
In Proc. 2nd Symp. Frontiers Massively Parallel Computation(1988), pp. 195–198.

Portable Parallel Algorithms for Geometric Problems
(Preliminary Version)

Russ Miller� Quentin F. Stouty

Department of Computer Science Electrical Engineering and Computer Science
State University of New York at Buffalo University of Michigan

Buffalo, NY 14260 USA Ann Arbor, MI 48109-2122 USA

Abstract

Because the interconnection scheme among processors (or
between processors and memory) significantly affects the
running time, efficient parallel algorithms must take the in-
terconnection scheme into account. This in turn entails trade-
offs between efficiency and portability among different archi-
tectures. Our goal is to develop algorithms that are portable
among massively parallel fine grain architectures such as hy-
percubes, meshes, and pyramids, while yielding a fairly ef-
ficient implementation on each. Our approach is to utilize
standardized operations such as prefix, broadcast, sort, com-
pression, and crossproduct calculations. This paper describes
an approach for designing efficient, portable algorithms and
gives sample algorithms to solve some fundamental geomet-
ric problems. The difficulties of portability and efficiency for
these geometric problems have been redirected into similar
difficulties for the standardized operations. However, the cost
of developing efficient implementations of them on the vari-
ous target architectures can be amortized over numerous al-
gorithms.

Keywords Portable parallel algorithms, computational ge-
ometry, data movement operations, distributed memory
parallel computers.

1 Introduction

Massively parallel computers consisting of perhaps millions
of processors are now becoming available. While such ma-
chines offer significantly faster solutions to many problems,
they also impose severe programming requirements to utilize
their potential. Old “dusty decks” do not typically work on
such machines, and hence new algorithms and programs need
to be developed. Since each processor contains only a small

�Partially supported by NSF grants DCR-8608640 and IRI-8800514.
yPartially supported by NSF grant DCR-8507851 and an Incentives for

Excellence Award from Digital Equipment Corporation.

fraction of the total data, for most problems there must be
extensive communication among processors. This communi-
cation often dominates the total running time of the program,
and efficient programs must be developed with this in mind.

If the introduction of massive parallelism only brought
about a one-time need to reprogram, then the reprogramming
costs would at least be fairly well understood and for a vari-
ety of applications would be affordable. However, extensive
additional costs are introduced due to the significant differ-
ences among massively parallel architectures. Different mas-
sively parallel architectures have significantly different com-
munication characteristics, and hence have significantly dif-
ferent running times on the same programs. For example,
on a square two-dimensional mesh withn processors, it takes
�(
p
n) time on average for two processors to exchange infor-

mation, while on a hypercube or pyramid it takes�(logn).
For n processors to exchange data takes�(

p
n) time on the

mesh and pyramid, orO(log2 n) time (worst-case) on the hy-
percube. Notice that in one case the pyramid is similar to
the hypercube, while in the other case it is similar to the
mesh. Due to such differences, for a single problem one
may have two programsA andB with the property that on
one massively parallel machineA is significantly faster than
B, while on another massively parallel machineB is signifi-
cantly faster thanA.

This paper is concerned with developing algorithms which
can be ported among different fine grain, massively parallel
architectures and yield reasonably good implementations on
each. Our approach is to write algorithms in terms of gen-
eral data movement operations, and then implement the data
movement operations on the target architecture. Efficient im-
plementation of the data movement operations requires care-
ful programming, but since the data movement operations
form the foundation of many programs the cost of implement-
ing them can be amortized. The use of data movement oper-
ations also helps programmers think in terms of higher-level
programming units, in the same way the use of standard data
structures helps programmers of serial computers.

1

In Section 2 we give several data movement operations,
and in Section 3 we illustrate our approach by giving some
geometric algorithms written in terms of these data move-
ment operations. Many data movement operations have been
proposed, and the list is still growing as programmers acquire
experience in parallel programming. Our list is intended as an
illustrative sample, not an exhaustive collection. Further, the
types of problems for which this approach is useful is quite
large, and in this short paper we make no attempt to even sur-
vey such problems.

2 Data Movement Operations

A variety of data movement operations have been proposed
for parallel computers. Often they originated as steps in the
midst of some algorithm, and then later it was realized that
they might have widespread utility. More recently there have
been attempts to promote specific data movement operations
as a programming aid [2, 3], or to develop a collection of
data movement operations particularly useful for a specific
architecture [5].

Several of the operations are defined in terms of some
semigroup operation
 over a setB, and our analyses of run-
ning time will assume that
 can be computed in constant
time. Sorting is a central operation, with several operations
assuming that the data is already in sorted order. For such
operations we assume that there is a linear ordering of the
processors and a linear ordering of the set from which the
items are chosen. Some operations are performed in paral-
lel on disjoint consecutive sequences of items in sorted order,
which are called(ordered) intervals.

Due to space limitations, we can give only a few of the
proposed data movement operations. Two of the operations
given below, namely, reducing a function and searching,
originated with geometric problems, while the others have
had somewhat wider usage. Interested readers might con-
sult [2, 3, 5, 6, 7] for additional operations and extensive uses
of the operations discussed here. Implementations of these
operations for a variety of architectures appear in [7].

1. Sort: Given data distributed arbitrarily one per proces-
sor, order the data with respect to the processors.

2. Merge: Suppose that a set of dataD is chosen from
a linearly ordered set. Further, supposeD1 is ordered
one item per processor with respect to one subset of the
processors, andD2 is ordered one item per processor
with respect to a disjoint subset of the processors, where
D = D1 [D2. The merge operation combinesD1 and
D2 to yieldD ordered with respect to the entire set of
processors.

3. Semigroup Computation:Suppose each processor has a
record with data fromB and a label, and that the records
form ordered intervals with respect to their label. Each
processor ends up with the result of applying
 to all
data items with its label.

4. Broadcast/Report: Broadcast and report are often
viewed and implemented as inverse operations. Both
operations involve moving data within disjoint ordered
intervals. They also both require a distinct processor,
called theleader, of each interval. In broadcasting, the
leader of each ordered interval delivers a piece of data to
all other processors in its interval. In reporting, all pro-
cessors within each interval have data fromB, and
 is
applied to these items, with the result ending up at the
leader. Often broadcast and report involve only a single
interval. Some computer architects have proposed spe-
cial hardware to implement “op-and-broadcast,” which
is our broadcast with a single interval and “op” equal to

.

5. Concurrent Read/Write:In concurrent read and concur-
rent write we assume that there are master records in-
dexed by unique keys. In the concurrent read each pro-
cessor specifies a key and ends up with the data in the
master record indexed by that key, if such a record exists,
or else a flag indicating that there is no such record. In
the concurrent write each processor specifies a key and a
value fromB, and each master record is updated by ap-
plying
 to all values sent to it. (Master records are gen-
erated for all keys written). These concurrent read and
concurrent write operations are extensions of the opera-
tions of concurrent read and concurrent operations nor-
mally associated with parallel random access machines
(PRAMs). They model a PRAM with associative mem-
ory and a powerful combining operation for concurrent
writes. On most distributed memory machines the time
to perform these more powerful operations is within a
multiplicative constant of the time needed to simulate
the usual concurrent read and concurrent write, and the
use of the more powerful operations can result in signif-
icant algorithmic simplifications and speedups.

6. Compression:Compression moves data into a region of
the machine where optimal interprocessor communica-
tion is possible. For example, compressingk items in a
square mesh will move them to a

p
k � p

k subsquare,
while compressing them in a mesh-of-trees with at least
k2 base processors moves them to the diagonal of ak�k
subsquare.

7. Searching:Given a set ofn processors, suppose every
processorPi containssearching itemsi 2 S andtarget
item ti 2 T . Further, suppose there exists a Boolean

relationR(s; t), s 2 S, t 2 T . The searching opera-
tion requires each processorPi to find the largesttj such
thatR(si; tj) is true. This really should be viewed as a
class of data movement operations since for any machine
there are significant differences in the times searching
takes, based on the properties ofR. For our purposes
we can make the strong assumption that the items andR
are such thatR(s; t) is monotone in each variable, and
thatS andT are stored in sorted order. In this case the
searching operation can be accomplished through merg-
ing and broadcasting within intervals (see [7]).

8. Parallel Prefix: If processorPi initially contains value
ai from B, then theparallel prefixcomputation results
in Pi containinga1
a2
� � �
ai. In [2] this operation is
called ascan. Note that the hardware feature known as
“fetch-and-op” implements a variant of parallel prefix,
where “op” is
 and the ordering of the processors is
not required to be deterministic.

9. Reducing a Function:Given setsQ andR, let g be a
function mappingQ � R into B. The mapf from Q
into B defined byf(q) =
fg(q; r) j r 2 Rg is the
reduction ofg, and in the reducing a function operation
each processor starting with an elementq of Q ends up
with f(q). For example, ifQ andR are sets of planar
points,g is distance,B is the reals, and
 is minimum,
thenf(q) is the minimum distance fromq to any point
in R.

The reader might note that several of these operations can
be easily obtained from others, sometimes as special cases.
However, each of these has proven useful, and sometimes the
special cases can be implemented significantly faster than the
general operation.

3 Sample Algorithms

Our illustrative algorithms involve finding special points from
a collection of planar points. Given a finite setS of planar
points, a pointp = (px; py) in S is a maximal pointof S if
px > qx or py > qy for every pointq 6= p in S. Themaximal
point problemis to determine all maximal points of a given
set. See Figure 1. A pointp 2 S is anextreme pointof S if it
is not in the convex hull ofS � fpg, or, equivalently, if it is a
corner (vertex) of the smallest convex polygon containingS.
Theextreme point problemis to determine all extreme points
of a given set. See Figure 2. Readers interested in serial algo-
rithms for these problems, and in the numerous applications
of maximal points and extreme points, might consult [9].

In the following algorithms,n will denote the number of
points. To simplify discussion, we will assume that the num-
ber of processors is alson. Extensions to cases where there

are a few points per processor, rather than a single point per
processor, are quite straightforward. In particular, we note
that Thinking Machine’s Connection Machine can be pro-
grammed using more virtual processors than real processors,
and one is encouraged to write algorithms assuming a single
point per virtual processor.

3.1 Maximal Points

Our first sample algorithm determines all maximal points,
and was apparently first noted by Atallah and Goodrich [1].

Maximal Point Algorithm

1. Sort then planar points so as to order them in reverse or-
der byx-coordinate, with ties broken by reverse order by
y-coordinate. That is, after sorting the points, they will
be ordered so that ifi < j then either thex-coordinate of
the point in processorPi is greater than thex-coordinate
of the point in processorPj , or else thex-coordinates
are the same and they-coordinate of the point in pro-
cessorPi is greater than they-coordinate of the point in
processorPj . Let (xi; yi) denote the coordinates of the
point ending up in processorPi.

2. Use parallel prefix, with
 representing maximum and
yi as the data, to have each processor determine the
largesty-coordinate stored in any processor of smaller
index. LetLi denote the value determined by processor
Pi.

3. The point(xi; yi) is an extreme point if and only ifyi >
Li.

The running time of this algorithm,T (n), is given by

T (n) = Sort(n) + Pre�x(n) +O(1) ;

whereSort(n) is the time to sortn items andPre�x(n) is
the time to perform parallel prefix. On all massively parallel
architectures known to the authors,Prefix(n) = O(Sort(n)),
and hence on such machines the time of the algorithm is
�(Sort(n)). Further, it is known that, at least for serial algo-
rithms, determining maximal points is as hard as sorting [4].
Thus it appears that this portable algorithm is within a mul-
tiplicative factor of being optimal for all known massively
parallel architectures.

3.2 Extreme Points

The following algorithm is based on the well-known tactic of
using divide-and-conquer. To simplify exposition we assume

that no two points have the samex-coordinate. This assump-
tion can easily be removed by including a few extra special
cases in the algorithm.

Extreme Point Algorithm

1. Preprocessing:Sort then planar points of the setS so
as to order them byx-coordinate.

2. If n � 2 then all points are extreme points. Other-
wise, note that ifS1 denotes the points in processors
0 : : : (n=2) � 1, andS2 denotes the points in proces-
sors (n=2) : : : (n � 1), then all points inS1 havex-
coordinates less than those ofS2. (We assume that pro-
cessors0 : : : (n=2)�1, and processors(n=2) : : : (n�1),
form subsystems similar to the original machine. For ex-
ample, in a hypercube we want the subsystems to be sub-
cubes. On machines such as two-dimensional meshes or
pyramids, one would subdivide into 4 pieces to achieve
the proper subsystems.)

3. Recursively identify the extreme points ofS1 and the ex-
treme points ofS2, enumerating them in counterclock-
wise fashion. This is a recursive call to step 2, not to step
1.

4. Identify the upper and lower common tangent lines be-
tween the extreme points ofS1 and the exteme points of
S2 by performing a searching operation. See Figure 3.
This operation is performed by comparing the slopes of
hull edges. Specifically, supposepiqj , pi 2 S1, qj 2 S2,
is the upper tangent line between convex setsS1 andS2,
as in Figure 3. Then it can be shown [8] that the slope of
piqj is between

(a) the slope ofpipi�1 and the slope ofpi+1pi, and

(b) the slope ofqj�1qj and the slope ofqjqj+1.

Therefore, each extreme point simply needs to find the
edges of the other set with slopes just above and just be-
low the slopes of the edges it is incident on. Since the
extreme points are kept in sorted order, this can be ac-
complished by merging with respect to the slopes of the
edges and then performing broadcasts within intervals.

5. Eliminate all extreme points between the common tan-
gent lines (i.e., all extreme points ofS1 andS2 that are
inside the quadrilateral formed by the four endpoints
representing the common tangent lines) and renumber
the remaining extreme points. This is accomplished by
broadcasting the information pertaining to the four end-
points to all processors maintaining a point ofS, and
then having each processor make a constant time deci-
sion as to whether or not it remains an extreme point,
and if so, what its new number is.

The running time of the algorithm is given by

T (n) = T 0(n) + Sort(n) ;

whereT 0(n) is the time to perform all but the first step.T 0(n)
satisfies the recurrence

T 0(n) = T 0(n=2) + Search(n) +Broad(n) +Elim(1) ;

whereT 0(n=2) is the time for the recursive call,Search(n)
is the time to perform the grouping operation to determine the
upper and lower common tangent lines,Broad(n) is the time
to perform a broadcast operation on a machine of sizen, and
Elim(1) is the time required for each processor to make the
final extreme point decision.

On ad-dimensional mesh or ad-dimensional pyramid, this
gives a total running time of�(n1=d), which is easily seen to
be optimal. On a hypercube the running time is�(log2 n),
since the time forT 0(n) is �(log2 n) and sorting can be
completed in the same time by using bitonic sort. It is not
known if this is worst-case optimal, since it is an open ques-
tion as to whether a hypercube can sort ino(log2 n) worst-
case time. While we do not have space to explain the details,
we note that one can modify the above algorithm so that it
subdivides the original set intonc pieces at each stage [6],
with 0 < c < 1. On the hypercube the modified algorithm
achievesT 0 = �(logn), which gives a total worst-case run-
ning time of�(Sort(n)). This modified version also runs in
�(logn) time on an EREW PRAM.

4 Final Remarks

Data movement operations should be thought of as the paral-
lel computing analogue of data structures in serial computers.
Both provide higher level constructs which help programmers
organize their thoughts and programs, and both allow pro-
grammers to reuse carefully optimized implementations. Ini-
tial users of parallel computers were often willing to spend
considerable programming time to achieve the performance
available through parallel processing, but as parallel comput-
ers move from research into practice there will be resistance
to significant reprogramming for each new massively paral-
lel architecture. Systematic use of data movement operations
seems to provide a means of achieving high performance on
future architectures without unending reprogramming.

References

[1] M. Atallah and M. Goodrich, “Efficient plane sweeping
in parallel”,ACM Symp. Comp. Geo., 1986, pp. 216–225.

[2] G. Blelloch, “Scans as primitive parallel operations”,
Proc. 1987 Int’l. Conf. Parallel Proc., pp. 355–362.

[3] C. Kruskal, L. Rudolph, and M. Snir, “The power of
parallel prefix”, Proc. 1985 Int’l. Conf. Parallel Proc.,
pp. 180–185.

[4] H.T. Kung, F. Luccio and F.P. Preparata, “On finding the
maxima of a set of vectors”,JACM22, pp. 469–476.

[5] R. Miller and Q.F. Stout, “Data movement techniques for
the pyramid computer”,SIAM J. Computing16, pp. 38–
60.

[6] R. Miller and Q.F. Stout, “Efficient parallel convex
hull algorithms”,IEEE Trans. ComputersC-37 (1988),
pp. 1605–1618.

[7] R. Miller and Q.F. Stout,Parallel Algorithms for Regu-
lar Architectures: Meshes and Pyramids, The MIT Press,
1996.

[8] F.P. Preparata and S.J. Hong, “Convex hulls of finite sets
of points in two and three dimensions”,Comm.ACM2,
pp. 87–93.

[9] F.P. Preparata and M.I. Shamos,Computational Geome-
try, Springer-Verlag, 1985.

