In Proc. 2nd Symp. Frontiers Massively Parallel Computai{ip®88), pp. 195-198.

Portable Parallel Algorithms for Geometric Problems

(Preliminary Version)

Russ Miller Quentin F. Stodt
Department of Computer Science Electrical Engineering and Computer Science
State University of New York at Buffalo University of Michigan
Buffalo, NY 14260 USA Ann Arbor, Ml 48109-2122 USA
Abstract fraction of the total data, for most problems there must be

tensive communication among processors. This communi-

: . X
Because the interconnection scheme among processors @étion often dominates the total running time of the program,

between _Processors and memory). significantly affects ,thgnd efficient programs must be developed with this in mind.
running time, efficient parallel algorithms must take the in- ¢ o 10 ction of massive parallelism only brought

terconnection scheme into account. This in turn entails tradegy )+ ~ one-time need to reprogram, then the reprogramming
offs between efficiency and portability among different arChi'costs would at least be fairly well understood and for a vari-
tectures. Our goal is to develop algorithms that are portablgty of applications would be affordable. However, extensive

among massively parallel fine grain architectures such as h%idditional costs are introduced due to the significant differ-

percubes, meshes, and pyramids, while yielding a fairly ef'ences among massively parallel architectures. Different mas-

ficient |m_plementat|(_)n on each. Our_ approach is to Utlllzesively parallel architectures have significantly different com-
standardized operations such as prefix, broadcast, sort, co

. _ ) OMiunication characteristics, and hence have significantly dif-
pression, and crossproduct calculations. This paperdescrlb?g‘rent running times on the same programs. For example,

an approach for de_signing efficient, portable algorithms an%n a square two-dimensional mesh witprocessors, it takes
gives sample algorr_[h_ms t_o solve some fundame_nt_al geomeb(\/ﬁ) time on average for two processors to exchange infor-
ric problems. The difficulties of portability and efficiency for mation, while on a hypercube or pyramid it tak8glog n)

these geometric problems have been redirected into simiquom processors to exchange data takes/7) time on the

difficulties for the standardized operations. However, the cosf, s and pyramid, @b (log? n) time (worst-case) on the hy-
of developing efficient implementations of them on the vari- ’

. . ercube. Notice that in one case the pyramid is similar to
ous target architectures can be amortized over numerous %e hypercube, while in the other case it is similar to the
gorithms. '

mesh. Due to such differences, for a single problem one
Keywords Portable parallel algorithms, computational ge_may have two programd and B with the property that on

ometry, data movement operations, distributed memor%n(?,vr:]]i‘?ss':]/eI?’1 pt";rarllril maishllne|sr5||(i:|n||fr|r§:an;%fast?rr]ti?ian
parallel computers. , e on another massively parallel machiBigs signifi-

cantly faster tham.
This paper is concerned with developing algorithms which
1 Introduction can be ported among different fine grain, massively parallel
architectures and yield reasonably good implementations on
Massively parallel computers consisting of perhaps millionsgach. Our approach is to write algorithms in terms of gen-
of processors are now becoming available. While such maeral data movement operations, and then implement the data
chines offer significantly faster solutions to many problemsmovement operations on the target architecture. Efficientim-
they also impose severe programming requirements to utilizelementation of the data movement operations requires care-
their potential. Old “dusty decks” do not typically work on ful programming, but since the data movement operations
such machines, and hence new algorithms and programs netfm the foundation of many programs the cost of implement-
to be developed. Since each processor contains only a smaiig them can be amortized. The use of data movement oper-
. ations also helps programmers think in terms of higher-level
*Partially supported by NSF grants DCR-8608640 and IRI-8800514.

tPartially supported by NSF grant DCR-8507851 and an Incentives forprcjgrammIng units, in the same Way_the use of standard data
Excellence Award from Digital Equipment Corporation. structures helps programmers of serial computers.




In Section 2 we give several data movement operations, 3.
and in Section 3 we illustrate our approach by giving some
geometric algorithms written in terms of these data move-
ment operations. Many data movement operations have been
proposed, and the list is still growing as programmers acquire
experience in parallel programming. Our listis intended as an
illustrative sample, not an exhaustive collection. Further, the 4.
types of problems for which this approach is useful is quite
large, and in this short paper we make no attempt to even sur-
vey such problems.

2 Data Movement Operations

A variety of data movement operations have been proposed
for parallel computers. Often they originated as steps in the
midst of some algorithm, and then later it was realized that
they might have widespread utility. More recently there have
been attempts to promote specific data movement operations
as a programming aid [2, 3], or to develop a collection of
data movement operations particularly useful for a specific
architecture [5].

Several of the operations are defined in terms of some
semigroup operatio® over a set3, and our analyses of run-
ning time will assume thak can be computed in constant
time. Sorting is a central operation, with several operations
assuming that the data is already in sorted order. For such
operations we assume that there is a linear ordering of the
processors and a linear ordering of the set from which the
items are chosen. Some operations are performed in paral-
lel on disjoint consecutive sequences of items in sorted order,
which are calledordered) intervals

Due to space limitations, we can give only a few of the
proposed data movement operations. Two of the operations
given below, namely, reducing a function and searching,
originated with geometric problems, while the others have
had somewhat wider usage. Interested readers might con-
sult[2, 3, 5, 6, 7] for additional operations and extensive uses
of the operations discussed here. Implementations of these
operations for a variety of architectures appear in [7].

1. Sort: Given data distributed arbitrarily one per proces-
sor, order the data with respect to the processors.

2. Merge: Suppose that a set of dafa is chosen from
a linearly ordered set. Further, suppd3e is ordered
one item per processor with respect to one subset of the
processors, and- is ordered one item per processor
with respect to a disjoint subset of the processors, where
D = D, U D,. The merge operation combingg and
D- to yield D ordered with respect to the entire set of
processors.

7.

Semigroup ComputatiorBuppose each processor has a
record with data fronB and a label, and that the records
form ordered intervals with respect to their label. Each
processor ends up with the result of applyirgo all
data items with its label.

Broadcast/Report: Broadcast and report are often
viewed and implemented as inverse operations. Both
operations involve moving data within disjoint ordered
intervals. They also both require a distinct processor,
called theleader, of each interval. In broadcasting, the
leader of each ordered interval delivers a piece of data to
all other processors in its interval. In reporting, all pro-
cessors within each interval have data frénand® is
applied to these items, with the result ending up at the
leader. Often broadcast and report involve only a single
interval. Some computer architects have proposed spe-
cial hardware to implement “op-and-broadcast,” which
is our broadcast with a single interval and “op” equal to
X.

5. Concurrent Read/Writeln concurrent read and concur-

rent write we assume that there are master records in-
dexed by unique keys. In the concurrent read each pro-
cessor specifies a key and ends up with the data in the
master record indexed by that key, if such a record exists,
or else a flag indicating that there is no such record. In
the concurrent write each processor specifies a key and a
value fromB, and each master record is updated by ap-
plying ® to all values sent to it. (Master records are gen-
erated for all keys written). These concurrent read and
concurrent write operations are extensions of the opera-
tions of concurrent read and concurrent operations nor-
mally associated with parallel random access machines
(PRAMS). They model a PRAM with associative mem-
ory and a powerful combining operation for concurrent
writes. On most distributed memory machines the time
to perform these more powerful operations is within a
multiplicative constant of the time needed to simulate
the usual concurrent read and concurrent write, and the
use of the more powerful operations can result in signif-
icant algorithmic simplifications and speedups.

. CompressionCompression moves data into a region of

the machine where optimal interprocessor communica-
tion is possible. For example, compressingems in a
square mesh will move them tovék x vk subsquare,
while compressing them in a mesh-of-trees with at least
k? base processors moves them to the diagonakof &
subsquare.

Searching:Given a set ofr processors, suppose every
processolP; containssearching items; € S andtarget
itemt¢; € T. Further, suppose there exists a Boolean



relation R(s,t), s € S, t € T. Thesearching opera- are a few points per processor, rather than a single point per
tionrequires each processbyto find the largest; such  processor, are quite straightforward. In particular, we note
that R(s;, t;) is true. This really should be viewed as a that Thinking Machine’s Connection Machine can be pro-
class of data movement operations since for any machingrammed using more virtual processors than real processors,
there are significant differences in the times searching@nd one is encouraged to write algorithms assuming a single
takes, based on the properties®f For our purposes point per virtual processor.

we can make the strong assumption that the itemgand

are such thaR¥(s, t) is monotone in each var!able, and 3 1 Maximal Points

that.S andT are stored in sorted order. In this case the

searching operation can be accomplished through merdaur first sample algorithm determines all maximal points,
ing and broadcasting within intervals (see [7]). and was apparently first noted by Atallah and Goodrich [1].

8. Parallel Prefix: If processorP; initially contains value
a; from B, then theparallel prefixcomputation results Maximal Point Algorithm
in P; containings; ®as ®- - -®a;. In[2] this operation is
called ascan Note that the hardware feature known as 1. Sort then planar points so as to order them in reverse or-

“fetch-and-op” implements a variant of parallel prefix, der byz-coordinate, with ties broken by reverse order by
where “op” is@ and the ordering of the processors is y-coordinate. That is, after sorting the points, they will
not required to be deterministic. be ordered so thatif< j then either the:--coordinate of

the pointin processap; is greater than the-coordinate
of the point in processoP;, or else thex-coordinates
are the same and thecoordinate of the point in pro-
cessorP; is greater than thg-coordinate of the point in
processotP;. Let (z;,y;) denote the coordinates of the
point ending up in processat;.

9. Reducing a FunctionGiven sets) and R, let g be a
function mapping? x R into B. The mapf from @
into B defined byf(q) = ®{g(q,r) | » € R} is the
reduction ofg, and in the reducing a function operation
each processor starting with an elemef () ends up
with f(q). For example, if and R are sets of planar

points, g is distancep is the reals, and is minimum, 2. Use parallel prefix, with representing maximum and
then f(¢) is the minimum distance fromp to any point y; as the data, to have each processor determine the
in R. largesty-coordinate stored in any processor of smaller

) . index. LetL; denote the value determined by processor
The reader might note that several of these operationscan  p

be easily obtained from others, sometimes as special cases.
However, each of these has proven useful, and sometimes the3. The point(z;, y;) is an extreme point if and only f; >
special cases can be implemented significantly faster than the L;.

general operation.
The running time of this algorithni}(n), is given by

3 Sample Algorithms T(n) = Sort(n) + Prefiz(n) + O(1)

Our illustrative algorithms involve finding special points from WhereSort(n) is the time to sort: items andPrefiz(n) is

a collection of planar points. Given a finite sgtof planar  the time to perform parallel prefix. On all massively parallel
points, a poinp = (p,,p,) in S is amaximal pointof S if architectures known to the authoPsefixn) = O(Sort(n)),

Pz > g OF p, > g, for every pointg # p in S. Themaximal and hence on such machines the time of the algorithm is
point problemis to determine all maximal points of a given ©(Sort(n)). Further, itis known that, at least for serial algo-
set. See Figure 1. A poipte S is anextreme poinof S if it rithms, determining maximal points is as hard as sorting [4].
is not in the convex hull of — {p}, or, equivalently, if it is a Thus it appears that this portable algorithm is within a mul-
corner (vertex) of the smallest convex polygon contairfing tiplicative factor of being optimal for all known massively
Theextreme point probleris to determine all extreme points Parallel architectures.

of a given set. See Figure 2. Readers interested in serial algo-

rithms for these problems, and in the numerous applicationg 2 Extreme Points

of maximal points and extreme points, might consult [9]. ) ) ) )
In the following algorithmsy will denote the number of ~ The following algorithm is based on the well-known tactic of

points. To simplify discussion, we will assume that the num-Using divide-and-conquer. To simplify exposition we assume
ber of processors is alsa Extensions to cases where there



that no two points have the samecoordinate. This assump- The running time of the algorithm is given by
tion can easily be removed by including a few extra special

cases in the algorithm. T(n) =T"(n) + Sort(n)
whereT"(n) is the time to perform all but the first step!(n)
Extreme Point Algorithm satisfies the recurrence

1. Preprocessing:Sort then planar points of the se&f so T'(n) = T'(n/2) + Search(n) + Broad(n) + Elim(1) ,

as to order them by-coordinate. ) ) ]
whereT"(n/2) is the time for the recursive calfearch(n)

2. If n < 2 then all points are extreme points. Other- js the time to perform the grouping operation to determine the
wise, note that ifS; denotes the points in processors upper and lower common tangent linés;oad(n) is the time
0...(n/2) — 1, andS> denotes the points in proces- to perform a broadcast operation on a machine of sjznd
sors(n/2)...(n — 1), then all points inS; havez-  Elim(1) is the time required for each processor to make the
coordinates less than those$y. (We assume that pro- final extreme point decision.
cessord...(n/2)—1, and processor3/2) ... (n—1), On ad-dimensional mesh or@&dimensional pyramid, this
form subsystems similar to the original machine. For exgives a total running time ad(n'/¢), which is easily seen to
ample, in a hypercube we want the subsystems to be sulpe optimal. On a hypercube the running timediflog” n),
cubes. On machines such as two-dimensional meshes gince the time forT"(n) is ©(log?n) and sorting can be
pyramids, one would subdivide into 4 pieces to achievecompleted in the same time by using bitonic sort. It is not
the proper subsystems.) known if this is worst-case optimal, since it is an open ques-

3. Recursively identify the extreme points$f and the ex- tion as to Whther a hypercube can sorbiivg® n.) worst- .
treme points ofS,, enumerating them in counterclock- case time. While we do not_have space to expl_aln the detall_s,
wise fashion. This is a recursive call to step 2, not to steﬁNe n_ot_e that one can mod|fy the _above algorithm so that it
1 subdivides the original set inte“ pieces at each stage [6],

with 0 < ¢ < 1. On the hypercube the modified algorithm

4. Identify the upper and lower common tangent lines be-achievesI” = ©(logn), which gives a total worst-case run-
tween the extreme points 8f and the exteme points of ning time of©®(Sort(n)). This modified version also runs in
S> by performing a searching operation. See Figure 30 (logn) time on an EREW PRAM.

This operation is performed by comparing the slopes of
hull edges. Specifically, suppoggy;, p; € S1,q; € Sa, .
is the upper tangentline between]convex ééténdéb, 4 Final Remarks

as in Figure 3. Then it can be shown [8] that the slope of )
i is between Data movement operations should be thought of as the paral-

lel computing analogue of data structures in serial computers.

(@) the slope op;p;—1 and the slope df;;1p;, and Both provide higher level constructs which help programmers
(b) the slope of;_1g; and the slope af;g;17. organize their thoughts and programs, and both allow pro-

o ) grammers to reuse carefully optimized implementations. Ini-
Therefore, each extreme point simply needs to find thgjy| ysers of parallel computers were often willing to spend
edges of the other set with slopes just above and just bgsgnsiderable programming time to achieve the performance
low the slopes of the edges it is incident on. Since theyyajlaple through parallel processing, but as parallel comput-
extreme points are kept in sorted order, this can be acsrs move from research into practice there will be resistance
complished by merging with respect to the slopes of thgq, significant reprogramming for each new massively paral-
edges and then performing broadcasts within intervals. g| grchitecture. Systematic use of data movement operations

5. Eliminate all extreme points between the common tanS€€MS to provide a means of achieving high performance on
gent lines (i.e., all extreme points 6§ andsS, that are future architectures without unending reprogramming.
inside the quadrilateral formed by the four endpoints
representing the common tangent lines) and renumb
the remaining extreme points. This is accomplished b;References

broadcasting the information pertaining to the fourend—m M. Atallah and M. Goodrich, “Efficient plane sweeping

points to all processors maintaining a point$f and in parallel”, ACM Symp. Comp. Ged.986, pp. 216—225.
then having each processor make a constant time deci- ' ’

sion as to whether or not it remains an extreme point[2] G. Blelloch, “Scans as primitive parallel operations”,
and if so, what its new number is. Proc. 1987 Int’l. Conf. Parallel Prog.pp. 355-362.



[3] C. Kruskal, L. Rudolph, and M. Snir, “The power of

[4]

[5]

[7]

(8]

parallel prefix”, Proc. 1985 Int’l. Conf. Parallel Prog.
pp. 180-185.

H.T. Kung, F. Luccio and F.P. Preparata, “On finding the
maxima of a set of vectorsJACM 22, pp. 469-476.

R. Miller and Q.F. Stout, “Data movement techniques for
the pyramid computer'SIAM J. Computing 6, pp. 38—
60.

R. Miller and Q.F. Stout, “Efficient parallel convex
hull algorithms”, IEEE Trans. Computer€-37 (1988),
pp. 1605-1618.

R. Miller and Q.F. StoutParallel Algorithms for Regu-
lar Architectures: Meshes and Pyramjdshe MIT Press,
1996.

F.P. Preparata and S.J. Hong, “Convex hulls of finite sets
of points in two and three dimensionsComm.ACM2,
pp. 87-93.

F.P. Preparata and M.l. Sham@pmputational Geome-
try, Springer-Verlag, 1985.



