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Abstract the problem of locating and allocating large fault-free subsys-

. . . . tems is computation-intensive and, as a consequence, in prac-
This paper examines the problem of locating and allocating. . . .
ice some allocation scheme which recognizes only a subset

large fault-free subsystems in multiuser massively paralleo the existing subsystems is used. The allocation scheme of-
computer systems. Since the allocation schemes used in su F1 g subsy '
t2h has a dramatic effect on the fault tolerance of the system,

large systems cannot allocate all possible subsystems a redtlﬁhs forcing a trade-off to be made between space and compu-

tion in fault tolerance is experienced. We analyze the effecf ..~ . . e
: . . . ation time devoted to the allocation scheme versus minimum
of different allocation methods including the buddy and Gray-
. .7 acceptable level of fault tolerance of the system.
coded buddy schemes for the allocation of subsystems in the . ) .
. . . In this paper we examine allocation schemes for large
hypercube and in the 2-dimensional mesh and torus. Both
) : subcubes of a hypercube and large subsquares of a two-
worst case and expected case performance is studied. Gen- . 2
o : dimensional mesh and torus, considering worst case and ex-
eralizing the buddy and Gray-coded systems, we introduce a . .
. . . o Lo pected case fault tolerance of the interconnection network,
new family of allocation schemes which exhibits a significant

. ) L 8nd the reduction in fault tolerance caused by the fact that the
improvement in fault tolerance over the existing schemes an .
allocation scheme used cannot allocate all subsystems. We

elsocus on the allocation of large subsystems because we be-
leve that most massively parallel machines are purchased in
order to support large tasks as opposed to hundreds of simul-
Janeous users with small tasks. For comparative purposes we
analyze allocating a subcube or subsquarg'®fprocessors
in a machine o22° processors.
Keywords fault tolerance, allocation, hypercube computer, N @d-dimensional hypercube there 6(@6 297 subcubes
mesh, torus, buddy system. of dlmenszllonq, called q—subc_ube,sand each processor be-
longs to(q) of them. Thus in a hypercube @f° proces-
sors a faulty processor makes 190 of the existing 760 18-
subcubes faulty. The smallest number of faulty processors
. which makes all subcubes containimgprocessors faulty in
1 Introduction a hypercube containingprocessors is denoted By, (n, m).
Analogously, the expected number of processor faults which
Parallel computers incorporating thousands of processofgakes all subcubes of size faulty is denoted by).(n,m),
must be able to tolerate faulty processors and communicayhere we assume that faults are independent and uniformly
tion links if they are to achieve a usable mean-time-to-failuredistributed. We find that).(n,m) is significantly larger
In these large systems, processor allocation is needed for bofhan Q. (n, m) and, in particular,,(22°,2'8) = 8 while
multiuser environments, such as is provided with the NCUBE(),, (220, 218) ~ 24.5. A discussion of these functions and
series of hypercubes, and for single user systems with multiheir analogs for the 2-dimensional mesh and torus is included
ple subtasking capabilities. In such a computing environment, Section 2.
*Partially supported by National Science Foundation grant CCR-8808839 Current hypercube allocation schemes do not allocate all
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and an Incentives for Excellence Award from Digital Equipment Corporationtemapproach, where the onysubcubes allocated are those

of comparison, we study the behavior of the various schem
on the allocation of subsystems 2 processors in the hy-

percube, mesh, and torus consisting28f processors. Our

methods involve a combination of analytic techniques an
simulation.




consisting of all processors determined by arbitrarily fixingDenote by, (n, m) the smallest number of faulty proces-
the high-orderl — ¢ address bits. There are oril§—? such  sors which make all subsquares/ef(n) with m processors
g-subcubes and each processor is in exactly one of thenfiaulty, and letM, (n, m) denote thexpectedhumber of faulty
Using By (n,m) and B.(n,m) to denote the worst case processors which must occur before all subsquares with
and expected case number of faults needed to make all th@ocessors are faulty, assuming that faults are independent
buddy system subcubes of dimensidgm | faulty, one has and uniformly distributed. The expressiofg (n, m) and

B, (229,218) = 4 and B.(2?°,2'%) ~ 8.3. Thus the use T.(n,m) denote the corresponding quantities for the torus
of the buddy system allocation scheme results in a consideff (n) and@,,(n,m) andQ.(n, m) denote the corresponding
able reduction in fault tolerance. In Section 3 we discuss theuantities for the hypercubi@(n).

fault tolerance properties of the buddy system along with sev- It is straightforward to establish that the functions
eral variants including double buddy syste B), aGray- M (n,m), T(n,m), and Q(n,m) are monotone non-
coded buddy syste(t), and adouble Gray-coded buddy sys- decreasing functions efand monotone non-increasing func-
tem (DG@) defined for the hypercube, and the 2-dimensionations ofm. We state these results without proof in the follow-
mesh and torus. ing.

In Section 3.3 we introduce a new family of allocation » , , , ,
schemes which generalizes both the buddy and Gray-coddéd@position 2.1 If n' > n, d' > d, m" > m, andn > m
buddy systems and exhibits improved fault tolerance with rel{n€n
atively little increase in search time. The best of these, de—(i) My (n',m) > My (n,m) and My (n, m') < My(n, m)
noted D A2, allocates only 48 subcubes of dimension 18 in = ’ T T
a 20-dimensional hypercube, and ye#2 (220 2'%) ~ 15. (i) M.(n',m) > M.(n,m) and M.(n,m') < M.(n,m),
Thus D A? achieves more than half of the fault tolerance of , ,
the hypercube in which all 760 subcubes of dimension 18 aréil) Tw(n',m) > Ty (n,m) and Ty, (n, m') < Ty(n,m),
allocable. ) ] . . - (iv) Te(n',m) > Te(n,m)andT.(n,m') < Te(n,m),

For purposes of comparison, we include in Section 4 sim-
ulation results for the hypercube wit° processors and the (V) Q. (d',m) > Q. (d,m) andQ.,(d,m’') < Q(d, m),
various schemes for allocation of subsystems posse&sing

processors. (vi) Qe(dlam) > Qe(d: m), andQe(da ml) < Qe(d: m)
O

The values of\l,, (n, m) andT,,(n, m) are relatively easy
2 SUbSyStemS to determine. To illustrate fon = n/4, subdivide the/n x

Throughout,lg meanslog,. We usen to denote the total V7 mesh into foury/n/4 x /n/4 submeshes, designate a

number of processors in the system, and for convenience dRUlty Processopy in one of the submeshes and designate
notation, suppose is an even power of two. LetA(n) de- its translate as faulty in each of the other submeshes. This

note a two-dimensional square mesh with grid pofits y) : results in every square submesh of sizd being faulty, and

1 < z,y < \/n}, where two grid points are connected if and the same fault pattern also makes every square submesh of the
only if their coordinates differ by one in exactly one coordi- ©TUS7 (n) faulty. On the other hand, since the 4 subsquares
nate position. The correspondiggz x /n two-dimensional are nonoverlapping, at least 4 faulty processors are required
torus will be denoted by (n). It has the same grid points to cause them to be faulty. Using this reasoning, it follows
asM(n), and includes the connections.®f (n), but in ad- that ; ; ;

dition its boundary pointéz, 1) and(z, \/n) are adjacent as My(n,n/4") = Ty (n,n/4') = 4

are(l,y) and(y/n,y) for L < z,y < /n. We will denote by  for any natural number.

Q(n) thed-dimensional hypercube with = 27 nodes which In the case of the hypercube the functi@n,(n,m) is
are the binaryl-tuples and where twd-tuples are connected much more difficult to compute. However, it is known [1, 2]
if and only if they differ in exactly one position. thatQ.,(n,n/4) is the minimum positive integer such that

The meshM (n) has(y/n — v/m + 1)? subsquares of size (L ;;Jl_l) > lg n which yields
Vm x \/m, the torusT (n) hasn such subsquares, while -

the hypercubed(n) has(;l) . 2417 subcubes of dimension Qu(n,n/4) =8.

q, whered = lgn. Thus we see that bothi(n) and 7 (n)

have®(n'-®) square subsystems where@&:) hasO(3?) = Thus, while in a square mesh or torusl624 x 1024 proces-
©(n'83) subcubes. sors, as few as 4 faulty processors can make eVerk 512

Let us now examine the worst case and expected case faiubmesh faulty, in a 20-dimensional hypercube consisting of
tolerance when all subsystems of a given size are allocabléhe same number of processors, at least 8 processors must



z—1 g

become faulty before all 18-dimensional subcubes becomiealls required iszj.:0 p The balls correspond to faults,
faulty. As the number of processors increases, this differencand the boxes represent the disjoint subcubes allocated by the
becomes more pronounced since it has been shown [1, 2] thatiddy system. Thug = n/m. The number of balls required
is a slight overestimate of the number of faults required be-
Qu(n,n/4) =1glgn + 1 Iglglgn + O(1). cause a subcube with one or more faults is slightly less likely
2 to acquire another fault. From this model we have the follow-
We used simulation to investigate the expected number ofg.
faulty processors that make the analogous su_bsystems faultyheorem 3.1 Forn > m > 2 and both, andm even powers
The 1024 x 1024 mesh and torus was approximated by theOf 5
continuous unit square, and th&2 x 512 submesh by a con- '
tinuous: x 1 square. In each trial, faults were successively (i) BQw(n,m)=n/m,
generated randomly and uniformly in the unit square until no

fault-free subsquare of sizg x 1 remained. The results of (i) BQe(n,n/2) < 3 andlima—co BQ.(n,n/2) =3,
(i) BQc(n,m) < 2 [In21g(Z)+ O(1)].

100,000 trials yielded the following: n

M,(22°,2'8) x~ 13.54, and T, (2%°,2'®) ~ 19.89.

O
For the 20-dimensional hypercube we used a simulation with >¢veral allocation schemes which are more fault toler-
10,000 trials and found that ant than the buddy system have been proposed. For exam-
ple, two “orthogonal” buddy systems, which we cadluble
Q.(2%°,2'®) ~ 24.50. buddy system@B), can be used to allocate-subcubes of

the formajas ... ag_m * ... xandx ... x @y ... aq. With
The program developed for this simulation, which will be de-twice the number of subcubes allocated and roughly twice the
scribed in Section 4, can also produce mean-time-to-failureverhead in the allocation algorithm we shall see an increase
values by incorporating a given probability distribution for of approximately 25% in fault tolerance. In general, mul-
the faults. tiple buddy systems use multiple permutations of the index
set{1,2,...,d}, and for each permutation they allocate
. m-subcubes by fixing index positiong1) ... n(d —m) and
3 Allocation Schemes varying the remainingn indices.
: . . . Another class of allocation schemes for the hypercube in-
In comparison with the 2-dimensional mesh and torus, the hy\'/olve the use of the Gray code numbering of the nodes of

percube displays a high degree of fault tolerance with respecé(n). Let g, denote the binary reflected Gray code map

to large subsystems. However, this advantage is lost whep {0...24 — 1} to d-bit strings. A singleGray-coded

only a small subset of the existing subsystems are aIIocakauddy systemdenoted byG here, allocateg-subcubes that
In this section we will describe a few analytic results that in- '

. : arise as pairs dfy — 1)-subcubes of the forfu, . .. ag—g41 %
dicate how the buddy system, and other allocation schemes, R Py Whel’eg(;qurl(al - g_gs1) and

affect the fault tolerance properties of the hypercube, mesh, ', b b ) are consecutive mei~+1. An ap
1---0d—q+1 . -

and torus. Ja—q+1
pro>q<imate analysis of the behavior of the Gray-coded buddy

. system can be obtained through the use of a model in which
3.1 Allocation Schemes for Hypercubes z identical boxes are arranged in a ring and balls are tossed at
random into the boxes until no two adjacent boxes are empty.
Herez = 2¢-7+1 which is the number of-subcubes al-
locable by schemé&'. While it is straightforward to show

Most allocation schemes for the hypercube employbilnddy
systemapproach, where the only-subcubes allocated in

Q(29) are those of the formyas ... aq—q * - .. %, that is, the - L dkn of
high-orderd — ¢ address bits are fixed in each allocaple thatlima e GQ(2%,2777) is trapped betwee2f’ % In 2 and

subcube. There ard—7 of these subcubes and they form a 2+ (¥1n2+O(1)), we can obtain a more exact description.
partition of Q(24). We will use BQ.,(n, m) and BQ. (n, m) Let p(z,7) denote the conditional probability that there are
to denote the worst case and expected case number, resp&0 adjacent empty boxes, given thdtalls have been tossed
tively, of faults needed to make all the buddy system subcubedt random into the boxes. We have evalugied i) which,
of sizem faulty. in turn, gives an explicit expression for the limiting behavior
To obtain a good upper bound f@Q. (n,m), we con-  ©f GQe(n,m) as stated in the following.
§|der.the following .model: balls are_tossed at random into Theorem 3.2 Forn > m > 2 and both andm even powers
identical boxes until each box contains at least one ball. Sup-
) : o]I 2,
pressing details, we can show that the expected number 0



() GQuw(n,n/4) =n/4, and@ allocates a square submesh of sizevhen that sub-
mesh arises as&ax 2 array of the smallem /4 submeshes

.. 2 . __ 92
(i) GQe(n,n/2) <33 andlim, oo GQe(n,n/2) = 33, in the partition. Thug= allocates a total of2+/n/m — 1)2
(i) GQ.(n,m) < g;:_01 (¢,i)-2-, wherez = n/m m-node square submeshes fot(n) and a total oftn /m for
d -\ (T _] T y z] i—1 d T(TL)
and p(z,i)(7) = (7) _z_(lz—i) - (5h), an Whenn /m is an integral power of 4 the buddy systems are
limp 00 GQe(n,n/x) = 3252, pla,i) 775 already worst-case optimally fault tolerant for the mesh and

torus, and hence als@M,,(n,m) = GT,(n,m) = n/m.

To obtain analytic estimates 6fM,(n, m) andGT,(n,m),

he same probability model as used in the case of the hyper-
cube can be utilized here. However, the number of configu-
rations to handle becomes large and we have not carried the
computations out but rather have resorted to simulation stud-
ies instead. In the study, we approximatét{n) and7 (n)

by the continuous unit square, and ty&/4 x \/n/4 sub-
mesh by a continuous x 1 square as we described in Sec-
tion 2. The results of 100,000 trials gave

|

Multiple Gray-coded buddy systems combine Gray code
with the multiple index permutations of multiple buddy sys-
tems. We will useDG to denote the double Gray-coded
buddy system which allocatgssubcubes from pairs df; —
1)-subcubes in which the first— ¢ + 1 index positions have
been fixed together with the pairs 6§ — 1)-subcubes in
which the lastd — ¢ + 1 index positions have been fixed.
Chen and Shin [4] have suggestPdr as an improved allo-
cation scheme fo@(n).

To obtain corresponding analytic results o3 and DG, GM,(n,n/4) ~ 10.0 and GT.(n,n/4) ~ 11.7.
we can use the same model but the analysis involves the con-

sideration of many special cases. We have resorted to simul@; iv of All . h
tion to help us understand the performance of these schem 3 A New Family of Allocation Schemes

and will report the results in Section 4. We will describe here a new family of allocation schemes for
the hypercube and note that an analogous family can be de-
3.2 Allocation Schemes for the Mesh and scribed for the 2-dimensional mesh and torus.
Torus Letk > 1, and consider an allocation schemé that, for
a givend andq, will allocate g-subcubes whose nodes ake
A buddy system for the allocation of square submeshes conuples in which the lasy — & bits are arbitrary and the first
taining m nodes inM(n) is analogous to that described j— g+ k bits are the nodes offasubcube inQ(2¢-7*). For
for hypercubes. There are/m subsquares of dimensions example A2 will allocate 18-subcubes i@(22°) of the form
vm x /m allocated and these are of the foftw,y) : g asa3a4 % ... x in which thelast 16 components ares and
G-Dyvm+1<z<jym,(k—=1)ym+1<y<kym}  wheretwo of thes; have values 0 and 1 and the other two
for1 < j,k < /n/m. So, for example, ifn = n/4, there  are equal to. Thus, A2 allocates 24 subcubes of dimension
are only 4 allocable square submeshes containiigpro-  18. Thedouble A2 family, denoted byD A2, allocates a set
cessors. In the worst case we see that only 4 faulty procesf ¢-subcubes of)(n) which consist of the set af-subcubes
sors are needed to make every buddy system submesh of siggocated byA? together with a corresponding set in which
n/4 faulty. Assuming the faults are randomly and uniformly thefirst 16 components ar€'s and the last four components
distributed, the expected number of faulty processors needegte chosen in an analogous way to the first four components
to make every buddy system submesh of siZé faulty can  for 42. In general 4 allocates(d‘,qj’“)Qd*q subcubes of di-
be found by considering the same model as that used for th@ension; in Q(2¢) andD A? allocates twice this number. In
buddy system for hypercubes. This gives an expected valuge familiesA* and D A*, increasing clearly increases the
of approximatel\8 1. The same arguments hold for the torus, number of allocable subcubes and hence increases the fault
as we state in the following. tolerance, at a cost of increased search time. Analytic results
for these families, similar to those for the buddy and Gray-

Theorem 3.3 For n > m > 2, and bothn andm even pow-
e " P coded buddy systems has not been done as yet. However,

ers of 2, ) . ;
simulation studies we have done on these schemes show them
(i) BMy(n,m) = BTy(n,m) =n/m, to yield a significant improvementin the fault tolerance of the
(i) BM,(n,m) = BT.(n,m) < = [ln(%) n 0(1)]. hypercube as we will see in the next section.
|

The Gray-coded buddy system & (n) and7 (n) is the
same as the double buddy systéni here. M(n) is parti-
tioned into square submeshes consistingngft nodes each



E B DB G DG

S, | 760 4 8 8 16
Qu 8 4 4 4 4

Qe

246 81 101 98 119 107

Al DA! A? DA?
12 24 24 43
4 4 5 5
13.0 128 154

Table 1: Expected and Worst Case Behavior of Allocation Schemes

4 Simulation Results

We illustrate in Table 1 the results of simulation studies of[1]
the buddy(D), double buddy D B), Gray-coded budd{?),
double Gray-coded buddyDG), the new allocation families
(A') and (A?), and their double$DA') and (DA?). We
include the results for the schenigin which every subcube (2]
is allocable, as well as including the worst case results and
a listing for the numbelS, of subcubes allocated by each
scheme. These schemes were used in the allocation of su
cubes inQ(2%%) of size 2!8. The values forQ. shown in
the table were obtained from 1000 trials. In each trial, a list
of random faults sufficient to make every 18-subcube faulty
was generated. For each allocation schetmehe list was
scanned to identify the first fault on the list that resulted in[4]
all of the 18-subcubes allocated Rybeing made faulty. Al-
though we have not done so, we could easily modify our pro-
gram to compute mean-time-to failure for each of the allo-
cation schemes once a probability distribution for faults was
specified. The expected case values in the table are based on
the assumption that faults are randomly and uniformly dis-
tributed with respect to the nodes of the hyperc@e*’).

5 Conclusion

Our results show that simple allocation schemes such as those
based on the buddy system lose much of the fault tolerance of
the system, but that much of this loss can be regained by a
more sophisticated allocation scheme such as the new fam-
ily DA* that we described. Results of our simulations indi-
cate, for example, that by using the allocation schém$

on the hypercube of dimension 20, we can roughly double the
fault tolerance of that provided by the buddy system. More-
over, very little overhead is involved in the implementation
of DA2. As a final note, we observe that the hypercube is
significantly more fault tolerant than the mesh or torus, and
that the use of the buddy system for large subcube allocation
reduces the fault tolerance to that of the mesh.
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