d�q subcubes of di-

mensionq inQ(2d) andDA2 allocates twice this number. In
the familiesAk andDAk, increasingk clearly increases the
number of allocable subcubes and hence increases the fault
tolerance, at a cost of increased search time. Analytic results
for these families, similar to those for the buddy and Gray-
coded buddy systems has not been done as yet. However,
simulation studies we have done on these schemes show them
to yield a significant improvement in the fault tolerance of the
hypercube as we will see in the next section.

E B DB G DG A1 DA1 A2 DA2

Sa 760 4 8 8 16 12 24 24 48
Qw 8 4 4 4 4 4 4 5 5
Qe 24.6 8.1 10.1 9.8 11.9 10.7 13.0 12.8 15.4

Table 1: Expected and Worst Case Behavior of Allocation Schemes

4 Simulation Results

We illustrate in Table 1 the results of simulation studies of
the buddy(D), double buddy(DB), Gray-coded buddy(G),
double Gray-coded buddy(DG), the new allocation families
(A1) and (A2), and their doubles(DA1) and (DA2). We
include the results for the schemeE in which every subcube
is allocable, as well as including the worst case results and
a listing for the numberSa of subcubes allocated by each
scheme. These schemes were used in the allocation of sub-
cubes inQ(220) of size 218. The values forQe shown in
the table were obtained from 1000 trials. In each trial, a list
of random faults sufficient to make every 18-subcube faulty
was generated. For each allocation schemeX , the list was
scanned to identify the first fault on the list that resulted in
all of the 18-subcubes allocated byX being made faulty. Al-
though we have not done so, we could easily modify our pro-
gram to compute mean-time-to failure for each of the allo-
cation schemes once a probability distribution for faults was
specified. The expected case values in the table are based on
the assumption that faults are randomly and uniformly dis-
tributed with respect to the nodes of the hypercubeQ(220).

5 Conclusion

Our results show that simple allocation schemes such as those
based on the buddy system lose much of the fault tolerance of
the system, but that much of this loss can be regained by a
more sophisticated allocation scheme such as the new fam-
ily DAk that we described. Results of our simulations indi-
cate, for example, that by using the allocation schemeDA2

on the hypercube of dimension 20, we can roughly double the
fault tolerance of that provided by the buddy system. More-
over, very little overhead is involved in the implementation
of DA2. As a final note, we observe that the hypercube is
significantly more fault tolerant than the mesh or torus, and
that the use of the buddy system for large subcube allocation
reduces the fault tolerance to that of the mesh.

References

[1] B. Becker and H. Simon, “How robust is then-cube?”,
Proc. 27th Annual IEEE Symp. on Foundations of Comp.
Sci. (1986), pp. 283–291.

[2] N. Graham, F. Harary, M. Livingston, and Q. F. Stout,
“Subcube fault tolerance in hypercubes”,Information
and Computation102(1993), pp. 280–314.

[3] M. Livingston and Q. F. Stout, “Distributing resources in
hypercube computers”,Proc. Third Conf. on Hypercube
Concurrent Computers and Applications, Pasadena, CA
(1988), pp. 222–231.

[4] M.-S. Shen and K. Shin, “Processor allocation in an
n-cube multiprocessor using gray codes”,IEEE Trans.
ComputersC-36 (1987), pp. 1396–1407.

