In Handbook on Parallel Computing and Statist{2606)
E. Kontoghiorghes, ed., Marcel Dekker, pp. 347-373.

Parallel Programsfor Adaptive Designs

Quentin F. Stout and Janis Hardwick
*University of Michigan, Ann Arbor, Michigan 48109 USA

Abstract

We discuss the role of parallel computing in the design aralyars of adaptive sampling
procedures, and show how some efficient parallel programs eeyveloped to allow one to analyze
useful sample sizes. Response adaptive designs are antampadass of learning algorithms for
a stochastic environment and apply in a large number oftgituga As an illustrative example,
we focus on the problem of optimally assigning patients ¢éatiments in clinical trials. While
response adaptive designs have significant ethical andadesintages, they are rarely utilized
because of the complexity of optimizing and analyzing th&omputational challenges include
massive memory requirements, few calculations per memorgss, and multiply-nested loops
with dynamic indices. We analyze the effects of various lpaization options, showing that,
while standard approaches do not necessarily work welh ®fitort an efficient, highly scalable
program can be developed. This allows us to solve problemsstinds of times more complex
than those solved previously, which helps make adaptivigdggractical.

1 Introduction

In situations where data are collected over time, adaptavepiing methods often lead to more
efficient results than do fixed sampling techniques. Whenpsiagor “allocating” adaptively,
sampling decisions are based on accruing data. In contviast) using fixed sampling procedures,
the sample sizes taken from different populations are 8pddn advance and are not subject to
change. Using adaptive techniques can reduce costs anddmmaprove the precision of the
results for a given sample size. For example, in many finasitigations one tries to optimize re-
wards by constantly adjusting decisions as informatiooiected. In a pharmaceutical setting one
may initially sample several different compounds to estenheir efficacy, and then concentrate a
second round of testing on those compounds deemed mostgingm¥When buying a present one
may look at many options and stop when one has found sometmbgeems sufficiently nice. In
this latter case, which is an optional stopping problem, ssimme some cost for looking time and
a reward for appropriateness of the gift.

Fully sequential adaptive procedures, in which one adpf$ts each observation, are the most
efficient. For example, OECD TG 425 [21] contains guidelifesdetermining acute toxicity of
potentially hazardous compounds. Since experiments aduoted on rats, there has been a strong
motivation to develop experimental designs that exposewsahimals as possible. Whereas in
the past test guidelines had recommended predetermineaisgmules calling for approximately

30 rats per compound, the standard has changed, and TG 42&memnds adaptive procedures
requiring far fewer, typically 8 to 12. Unfortunately, fulsequential procedures are rarely used
due to difficulties related to generating and implementiogdyprocedures as well as to complica-
tions associated with analyzing the resulting data. Fomgse, they assume immediate responses
and the ability to rapidly switch between alternatives, Hral can involve designs which greatly
reduce average sample size but increase the maximal saizgle s

A long-term goal of this research program has been to ineraasess to adaptive designs by
creating a collection of algorithms that optimize and amalg variety of sequential procedures.
In particular we have focused on developing serial and |grallgorithms that allow researchers
greater flexibility to incorporate diverse statistical@tijves and operational considerations. Some
of these techniques and applications are detailed in [1,214,23].

We differentiate between the design and the analysis of Baggrocedures. The design phase
might generate optimal or nearly optimal sampling proceduwhile the analysis phase may be
applied to an arbitrary sampling procedure and may involvede range of operational char-
acteristics. The analysis itself may be either exact or @pprate. In some situations, optimal
procedures may not be used because they are complex or Itifficemploy and explain. Still,
they provide a basis of comparison to establish the effigi@icsuboptimal designs. If one can
show that the relative efficiency of a sampling proceduregs sompared with the optimal one,
then investigators may be justified in implementing a simatel, typically, more intuitive subop-
timal option. Since this collection of algorithms also atkofor the optimization of strategies that
are constrained to have desirable operational charautsrithe likelihood that investigators can
incorporate such goals and still achieve statistical efficy is increased.

Historically, it has been not only analytically, but alsogautationally, infeasible to attain exact
solutions to most adaptive allocation problems. As an exenip[5] the authors argue that if, for
a specific problem, the optimal sequential procedure weractcally obtainable, the interest in
any other design criteria which have some justificationaaltfh not optimal is reduced to pure
curiosity.” They immediately add, however, that obtainoygimal procedures is not practicable.
Then, as an illustration of the “intrinsically complicatsttucture” of optimal procedures, the
authors detail the first step of the optimal solution to a $engequential design problem involving
only three Bernoulli observations. During this same ye8K6l it was pointed out in [4] that
problems of this nature could, in principle, be solved viaayic programming. However, such
solutions are still typically viewed to be infeasible. Tijifive years later, in [32], when addressing
a variation of the problem in [5], the author reiterates thattheory the optimal strategies can
always be found by dynamic programming but the computagguired is prohibitive”.

This situation motivated us to work on greatly extendingrdiege of problems that could be
analyzed and optimized computationally. While some of thmg can be attributed to the ever
increasing power of computers, much is due to algorithmsimpiementation, as will be shown.
To state that a problem can be “solved via dynamic programgingas vague as saying that one
need only “do the math”. Careful implementations of complgramic programming variations,
along with new algorithmic techniques such as path inda¢ctimve been necessary to achieve
the results reviewed here. While the models for which optissdutions can be computed are
often, albeit arguably, deemed to be “too simplistic”, ihesvertheless the case that the insight one
garners from evaluating these models is likely to lead ttebéeuristics that apply as well to more

complex scenarios.

The remainder of this chapter is organized as follows. Ini8e there is a discussion of
the basic types of parallel computers available and sonfelusemputing paradigms for working
with adaptive designs. In Section 3 we introduce the muitti-bandit model, which will be used
to illustrate the steps used to obtain an efficient paralggrithm. Section 4 gives a naive serial
algorithm for the 3-arm bandit, and then an improved vers&gctions 5 and 6 show increasingly
more efficient (and complex) parallel algorithms for the sgomnoblem, and Section 7 transfers
this to a different type of parallel computer. Section 8 gigeme illustrative results showing how
the optimal 3-arm bandit design is superior to simpler ak&ves. Section 9 explains the paral-
lelization of a related but more complex problem, namely®-bandits with delayed responses.
Section 10 has some concluding remarks.

2 Paralld Computing Models and Paradigms

In this section we discuss parallel computing platforms il basic characteristics, along with
some computing paradigms that are used in conjunction wldiptave designs.

2.1 Parallel Computing Platforms

Most of our parallel algorithms are developed &istributed memoryor message-passingom-
puters, in which data is stored with processors and all comation and access to data is via
the exchange of messages between processors. Concefitealymachines are similar to a stan-
dard network of computers, where all communication is visibeead and write operations. Dis-
tributed memory machines are the most common form of pa@imputer, especially since the
wide-spread introduction aflusters These relatively inexpensive systems consist of commodit
processor boards interconnected by commodity commuaitaiistems, typically utilizing open
source software.

In Section 7, the distributed memory algorithm is modifietia form written explicitly for a
shared memory parallel computer. Such a computer has itonyarganized so that any processor
can directly access any data, without messages. In gesbasied memory machines are preferable
since they simplify the process of converting a serial paoginto a parallel one. While small
shared memory machines are increasingly becoming comim®ddr departmental computing,
larger machines require specialized, more expensive, coers, and hence are far less common
than distributed memory clusters.

By far the most common way to create a parallel program fdridiged memory systems is to
use MPI, Message Passing Interface. MPI has an extensieeoh of operations for exchang-
ing messages and collecting information. Furthermoreabse it is a well-developed standard
available for most platforms, it helps one develop progréimas can be run on a variety of sys-
tems. MPI is available for shared memory machines as wetlfdsuthem there is an additional
standard, OpenMP. This provides compiler directives faomatically parallelizing many loops,
which simplifies the parallelization process.

Various timing results are presented throughout to ilatstithe performance improvements
achieved through various means. Note that the absolutewvalithe numbers are of little interest

3

since processor performance rapidly improves over timelatRe performance, however, is a
useful measure. Further, the basic techniques remaincappd no matter how fast the system is.
The distributed memory results presented were obtaineddPI on an IBM SP2, where each
processor was an 160 MHz POWER2 Super Chip (P2SC) procestgofi B of RAM and 1
GB additional virtual memory. The shared memory resultsewstained on a 16 processor SGI
Origin with 12 GB RAM, where each processor was a 250 MHz MIR®®O0. Throughout, all
times are elapsed wall-clock time measured in seconds nRigrgithe same problem showed very
little timing variation, so we merely report average time.

2.2 Farming

There is a simple form of parallelization for adaptive dasithat is widely used. It is sometimes
calledfarming, and the resultant algorithms are often referred to as bexmgarrassingly parallel
As an example, suppose we have an adaptive design and wistetoihe certain of its operating
characteristics. It may be infeasible to do this exactlgrewith the aid of parallel computers,
and hence it is done via simulation. One way to accomplish simulations, especially if each is
itself rather lengthy, is to have several different prooesslio their own collection of simulations,
and then to combine them at the end. As long as one takes cergute that the random number
generators on the processors are independent, this matljode simple and extremely efficient.
There is no communication among the processors exceptréugtand in the final collection
of data. Thus, even a low-cost distributed memory systerh slitw communication channels
imposes very little overhead and can achieve high efficiency

A variation on this theme is to do parameter sweeps to turferpeance. Many adaptive de-
signs have a variety of adjustable components, such asugtastopping and decision rules. For
example, with staged sampling, one collectsbservations deterministically before any adapta-
tion is employed. However, the most suitable value:ahay be unclear, and hence a suite of
evaluations, using different values kbf may be required to determine the optimal one. Here too,
the parallelization is trivial, since different processaan work on different values @f. Note
that this approach is applicable whether the evaluationa inglek are exact or are obtained via
simulation.

When farming is possible, it is almost always the most efficferm of parallelization. That
is, one may be able to parallelize the evaluation of a siniglelation or exact evaluation, but it is
usually more efficient to run different ones in parallel ameit combine results rather than run each
in parallel. This is because the parallelization of a singsk typically adds communication and
other overhead, and thus while a single task will be comgletest quickly if it is run in parallel,
the total set of tasks will be completed quickest if the talesrun serially.

In a few cases of, say, parameter sweeps, the optimal pexfmens obtained by a mixture of
the embarrassingly parallel and standard parallelizatignis occurs when a single task, such as
exact evaluation for a specific value kbfruns most efficiently on a small number of processors,
rather than on a single one. Examples of this, shown in sulesggections, can easily occur if the
memory requirements exceed the memory available on a gingéessor. In this case, it is best to
find the number of processors that runs a single evaluatithedtighest efficiency. If this value is,
sayp., and there arg total processors, then the total time to complete all evalna is optimized

by runningp/p. evaluations simultaneously.

2.3 Exact Optimization

At the opposite end of the spectrum, in terms of the progrargraffort required, lies the problem
of determining optimal adaptive sampling designs. Whitr¢hare a variety of techniques needed
for different problem types, we concentrate here on thelprolof optimizing an objective func-
tion. Suppose the objective functidhis defined on the terminal states of the experiment, and the
goal is to maximize the expected value®@f We assume that the sampling options available, and
responses obtained, are discrete.

During the experiment, suppose we are at some staa@d can sample from populations
Py, ..., P.. Forpopulation?;, suppose that at statethere are(:) possible outcomes;,, . . ., Of«(i)_p
and that these occur with probability(c), . . ., 7., (o), respectively. Let + o} denote the state
Whereo§. has been observed by sampliRg Let&,,.(c) denote the expected value of the objective
function attained by starting at stateand sampling optimally, and I€},, (o) denote the expected
value of the objective function attained by starting atestgtobservingF;, and then proceeding
optimally.

The important recursive relationship, sometimes calledptinciple of optimality, is that

RSN 4
Eopi(0) = > m;(0) Eopr(0 + 0)) (1)
7=0

Since the only actions available are either to stop witheél(r) or sample one of the populations,
we thus have '
Eopt(0) = max {(’)(U), max{&; (o) 1i=1,..., k}}

where the maximum is restricted to those options that anaigsible at.

Note that not all adaptive designs are for problems with @bje functions satisfying such
recursive equations. For example, many mini-max objestramnot be presented this way because
they are not defined in terms of expectations with respectdistabution on the populations, but
rather a maximum or minimum over the populations. Thus tleegat have the additivity property
used above. As an example, in Section 8, we compute a crittriown asmin P(CS), which is
the minimum probability of correctly identifying the beshaat the end of the experiment. To do
this, we use path induction [13], which is described in thet section.

When recurrences such as (1) do hold, then there is a veryrhdwechnique dynamic pro-
gramming for obtaining the optimal design. One starts at the terhstaes, and then for each of
their predecessor states, determines the population tolsdhnat will optimize the expected value.
The optimal action, and the resulting optimal expectedejedme recorded for each of these states.
Then the optimal actions at predecessors of these statéetamenined and so on until the initial
state is reached.

One important limiting factor of dynamic programming is tineed to determine the value and
optimal action of every state that can be reached. As willHmve in Section 3, the state space
can be exceeding large. This fact is one of the reasons flizingy parallel computing, since

the computational demands of dynamic programming can be than are feasible with a single
processor.

Note that in order to be able to employ dynamic programmingonly does one need for the
recursive equations to hold, but one also needs the trangitobabilities; (o), at each state.
Thus, dynamic programming requires a Bayesian statigtaalework in which ther;? are random
variables whose distributions are updated as data arevaaseTechnically, this means that one
begins with a joinprior distribution,I”, on theﬂ;'. and proceeds to calculatg@asteriordistribution,
which is simply the prior conditioned on the outcomes obsérso far. In the calculations, one
then uses the posterior meah (7! | o) as the value of ().

2.4 Exact Evaluation

Since exact analytical evaluations of design operatingacheristics are rarely accessible for com-
plex adaptive designs, they are typically obtained contprtally. These characteristics can be
estimated via simulation or they can be calculated exaCifien a serial program can be used to
generate simulations, or farming can be used to exploitiplelprocessors. On the other hand,
exact evaluations are typically far more complex and mayiregmore sophisticated parallel al-

gorithms.

One well-known technique ibackward inductionin which the calculations are performed
just as in dynamic programming, moving from the end of theeeixpent towards the beginning.
However, to determine the expected value of a state, onethggpossibly random, choice the
design would make at that state, rather than consideringthalces and choosing the best. Thus,
backward induction can be as computationally challengmglymamic programming. In some
cases, however, it may considerably simpler, such as whetkitown that most of the states can
never be reached by the given design. Note that such ewvatsatan be carried out regardless
of how the design was created. They may involve either aruatiah for a specific Bayesian
distribution, or a collection of evaluations for robustaistudies or a frequentist overview.

If many evaluations are needed, then it may be more efficeenisepath induction With
path induction, there is a preliminary pass from the begigmif the experiment towards the end,
and then repeated evaluations are performed on the terstatak. A detailed explanation of this
approach appears in [13]. For the purposes of this work, fiewéhe most important feature is
that the calculations for the preliminary pass proceed éndpposite order of those for dynamic
programming. Hence the same parallelization techniquedeaapplied to path induction as for
dynamic programming, and similar efficiencies can be okthirCalculations for the evaluations
are typically expected values summed over terminal stateshence these are similar to farming,
in that each processor sums over its terminal states andatgirbal sum is computed. Thus it is
quite easy for a parallel computer to perform each evaloatfficiently.

Since backward induction and path induction are so sinvlalyhamic programming, only the
parallelizations for dynamic programming will be discussedetail.

3 Example: Bandit Models

In clinical trials, there are multiple goals that must be sidered when designing an experiment.
One of these goals is to treat all patients as well as posdhlethere are differing viewpoints
as to the relevant patient population. For example, if yovevaepatient, you'd like to be given
the treatment currently deemed the best. Physicians smie®tise this viewpoint as well. This
is known asmyopicallocation, since there is no attempt to allocate you withtibpe of gaining
information from your result to help treat patients in théufe. A second viewpoint is that it is
all the patients in the clinical trial that are importantyhich case one tries to maximize the total
number of successful outcomes by the end of the trial. A thiesvpoint emphasizes “future”
patients who will be treated as a result of the decision matieearial’'s termination. Addressing
the optimal treatment of this last group has long been censdithe classical goal of clinical
trials. Still, the need to optimize the well-being of the mdbs in the trial itself, be they humans
or animals, has drawn increasing attention. Ultimatelg, tlest designs will balance the needs
of trial subjects and future patients, although, unfortalyathere is no design that can optimize
these goals simultaneously. One way to approach this proisiéo attempt to find a design that is
optimal from each viewpoint (as is tackled here), and thetetelop methods that utilize heuristics
from each optimal design. For discussion of the latter apghisee [9].

In this section, we describe the design for allocating pasi¢o treatment options such that, on
average, the maximal number of positive outcomes is oldaioetrial patients. (See Section 8
for discussion of the immediate and future patient critgribhis objective can be modeled as a
bandit problem3]. Such models are important in stochastic optimizatiswell as in decision
and learning theory. In &-arm bandit problem one can sample from any:ehdependent arms
(populations) at each stage of the experiment. (Here, “arftteatment option”.) Statistically
speaking, bandit problems are usually presented withinye®&an decision theoretic framework.
Thus, associated with each arm is an initial or prior distign on the unknown outcome or “re-
ward” function. After sampling from an arm (e.g., allocafia patient to a treatment) one observes
the outcome and updates the information to get the posferithat arm. The goal is tdetermine
how best to utilize accruing information to optimize theatatutcome for the experiment

For our example, the outcome functions are Bernoulli rangtlarmables such that, from state
o and using the notation of Section 23, = 0 represents a treatment failure that occurs with
probability 1 — p;(¢) = 7i(0), ando; = 1 represents a success that occurs with probability
pi(o) =mi(o),i=1,..., k. Ourgoal is to maximize the number of successesatservations.

At each stagemm = 0...n — 1, of an experiment of length, an arm is selected and the
response is observed. At stage let (s;, f;) represent the number of successes and failures from
armi. Then the statés,, fi, ..., sk, fx), iS @ vector of sufficient statistics.

Figure 1 illustrates a simple 2-arm bandit design witk- 4. The rate of success of each arm
has a uniform or “flat”, uninformative, prior distributioklsing a non-adaptive design, one would
expect to achieve 2 successes. With the optimal adaptivgrdese expects 2.27 successes. The
advantages of adaptation become more pronounced the lthegral is and the more arms there
are. For example, with = 100 and uniform priors on each arm, non-adaptive allocatioth wil
average 50 successes no matter how many arms there are. éfpthievoptimal 2-arm bandit will
average 65 successes, and the 3-arm bandit averages 72.

@\4‘,/\5 4 15
3 1/20
3 1/20
2 1/30
3 118
2 136
2 1/24
1 124
3 18
2 1/24
2 1/24
1 1724
2 1/24

1 1724

1 118

0 19

Node: arm sampled; Right cols: successes achieved andrpeahing that outcome.
Upward line: success; Downward line: failure; Line labeablp of outcome.

Figure 1: A 2-arm bandit, with, = 4 and uniform priors on each arm.

Optimal designs for the bandit problem can be obtained vigadyc programming, but the
number of states, and hence the time and space requiredlita&them all, have the formidable
growth rate of© (n2k/(2k‘)!). We concentrate on the 3-arm version, which ®&s°®) complexity.

Note that the state space grows exponentially in the numibamas. This “curse of dimen-
sionality” often makes exact solutions infeasible. As altespproximations may be used and the
quality of the solution reduced.

Even when parallel computing is employed, major difficutieclude:

e Time and space grow rapidly with the input size, so intensiferts are needed to obtain a
useful increase in problem size.

e The time/space ratio is low, making RAM the limiting factor.
e There are few calculations per memory access.
e The nested loops have dynamic index dependencies (seetAlgdr).

Performance is further exacerbated by the interaction eddgraspects. Table 10 illustrates, for
example, the dramatic limitations imposed by space canssrand imperfect load balance caused
by the loop structure.

3.1 Previous Work

The 3-arm problem had never previously been solved exaetglse it was considered infeasible.
As noted earlier, researchers have long indicated frustratith the far simpler2-arm bandit
problem. In particular, in [17], the authors remark that*gpace and time requirements for this
computation grow at a rate proportionalté making it impractical to compute the decision even
for moderate values of say > 50”. Previously, the largest exact 2-arm bandit solutionizeid a
IBM 3090 supercomputer with 6 processors to soiw&20 [8]. Here, we solve a problem more
than 300 times harder, namely the 3-arm bandit with 200. Further, because to obtain operating
characteristics we must evaluate this design many timestotial work is at least 10,000 times
harder than that done earlier; since, had it been feasiesearchers would have used methods
available at the time rather than the path induction exgtbitere.

While there has been scant previous work on the paralletiealof bandit problems, in the
computer science community there has been more work on ttadlgdasolution of similar re-
currences. Most of this concentrates on theoretical alyos where the number of processors
scales far faster than the input size [15, 20, 25, 26, 27],lwresspecial purpose systems are cre-
ated [18, 28]. Others [19, 30] look at dynamic programmirf@jatilties when the subproblems are
not as well understood.

4 Serial Implementation

The goal of a bandit problem with dichotomous responses determine, at each state, which
arm should be selected so as to maximize the expected nurhbacaesses over the course of
the experiment. To solve this via standard dynamic prograngrfAlgorithm 1), first the values

of each terminal state (those withobservations) are computed. Then, the optimal solution is
found for all states withn observations based on the optimal solutions for all staidsw + 1
observations, fom = n — 1 down to O.

The recurrence at the heart of this dynamic programminglhgo is in the center of the loops.
Atstateos = (s1, f1, 82, fo, 83, f3), one may sample any of the three arms. If dimsampled, then
the resulting state will be either+ s; oro + fl, wheres; andfZ denote a single additional success
or failure, respectively, on arm Given the prior distribution on the success rate for aralong
with the observations ia on armi, one can then compute the probability of these two outcomes.
Let the probability of observing a success be denoteg; by, f;). In the previous stage of the
dynamic programming, the expected values of these statssimang one proceeds optimally to
the end of the experiment, have been determined. Thus tlee®dgvalue of sampling from arin
and proceeding optimally, i.el}*(c) = & ,(0), is given by

opt

V(o) = pilsis fi) - V(o + &)+ 1= pi(si, f)] - V(e + [i)

Choosing the arm that yields the highest expected valueisptimal decision at.

For the purposes of efficient implementation and parabéilin, the specific recurrence used
to combine values is less important than the indices of theegabeing referenced, since they
determine the memory accesses and communication reqifirethave a stencil of dependencies,
whereby the value at state depends only on the neighbor valuescat- s{, 0 + f1, 0 + S5,

9

Algorithm 1 Serial Algorithm for Determining Optimal Adaptive 3-Arm lakation

{5, f:: one success, failure on arin
{si, fi: number of successes, failures arfn
{m: number of observations so far
{n: total number of observatior}s
{|o|: number of observations at state
{V: the value of the optimal design starting at staté.e.,&,,(o).
V(0) is the value of the optimal design starting at the beginsjing
{pi(si,fi): prob of success on arm i, if si successes and fif@dllnave been observéd

for all statesr with |o|=ndo {i.e. for all terminal statds
V(o)=number of successesdn

for m=n-1 downto Go {compute for all states of sizejm
for s3=0 to mdo
for f3=0 to m-s3do
for s2=0 to m-s3-f3lo
for f2=0 to m-s3-f3-s2lo
for s1=0 to m-s3-f3-s2-fAo

fl = m-s3-f3-s2-f2-s1

o =(s1,f1,s2,f2,s3,f3

V(o) = max{(p1(s1,f1} V(o + 57) + (1-p1(s1,f)) V(o + f1)) ,
(p2(s2,f2) V(0 + 53) + (1-p2(s2,12)) V(o + f)) ,
(p3(s3,f3) V(0 + 55) + (1-p3(s3,f3)) V(o + f3)) }

o+ E o+ s3, ando + ﬁ along with the priors and itself. With minor changes to this equation
(and no change in the dependencies), the same program ogrealsrm backward induction (see
Section 2.4) to evaluate the expected number of successes farbitrary 3-arm design. This
allows one to evaluate suboptimal designs which may beat#sifor reasons such as simplicity
and intuitiveness. The same stencil of dependencies carbalsised to optimize and evaluate
designs for 2 Bernoulli arms with randomly censored obgema [23].

Note that the recurrences involve extensive memory acseasth little computation per ac-
cess. There aré”g(‘) = O(n") states, and the time and space complexities areci(sb).

4.1 Space Optimizations

Given the vast space requirements needed to solve thedempsglgood algorithms must incorpo-
rate a number of space reduction techniques. The first oé tressilts from the observation that
values ofV/ for a givenm depend only on the values fat + 1, so only the states corresponding
to these two stages need to be kept simultaneously. Thisesdhe working space ®(»°), and

by properly arranging the order of the calculations, thecepgaan be further reduced to only that
required for one stage’s worth of states, i.e., we gain ardtctor of 2. This corresponds to the

10

n first collapsed| naive comp best
10 .009 .004 .082 .004
20 18 1 3.2 .092
30 1.4 35 71
40 4.1 186 3.9
50 15 689 13
60 2024 35
70 5047 86
80 11242 185
90 22756 362
100 42900 659
110 1225
120 1922
130 34961
maxn 27 54 100 135
limitation | memory| memory time time
prog len 193 193 282 419

maxn: Maximum problem solvable with 1 GB and time64,400 sec. (18 hr.)

Table 1: Serial versions, time (sec.) to solve problem & iz

collapsedcolumn in Table 1. In this tablenaxn shows the maximum problem solvable by a 1 GB
RAM machine with a time limit of 18 hourdimitation shows which limit was reached, apdog
lenis the size of the version in lines of source code. Note thattilapsed version allows us to
solve problems substantially larger, and also results lightspeedup.
Another significant space reduction results from the faat, tthue to the constraint
s3+ fa+sa+ fat+si+ filn,
only a corner of the 5-dimensiondharray is used (approximately 1/5! = 1/120 of the total). Teta
advantage of this, the 5-dimensioNaérray is mapped 1-1 onto a linear artdy Unfortunately,
this mapping also requires that all array references bslated from the original five indices into
their position in the linear array. From a software engimggviewpoint, the best way to implement
this translation is to use a function which takes as inpufitteeindices and yields their position in
the array, i.e., a mapping of the form
V(sl,s2,f2,s3,f3) — V,(T(sl,s2,f2,s3,f3))
Unfortunately, this is extremely costly as the translationction T is a complicatedy’* degree
polynomial which must be evaluated for every array accessis Version, thenaive compin
Table 1, can solve larger problems, but is significantly gliothan thecollapsedversion. For the
bestversion, we broke the translation function into a seriesffsied functions, where each offset
function corresponds to a given nested loop level., i.e.,

T (s1, 82, f2, 53, f3) Tos(m) + Trs(m—s3) + Too(m—s3—f3) + Tra(m—s3— fs—s2)

+ T (m—s3— fa—sa—fa) + 51

11

An offset function only needs to be recalculated beforeatsasponding loop is entered, and the
more expensive offset functions correspond to the outerloops.

This method dramatically reduces the translation cost dimnan usable level, but greatly in-
creases program complexity, as is shown by the incregsmqlen

The simplified Algorithm 1 ignores the fact that in order tdiné¢ the design, one needs to
record the arm selected at each state. Unfortunately tredses/cannot be overwritten and the
storage required i®(n°). Fortunately, this too involves only values in one cornéigvéng a
reduction by a factor of 1/6! = 1/720. These values are storedisk and do not reduce the
amount of memory available for calculation. Using run-ldngncoding or other compression
techniques would likely reduce this &(n°), but so far this has not been necessary. Note that if
one only needs the value of the optimal design, but not theydétself, then this storage is not
needed. Such a situation arises, for example, when the alptiesign is only used to gauge the
performance of simpler designs.

5 [Initial Parallel Algorithm

To parallelize the recurrence, we first address load baigncin the initial parallelization the
natural step of dividing the work among the processors wamntaThe outermoshloop behaves
very much like “time” in many simulations and cannot be plateded, so instead one parallelizes
the second outermost loop3. At stagem processofP; is assigned the task of computing all
values whers 3 isintherangestart s3(j, m ...ends3(j,n.

Because the number of states corresponding to a given vak@ grows ag m s3) 4, deter-
mining the range 0§ 3 values assigned to each processor is nontrivial. Thus,lgiaggigning all
processors an equal numbeisd values would result in massive load imbalance and poorrsgali
We evaluated two solutions to this problem. Optimal partitioning is itself a small dynamic
programming problem which takes time and sp@¢e.p). However, it was easy to develop a fast
©(m) greedy heuristic which was nearly optimal, and it is thisrigtic which was used in the
initial program.

5.1 Communication

The communication needed can be divided art@y redistributionandexternal neighbor acquisi-
tion. Array redistribution occurs because, as the calculationgeds, the number of states shrinks.
To maintain load-balance, tts8 range owned by a processor changes over time. At stage-
cessofP; needs the states wif8 valuesintherangst art s3(j, m ...start s3(j, m1)-1
from P;_;. Redistribution includes the cost of moving the statesamntly on the processor to cre-
ate space for these new states.

External neighbor acquisition occurs because the calongfor a state may depend on its
neighbors in other processors. To calculate states s8thend_s3(j , m) during stagem P,
needs to obtain a copy of the states wstB=end_s3(j , m) +1 from P;,,. Note that external
neighbor acquisition negates round-robin or self-schedwdpproaches to load-balancing $&
loops, as this would result in a dramatic increase in the caomeation requirements. This does not
necessarily hold for shared memory systems, however, abearen from the OpenMP version

12

Algorithm 2 Scalable Parallel Algorithm
{P;: processor}
{starto(j,m), endo(j,m): range ofo values assigned tB; for this m value,
with starto(j+1,m)=endo(j,m)+1 }

{For all processor®; simultaneously, dp

for o=starto(j,n) to endo(j,n) do {i.e. for all terminal statés
V(o)=number of failures inr

for m=n-1 downto Go {compute for all states of sizejm
for o=starto(j,m) to endo(j,m) do
determine s1, f1, s2, f2, s3, f3 from
compute V as before

{Array redistributior}
Send needed V values to other processors
Receive V values from other processors

{External data acquisitign
Send needed V values to other processors
Receive V values from other processors

in Section 7. Shared memory computers are able to utilizeetbpproaches because their much
faster communication systems reduce the latency to a hiéelavel.

6 ScalableParallel Algorithm

The initial load-balancing approach is simple to implemamd debug because it makes minimal
changes to the serial version. Unfortunately, it has imgmdoad and working space balancing
and this severely limits scalability (see Table 2) and dalvaroblem size (see Table 10).

For a more scalable version (Algorithm 2), instead of partihg the states using the coarse
granularity of thes3 values, we partition them as finely as possible, i.e., byiddal states. The
assigned states are specifiecsityar t o andend_o. However, this leads to numerous difficulties.
The first is that a processonréarray can now start or end at arbitrary values8f f3, s2,
f2, sl, andf 1, soone can no longer use a simple set of nested loops teitegbieen the start
and end value. Our first attempt to solve this problem hadedesstatements within the innermost
loop, where the execution rarely went deep within the nestil&\logically efficient, this turned
out to be quite slow because it was too complex for the compleptimize. A solution that the
compiler was able to cope with was to use a set of nested logpsfvstatements in front of each
loop so that it starts and stops appropriately. This satuttas almost as fast as the original serial
nested loops.

13

Another difficulty was that the offset calculations are noiformly distributed along the range
of theV array, and this leads to a noticeable load imbalance. $tdha results of the offset
equations in arrays significantly decreases the cost of efését calculation and reduces the load
imbalance to a more acceptable level. However, there isstite slight load imbalance that could
be addressed by including the cost of these array lookueifoad balancing.

6.1 Communication

The move to perfect division of théarray also caused complications in the communicationg@orti
of the program. The main complication was that data needeelititer external or redistribution
aspects was no longer necessarily located on adjacentgsarse This resulted in a considerable
increase in the complexity of the communication portionthefprogram.

Our initial version of the communication functions used &ura strategy when space is a
concern: each processor sent the data it needed to serteédsksfremaining internal data, and
then received the data sent to it. Blocking sends were uséustoe that there was space to
receive the messages. Unfortunately, this serializeddahmunication, because the only processor
initially ready to receive was the one holding the end of tiraya i.e., the only processor which
does not redistribute to any other processor. The next psoceable to receive was the second
from the end, because it sent only to the end processor, ama.solrhe performance of this
version was unacceptable. The next version removed theatien and performed adequately but
synchronization costs became more of a problem. To rem@sgethwe switched to non-blocking
communication wherever possible. This made communicddioly efficient, although there may
still be room for some slight additional improvement.

Unfortunately, non-blocking communication requires &ddial buffers to accommodate in-
complete sends and receives. In general there is a seriofictbetween extensive user space
requirements and minimizing communication delays. Theroomcation buffers needed to over-
lap communication and calculation, and to accommodatehhacking operations, can be large.

6.2 Scalable Timing Results

Table 2 shows the efficiency(p), of the initial and scalable parallel versions as the nunaber
processorg increases. Table 3 shows the effect on timing and scalingaf ef the major changes
detailed in Section 6, contrasting 1 processor and 8 processsions, wherg(p) is the time. Note
that the improvements reduced the serial time, and incdetheeparallel efficiency relative to the
reduced serial time.

Table 4 contains the percentage of the total running timentddy different parts of the scal-
able program as the number of processors incredsak.is the percentage of time taken by the
dynamic programming calculationsle is the cost of writing the decisions to disk, amdscis
the part of the time not attributed elsewhere. Undeny redist we show the cost of shifting
data among the processors to maintain load-balance, vdoenenis the cost of calculating the
redistribution and communicating the data between thegasars, andhiftis the cost of moving
the data on the processor. Belexternal comnis the cost of getting neighbor states from other
processors, including the cost of determining which precebas the data, where to put it on the

14

p | efficiencye(p)
initial | scalable version t(1) | t(8) | e(8)
1| 1.00 1.00 first scalable 1044 | 178 | .734
2 .96 .96 improved loops 775| 143| .678
4 .93 .94 offsets in array 766 | 134 | .715
8 .81 91 scalable comm 762 | 106 | .903
16 .64 .86 non-blocking comm 760 | 104 | .913
32 48 .81
Table 3: Stepwise improvements in scalable ver-
Table 2: Scaling results, = 100. sion,n = 100, 1 and 8 processors.
array redist | external
p | calc| file | misc| comm/| shift| comm
1| 98|19| 0.1 0.0 0.0 0.0
21 94)116| 09 19| 1.2 0.4
4| 88|16| 0.1 45| 2.0 3.8
8| 84|14 0.2 6.5| 2.0 5.9
16| 73|12 0.7, 11.0] 21 12.0
32| 57,11 0.0 16.1| 1.7 24.1

Table 4: Percentage distribution of time within scalabliesian,n = 100.

current processor, and the cost of communicating the data.

Table 5 presents the running times of the scalable program fo 200 for 16 and 32 proces-
sors. Note that the speedup is more than a factor of two. Tdusrced because on 16 processors
the program must make extensive use of disk-based virtualane A similar effect can be seenin
Table 1 as: increases from 120 to 130. This illustrates an often ovéddadvantage of parallel
computers, a bonus increase in speed simply because dpadinmoblem among more processors
allows it to run in RAM instead of in virtual memory. Howevéhjs can be successful only if the
parallelization load-balances the memory and computatéguirements.

7 Shared Memory Implementations

To measure the performance of the 3-arm bandit code on acshamory machine we imple-
mented four separate versions.

The first version, which we call MPI, uses the shared memomlementation of the MPI
libraries. Aside from a few changes due to differences invirsions of Fortran on the two ma-
chines, this version is identical to the scalable versiothefcode previously described.

The next version, OpenMP, uses OpenMP directives to impi¢meahared memory version
of the code. This version is very similar to that in Algoritiim except for the addition of a

15

p t(p)
16 | 10463
32| 1965

Table 5: Timing resultsy = 200, scalable version.

second copy of th¥ array. This second copy is necessary because, while usimgracsmemory
implementation the sam¥ array is shared among all the processors, which may be aoting
different sections of it at arbitrary times. This means ¢hisrno longer a guarantee that every
calculation that uses a state will have read the state’suaddore it is overwritten. Thus, we need
to have a second array to hold the current stage’s input®whel current stage’s outputs are being
stored. After a stage is completed its output array is copigxdthe input array for the next stage.

To convert the code, OpenMP parallel-do directives were aseund the outermost l00p3,
of the dynamic programming setup, and #floop in the dynamic programming. Both of these
loops use OpenMP dynamic scheduling, where each processios g user defined chunk size
number of iterations, performs them, and then, when comag)ejrabs another set. This process
continues until all the iterations of the loop have been deted.

To compute the chunk size for each stage, we first determanavbrage amount of work per
processor at that stage. The chunk size is then the maximuamberuof initial iterations whose
combined work is no greater than the average work. Note thatwill not be the number of
iterations divided by the number of processors since thekger iteration varies dramatically.
This will create many chunks with diminishing amounts of werhich will be taken by under-
loaded processors as they complete their tasks, helpimgtoa approximately even load balance.
Such a dynamic scheduling approach is not useful for digiibmemory systems because of the
increase in complexity that would result from tracking tbedtion of the states and synchronizing
access to them, and the cost of moving so much state infamathong processors.

The third version of shared memory code, Auto, was genefatesing the SGI Fortran auto-
parallelizer on the serial version of our code. Unfortuhatdue to the dependencies inside We
array described above, the auto-parallelizer was onlytalparallelize the innermost,1, loop of
the dynamic programming setup.

The final version of shared memory code, Auto+Copy, againl tise auto-parallelizer, but
this time on the doubl¥ array code described above for OpenMP. The reduction inraEpeies
allowed it to do slightly better. It parallelized the inneryat, s1, loops of both the setup and the
main body of the dynamic programming.

Table 6 shows the results of our measurements on these faionge. As can be seen, the
hand parallelized versions perform far better than thosedmtomatically. In fact, Auto has
almost no discernible increase in speed as the number oégsors increases. Auto+Copy does
slightly better, but is still far inferior to the others. Thenner clearly is OpenMP, which was to
be expected as it has far less overhead than MPI. Note, hovikae OpenMP’s scalability will
degrade as the number of processors increases becauseat alocate less than o133 loop per
processor. (Because we had only 16 nodes on our SGI Origirtawenot provide numbers for
more processors). Implementing a fully scalable code USIgnMP would be difficult, and in the

16

MPI OpenMP Auto Auto+Copy
p | tp) | e | tkp) | ep) | tp) | elp) | tp) | ep)
1| 439[1.00| 406 1.00| 471|1.00| 454 1.00
2| 290| .76| 209| .97| 473| .49| 419| .54
4| 155| .70| 113| .90| 465| .25| 404| .28
8| 90| .61| 72| .70| 473| .13| 403| .14
16| 73| .38| 59| .43| 470| .06| 397| .07

Table 6: Efficiency of shared memory implementatiors100

end would probably result in something quite similar to thelMersion.

8 Illustrative Resultsfor 3-Arm Bandit

To illustrate the use of the parallel algorithm in AlgoritiZn it was applied to the problem of
comparing three sequential allocation procedures inagl@arms. We continue with the example
of designing a clinical trial to address the ethical obligatto optimize patient treatment. In
Section 3, three interpretations of treating patientsoglily were offered. We examine one design
for each interpretation and then look to see which of thestgde seems to address all three
interpretations the best. Computationally, the intenbistow that the parallel program provides
heretofore unattainable exact evaluations of these puwesdnd their operating characteristics for
practical sample sizes. The procedures are:

Bandit The fully sequential design that maximizes the expectedbmirof successes within the
experiment. It is determined via dynamic programming.

Myopic A fully sequential design that chooses, at each state, theéhat has the highest probabil-
ity of producing a success. For the current patient, thisesdesirable “personal physician”
approach.

Equal Allocation (EA) A commonly used fixed sampling approach, in which each armives
n/3 pulls. This is the classical allocation procedure that iseeted to perform well with
respect to choosing the best treatment to apply to futurergatonce the trial has terminated.

As noted, to optimize the bandit procedure, a Bayesian agprds taken in the design phase.
Myopic allocation also utilizes a Bayesian approach. Rebalvever, that the procedures can be
analyzed from either a Bayesian or frequentist perspecivdlustrate this, the allocation schemes
were compared (analyzed) according to two criteria — oneeBi@y and the other frequentist.

The first is the Bayesian criterioaxpected number of failure€"' (F)”. For this example, the
prior distribution,I’, on the treatment means was the product of independentromif®eta(1,1),
distributions. Since we use the sam#roughout the example, we drop the superscript to simplify
notation. Recall that E(F) is the criterion minimized by thendit procedure. Myopic allocation,
on the other hand, assumes that the next observation istrenl@, and as such it calls for allocation

17

to the treatment that presently looks the best. For clinres with small sample sizes, this goal is
virtually the same as trying to minimize E(F) among th&ial patients. Note that while dynamic
programming is needed to determine E(F) for bandit allooatbackward induction is used to
determine the E(F) for myopic allocation. For equal allamat E(F) is simply the sum of/3
times the prior probabilities of failure for each arm. In th@form case, this sum is simphy/2.

To address the third interpretation, which is to optimizeifa patient well-being, we focus on
correctly identifying the best treatment arm at the end eftttal. The decision rule is to select the
arm with the highest observed rate of successes, with thetita treat all future patients with the
selected therapy. In case of ties, the winner is selectatbraly, as is standard. We wish to do this
with high probability, so we examine theobability of correct selectiorP(CS)=P(CS p1, ps, p3),
where(py, pa, p3) € 2 = [0, 1]3.

There exists no allocation procedure that maximizes P(@S)lffcombinations ofp, ps, p3) €
2. While one can carry out a pointwise comparison of two desigsessing P(CS) overfor
each, in general it is more tractable to utilize a summarysuesato assess overall performance.
As with the E(F) criterion, one could work with a Bayesiansien of P(CS), and integrate with
respect to a prior distribution on the treatment success r&ptimizing this measure can be done
via dynamic programming. A different approach is neededvewer, if a frequentist measure is
desired. First, letp), p(2), p3)) be the order statistics fdp,, p2, p3). In other wordsp(y) is the
smallest success ratgyp) the second smallest, ang the largest. Fix & > 0, and say that a
selection of armi is correct to withing, denoted C§ if p; > p) — 6. (In the examplesj = 0.1.)
Let ¥ be the class of all allocation designs of lengtfnotation for length suppressed). koE ¥
define

Ps(¢) = min P(CSs | ¥;p1, p2, p3)

(p1,p2,p3)EQ

Then, a popular optimization goal is to locaté € ¥ such that

Ps(y") = max Pi(¢)
Unfortunatelyy* is unknown when there are three or more arms. Standard dgmaogramming
approaches cannot be used to solve this problem because wétiinear nature of the minimum
operation in the definition oP;(¢’). However, wherk = 2, the optimal procedure is to allocate
equally to each arm. Thus, while for 3 or more arms there exiaptive procedures that are better
than equal allocation on this measure, EA has the poteantia & very good suboptimal procedure.
For an arbitrary allocation algorithm, it is not known whighlues of (py, p2, p3) yield the
minimum over(2, and it is not possible to determine this exactly throughkbeaed induction.
This indicates that a search throughout the parameter spaeeded to determinig; (). Ps(v)
is an example of a criterion for which an allocation desigedseto be evaluated multiple times.
Because of these multiple evaluations, path induction \gad to search faPs for the bandit and
myopic designs. For 2 arms it can be shown that the minimurayswccurs whepy = p(2) — 4,
reducing the dimension of the relevant search space. Herselfwrch was over arm probabilities
such thabpy = pe) = p@3) — 0. While for 3 or more arms there are contrived designs whgiie P
not attained in this region, for the designs considered ileeems to be a reasonable assumption.
In Figure 2, E(F) for each procedure is plotted as a functioth@ sample size. Similarlyg;
versus sample size is presented in Figure 3. As noted, amifoiors have been used throughout.

18

All arms have uniform priors.
B = Bandit;E = Equal;M = Myopic

100 7 Er 0.8 El
g / : e
=) i - B / /
T 80 £ 2 0.7 B -
Lo [5) E
5 = & /
B 60 M e B -
5 06
g / E B’/ B 8 E/ B
z w—
- 40 E - o B
2 / / 205 & -
o 20 o - 8 =4
& T o4 B M— M— M— M—— Mv—— mf
0 "@ T T T T T T T T
0 50 100 150 200 0 50 100 150 200
Sample Size Sample Size
Figure 2: Sample Size vs. E(Failures) Figure 3: Sample Size vBs,d = 0.1

These were used mainly because they are a common basis fpadeon across the literature.
Naturally, had other priors been used then the results woellsbmewhat different. The program
can easily handle a wide range of prior distributions.

Note that the bandit allocation comes very close to achgethie highPs; of equal allocation,
while incurring far fewer failures. Myopic allocation alswcurs few failures, but has a very poor
ability to correctly locate the best arm. Thus, we find tha Handit design seems to be the
preferred design overall since it performs optimally on)EqRd also attains high values Bf.

For the indifference region @f = 0.1, the minimum P(C§ for myopic allocation occurs when
one arm has a success probability of 1 and the others havalplop0.9. In this situation, there
is greater than 80% chance that the trial will never even try the superior armisThlargely due
to the prior assumption that the average success ratesefalifferent arms aré /2. The myopic
rule randomizes in the first stage and if a success is obtaihegarameter estimate for the arm
selected is updated &y3, while the other arm estimates remainl@®. This procedure selects
the next observation from the arm with the expected sucegsf2/3. With the true parameter
having a value> 0.9, the outcome is again likely to be a success. This resuiniesthe rule even
further in favor of the arm already sampled. There are simfalgs to alter myopic allocation so
that P significantly improves with very little increase in fails;eghowever, a discussion of this is
beyond the scope of this work.

19

9 Delayed Response Problem

An interesting dilemma that arises with adaptive desigrhag information may not accrue at
the rate of allocation. In this case, new questions thatais (a) how to optimize an experi-
mental design knowing that responses will be delayed antiqy)to model the response delay.
Delayed responsesme a significant practical problem in clinical trials, amd aften cited as a dif-
ficulty when trying to apply adaptive designs [1, 29]. We hapelied our scalable parallelization
approach to a version of this problem in which there are 2 &dtnarms. Moreover, like the 3-
arm problem, no nontrivial delayed response problem has heky optimized previously, either
analytically nor computationally. Again, determining tbetimal design has been seen as being
intractable, although some special cases have been adaljzese include 2-stage designs where
the first stage is equal allocation [6], and designs whereapmehas a known success rate and the
problem is to decide when to stop trying the unknown arm [T, 31

There are many different models of the delay, appropriatedoying circumstances. Here we
assume that the response times for each arm are exponedisttibuted, and that patients arrive
according to a Poisson process. We call the optimal desigthi® problem thelelayed 2-armed
bandit D2AB. In this setting, the natural states are of the faem f1, uy, so, f2, u2), Whereu; is
the number of patients assigned to treatmdnit whose outcomes are unknown.

As before, we have the condition that+ f; +u1+s2+ fo+us < n, which allows compression,
and all nonnegative values ef, fi, so, fo, s3, f3 satisfying this constraint are valid, just as they
were for the 3-arm bandit. However, a critical differencéhiat the recurrence fdr (o) depends
uponV (o +a1), V(e +51— 1), V(o + fi — 1), V(o +@3), V(o + 53 — u3), andV (o + fo —).
That is, either a patient is assigned a treatment and themetés initially unknown, or we have
just observed the outcome of a treatment. See [11] for theslddtform of the recurrence and its
derivation.

While the recurrences for the delayed response model agai@ & stencil of neighbor de-
pendencies, they are much more complicated. To go throwgbalculations systematically, one
needs the appropriate notion of “stage”, corresponding to the 3-arm program. In general, the
stage of a state should be the maximum path length to the state from the irstae0. In the
3-arm problem, all paths te from 0 took the same number of steps, which was the sum of the
entries. Here again all paths have the same length, bu(itist fi + so + fo) + uy + uo, i.€., the
components do not contribute uniformly.

Because all the paths fromfrom O are the same length, states at stadee., at distancé)
depend only on states at stalge- 1, which allows one to store only 2 stages at a time. Further,
as in the 3-arm problem, by carefully analyzing the depeai@snand going through the loops
in the correct order, this can be reduced down to 1 stage. tHawthere are nown stages for
the outermost loop, as opposed to thased previously. This has the negative effect of doubling
the number of rounds of communication, which significantdgduces the parallel efficiency. It
does have a positive effect, however, of slightly reduchrgrnemory requirements since the same
number of states are spread over more stages. The nonumdtasof the indices make the array
compression calculations somewhat more complex, and makeder to determine the indices of
the states depended on.

An additional complication comes from the fact that for thar& problem, any combination

20

array redist | external
p | e(p) | calc| misc| comm| shift | comm
1/1.00|95.8| 0.0 0.0 4.2 0.0
2| 93/89.5| 0.0 3.7| 3.8 3.0
4| .79|75.7| 0.0| 124| 3.6 8.3
8| 67[619| 01| 184| 2.8 16.8
16| .41|415| 0.2 28.2| 2.0 28.1
32| 27258 0.2| 318| 1.2 41.0

Table 7: Analysis of delay program on new systerm100.

of nonnegative entries having a sumrmfwas a valid state at stage < n. Now, however, there
can be a valid stage. < 2n, and a combination of nonnegative entries having that wedybum,
but the combination does not correspond to a state. For deaifip = 100, then (0,0, 75,0, 0, 75)

is not a valid state, even though it is at stage 150. The reiagbat it violates the constraint that
s1+ fi1 +ur + s2 + fo + us < n. Previously this constraint was automatically satisfied this is

no longer true. This situation complicates the compresseeking and access processes. Details
can be found in [22].

Table 7 contains the timing and scaling analysis of the nogmvhich incorporates all of the
features of the most scalable 3-arm program. This was runrmmewer version of the computer
system where policies had been adjusted to improve diskeusagwhich had the unintended
effect of reducing scalability. Hence we would expect thdgrenance to be degraded somewhat,
but the drop in efficiency is rather significant, caused bydtplex indexing and extra rounds
of communication. Perhaps further tuning would have impdbthis, but it was sufficient for our
purposes. Thisis animportant aspect of parallel compuitirthat improving parallel performance
can be a never-ending process, and hence one needs to asstadé¢offs between programmer
effort and time versus computer time.

9.1 Randomized Play-the-Winner

One popular ad hoc sampling rule is known as the randomizgdtpé winner (RPW) rule, which
first appeared in [33]. The RPW is an urn model containingiatiiballs that represent the treat-
ment options. Patients are assigned to arms according tgpgbef ball drawn at random from the
urn. Sampling is with replacement, and balls are added taitheccording to the last patient’'s
response.

An advantage of urn models like RPW is the natural way in whielayed observations can
be incorporated into the allocation process. When a delegggabnse eventually comes in, balls of
the appropriate type are added to the urn. Since samplinghsr@placement, any delay pattern
can be accommodated. We call this designdblayed RPW ruléDRPW). A DRPW strategy,
in which responses occur with a fixed delay, is mentioned &}.[1n [2] the authors consider a
slightly altered version of this rule for a related best site problem. However, only asymptotic
results have been obtained for these cases. These resuttsnaistent with ours when the delay is

21

not large compared to the arrival rate, but they do not ctyrecedict behavior when the delay is
comparable to the sample size times the arrival rate (segd-4).

9.2 Sample Results

We carried out exact analyses of the exponential delay miodddoth the D2AB and DRPW.
Here we present results far= 100. For the DRPW the urn is initialized with one ball for each
treatment. This particular initial urn may be thought of asihg roughly the effect of the uniform
priors used in the bandit design. If a success is observeckatnient then another ball of type

is added to the urn, while if a failure is observed then anabld of type3 — i is added; = 1, 2.

For comparative purposes, we look at base and best caseisseffde best fixed-in-advance
allocation procedure is the base case, i.e., the optimadisnlwhen no responses will be available
until after alln patients have been allocated. To maximize successes oule sitlocate all patients
to the treatment with the higher expected success rate. Wealthe expected number of successes
in the base fixed case by, £S]. Here, we consider only uniform priors on the treatmericess
ratesp, andp,, in which case any fixed allocation rule works equally weiglging an expected
return of B¢[S] =n/2.

The best possible case arises when all responses are abganaediately (full information).

In this situation, DRPW is simply the regular RPW and the D2i&Bhe regular 2-armed ban-
dit. Recall that the regular 2-armed bandit optimizes thodj@am of allocating to maximize total
successes. Letting,R[S] represent expected successes in the best cgs¢S)E= 64.9 for this
example. Using the difference,f[S] — E.¢[S] as a scale for improvement, one can think of the
values on this scale, (0, 14.9), as representing the “estratesses over the best fixed allocation
of 100 observations. For an allocation ruledefine

Ey[S] — En[S]
Eopt [S] — Ent[S]

to be therelative improvementver the base case. Whilg,Rilso depends on, the prior parame-
ters, and the response and arrival rates, these are omitadtie notation.

Note that, for fixed arrival and delay rates; Rz — 1 asn — oo. However, this is not true
for Rprpw, Since asymptotically the urn contains a nonzero fractidmatls corresponding to the
inferior arm. If the arm probabilities ayg, p., letq,) = 1 —p(), i = 1,2 (using the order statistic
notation introduced in Section 8). ThemBw (p1, p2) — (41) — 4))/(a) + qr2))- For uniform
priors, Rorpw — 0.545. However, this asymptotic behavior gives little infornoatiabout the
values for practical sample sizes, and exact solutionsxXedfvalues of, are not known. Hence
their performance must be determined computationally.

Tables 8 and 9 contain the expected successes for the D2AB@mMRPW rules, respectively.
Patient response rates, and.\,, vary over a grid of values betweéfn— and10', and the patient
arrival rate is fixed at 1. Note that, for both rules, wh&n = X\, = 107°, E[S] ~ 50. When
A1 = Ay = 10, the delayed bandit rule gives E[S]=64.9 as one would expéate that in the best
case scenario for the DRPW, E[S] = 57.9, which gives an R &.0/&th the RPW, we can expect
to gain only 7.9 successes as compared to the 14.9 for theadiandit.

Moving away from the extreme points, consider the case when, and \, are all the same
order of magnitude. The D2AB rule is virtually unaffectedittwan R value of 0.99. This is

Ry =

22

A1 A2

! 1075 107* 107* 1072 10~' 10° 10!
107° | 50.1

107*|51.2 51.2

1073 | 55.4 55.4 5538

10721 59.3 59.4 59.9 615

1071 | 60.9 61.0 61.6 63.1 64.1

10° | 61.3 61.3 619 635 645 64.8
10" | 61.3 61.3 62.0 635 64.6 64.8 649

Table 8: Bandit: E[S] asXj, \») vary,n = 100, A\, = 1, uniform priors

Al A2
l 1075 107* 1073 1072 10°' 10° 10!
10~° | 50.0

107*| 50.2 50.4

1073|516 51.7 52.6

1072 | 54.8 54.8 54.9 557

107! | 56.5 56.5 56.5 56.7 57.3

10° | 569 569 56.9 57.1 57.6 57.8
10* | 57.0 57.0 57.0 57.2 57.6 57.8 579

Table 9: RPW: E[S] asX;, \») vary,n = 100, A\, = 1, uniform priors

true because, on average, there is only one allocated patigse outcome hasn’'t been observed
throughout the trial. For the DRPW,pRpw = 0.52, which is only slightly smaller than the non-
delayed case. Both rules seem quite robust to mild to maeleielays in adaptation. It is only
whenbothresponse rates are at least three orders of magnitude detosvrival rate that results
begin to degrade seriously. Whan = X\, = 103, for example, Rsa is only 0.40, and Brpw
is adismal 0.17. Itis also interesting to note that even whernresponse rate is only 1/18ahe
arrival rate, the D2AB does better than the RPW with immediasponses. Figure 4 illustrates the
expected successes for DRPW and D2AB when the responsearatiesth one but the arrival rate
varies between0—° and10°.

When we consider scenarios in which only one treatment appl&s information to the sys-
tem, we see an interesting result. For example, using unifmiors, when\; = A, = 1 but
Ao = 1075, the relative improvement is 0.76 for the D2AB and 0.47 fad BRPW. This is an
intriguing result for the DRPW since its R-value is 89% of besst possible RPW value. Still, one
clearly prefers the D2AB since there is only a 24% loss overgjiitimal solution while excluding
half the information.

One way to view this problem independently from the allcmatiules is to examine the ex-
pected number of allocated but unobserved patients whew gatent allocation decision must

23

66 7 Uniform Priors
B B B B
N =100

’J)\ /
3 62 D2AB M =A2=1
c
o
o
0
Q
@
= 58 R R R R
7]
7] /V
3 DRPW
S
N 54
fing

50

-5 -4 -3 -2 -1 0 1 2 3 4 5
log(Arrival Rate)

Figure 4: Expected successes for D2AB and DRRW=)\, = 1

be made. As noted, when the response delay rate is 1, at amyiptime one expects only a sin-
gle observation to be delayed, and the impact on performianoénimal. When\; = \, = 0.1,
once approximately 20 patients have been allocated thereasisistent lag of about 10 patients.
Connecting this value to the results in Tables 8 and 9, one fimat a loss of roughly 10% of the
total information at the time of allocation of the last patiéand a significantly higher loss rate for
earlier decisions), corresponds to a loss of only about 5%rms of the improvement available
from D2AB, and about 8% from DRPW.

When the response rate is about 100 times slower that tvalanate, asymptotically there will
be approximately 100 unobserved patients at any point ie.tifortunately, for a sample size of
100, one is quite far from this asymptotic behavior, and apprately 37% of the responses have
been observed by the time the last allocation decision maishdéde. This allows the D2AB to
achieve 77% of the relative improvement possible, whileDRPW rule attains only 38%. Note
that this is an example where asymptotic results would bee quisleading, and thus a computa-
tional approach is required to determine the true behavior.

While for space reasons this work has only analyzed problemich both treatments have
uniform priors, similar results hold for more general psior

10 Conclusions

There is considerable interest in using adaptive designarious experiments because they can
save lives (human or animal), time, cost, or other resourées example, for a representative
delayed response problem with= 100, uniform priors, and response delay rates 10 times patient
arrival rates, simple equal allocation averages 50 suese3$ie most commonly suggested adap-
tive technique, randomized play the winner (RPW), achiemg a 14.7% improvement, while
the newly obtained optimal solution (D2AB) achieves a 28 i3provement (see Figure 4). In
fact, the optimal solution is nearly as good as the optimaitim for the case where there are no

24

n | uncompressed initial | scalable
100 100 1 1
200 00 21 16
300 00 00 173

Max problem solvable: uncompressed: 105; initial: 231;ladua: co.

Table 10: Min. processorg) heeded to solve problem of sizeusing 1 GB per processor.

delays. Note that this is also the first exact evaluation O\WRR this setting, accomplished via

backward induction. Its improvement over equal allocatemsmwell as its degradation relative to
the results obtained by the optimal design, were not knovae.férmer could have been estimated
via simulation, while the latter could not have been.

Note that a Bayesian approach was needed for dynamic prograjito create the optimal
designs. However, analysis phases, such as the evalu&&#?V@ or the myopic rule in Section 8,
can be done on any design, whether it is ad hoc, Bayesiangqudntist. The analyses may
evaluate a mix of Bayesian or frequentist criteria, indejeer of the design. This point is pursued
further in [12].

However, overall the complexity of adaptive designs hasgmdo be a major hurdle impeding
their use. Our goal is to reduce computational concernsetpdint where they are not a key issue
in the selection of appropriate designs. This chapter haserdrated on the parallel computational
aspects of this work, while other papers analyze the staistnd application impact of new serial
algorithms [12].

Unfortunately, the recurrences involved have attribubed thake it difficult to achieve high
performance and scalability. Memory requirements tendetohie limiting factor, and trying to
ameliorate this causes overhead and a significant incre@sedgram complexity. As noted in Sec-
tion 6, increases in program complexity can cause seveferpgnce problems when the compiler
is unable to optimize the inner-most loops, and hence oné select alternatives with the com-
piler’s limitations in mind. Space constraints, and lowceddtion to communication ratios, also
complicate the ability to reduce the effects of communaratatencies and overhead. However,
by working diligently, it is possible to achieve significasgeedups and scalable parallelizations,
although this comes at a cost of increased program lengtmanelcomplex program maintenance.

In Table 10, the effects of memory limitations on the 3-arwlpem, using 1 GB per processor,
are illustrated.Uncompressedefers to a parallel program using load-balancing as in riteal
parallel version, but without compressing to a 1-dimensianray. Note how the scalable version
needs fewer processors to solve large problems, and tha isalve arbitrarily large problems,
while the other versions cannot go beyond a fixed problemrsizeatter how many processors
are available. This is due to the imperfect load balancirtgerearlier versions which were unable
to allocate less than a sing& loop per processor.

Besides being able to compare alternative parallelizatiore can also compare to the work
of others. Using only 16 processors of an IBM SP2 we solvedthem,n=200 problem. This
is approximately 500,000 times harder than the probleneddimpractical’ in [17], and more

25

than 300 times harder than that solved in [8] on a parallel [B}O0 of approximately the same
computational power. Further, the more than 100 evalustised for determiningsRvould have
taken these authors a 100 fold increase in time, while bygysath induction it only roughly tripled
the time required to find the design.

Similar parallelization steps can be used to solve problewaving 4 or more arms, arms
with more than two outcomes, designs with staged allocagod so forth. However, since the
computational requirements of these problems grow mordlseghan those of the problems con-
sidered here, the largest problems solvable with the sasmurees will be smaller. Note that
the parallelization process described applies much mavadly than adaptive designs for clin-
ical and preclinical trials, although this in itself is anportant application. The bandit model
is widely used in areas such as operations research, aitifitelligence, economics and game
theory. Further, our work generally applies to neighboureences using stencils. This common
class of recurrences includes many dynamic programmingjgmos such as the generalized string
matching used in some data mining and bioinformatics agptins.

Despite some successes, it is important to realize thediioits of parallel computing. Parallel
computing can only do a little to overcome the curse of dinmraity that plagues many uses of
dynamic programming (and relatives such as backward immtuend path induction) for adaptive
designs. When computational time increased(@#’), as is true for determining the optimal design
for the 3-arm bandit and 2-arm bandit with delayed respongel@ms, then doubling the sample
size results in a 64-fold increase in computational timeuslto double the size of the largest
problem solvable on a serial computer, yet solve it in theesamount of time, would require 64
processors with perfect efficiency, or even more processdlsmore realistic efficiency. One
may have access to such a computer and program, and the dqubldem size may be what is
needed to solve a specific problem. However, if another dogld needed then it is unlikely the
researcher will have access to suitable parallel resoama$fience other methods will have to be
employed.

Finally, merely throwing a parallel computer at a problemméikely to be of much help. For
farming-like applications this is a relatively simple pess and likely to attain the desired improve-
ments, but for many other problems the process is far morghoated. As was shown, extensive
work was needed to achieve useful problem sizes and redsogféibiency. Often it is easiest to
utilize shared memory systems, but typically only modestgomance will be achieved without
significant work. One important aspect of the parallel@agprocess that should be kept in mind
is that to make the most of the programming effort, one sheulphasize the use of software
standards. MPI is the dominant message-passing systens amkly and freely available. Sim-
ilarly, OpenMP is the dominant parallelization method foased-memory machines. By using
these, porting code to new, typically more powerful, platie is greatly simplified. Since signifi-
cant effort may have been put into the parallelization pgecene would like to be able to use the
resulting program for an extended period of time.

26

Acknowledgments

The parallel programming was done by Robert Oehmke, anddudetails of algorithm improve-
ments and parallelization aspects can be found in his tf&2]s This research was partially sup-
ported by NSF grant DMS-0072910. Parallel computing suppeas provided by the University
of Michigan’s Center for Advanced Computing. Most of the eratl presented here first appeared
in [10, 11, 24].

References

[1] P Armitage, The search for optimality in clinical trialeit Statist Rev 53:1-13, 1985.

[2] U Bandyopadhyay, A Biwas. Delayed response in randodhptay-the-winner rule: a deci-
sion theoretic outlook. Calcutta Statist Assoc Bul 46:69-X996.

[3] DA Berry, B Fristedt. Bandit Problems: Sequential Akkion of Experiments. Chapman and
Hall, 1985.

[4] R Bellman. A problem in the sequential design of expernitseSankhya A 16:221-229, 1956.

[5] R Bradt, S Karlin. On the design and comparison of certhaiotomous experiments Ann
Math Statist 27:390-409, 1956.

[6] H Douke. On sequential design based on Markov chainsdigcsing one of two treatments
in clinical trials with delayed observations. J Japanese@Gumput Statist 7:89-103, 1994.

[7] S Eick. The two-armed bandit with delayed responses. 3tatist 16:254—264, 1988.

[8] J Hardwick. Computational problems associated withimining the risk in a simple clinical
trial. In: Contemporary Mathematics: Statistical Mulgghtegration, ed.’s N Flournoy & R
Tsutakawa, American Math Assoc 115:239-257, 1989.

[9] J Hardwick. A modified bandit as an approach to ethicalation in clinical trials. In: Adap-
tive Designs, ed.’s N Flournoy & W Rosenberger, IMS Lectutdd — Monograph Series
25:65-87, 1995.

[10] J Hardwick, R Oehmke, QF Stout. A program for sequerdidcation of three Bernoulli
populations. Comp Stat and Data Analysis 31:397-416, 1999.

[11] J Hardwick, R Oehmke, QF Stout. Optimal adaptive desiign delayed response models:
exponential case. In: MODA6: Model Oriented Data AnalygisAtkinson, P Hackl, W
Muller, eds, Physica Verlag, 2001, pp. 127-134.

[12] J Hardwick, QF Stout. Flexible algorithms for creataugd analyzing adaptive sampling pro-
cedures. In: New Developments and Applications in Expenta@eDesign. IMS Lec Notes—
Mono Series 34:91-105, 1998.

27

[13] J Hardwick, QF Stout. Using path induction to evaluaggigential allocation procedures.
SIAM J Scientific Computing 21:67-87, 1999.

[14] J Hardwick, QF Stout. Optimal few-stage designs. Ji§tRlan and Inf 104:121-145, 2001.

[15] OH Ibarra, H Wang, T Jiang. On efficient parallel alglnits for solving set recurrence equa-
tions. J Algorithms 14:244-257, 1993.

[16] A Ilvanova, W Rosenberger. A comparison of urn desigmgdodomized clinical trials of
k > 2 treatments. J Biopharm Statist 10:93-107, 2000.

[17] R Kulkarni, V. Kulkarni. Optimal Bayes procedures falacting the better of two Bernoulli
populations. J Stat Plan and Inf 15:311-330, 1987.

[18] A Lew, A Halverson Jr. Dynamic programming, decisioblés, and the Hawaii parallel
computer. Computers and Mathematics with Applicationd2¥+-127, 1993.

[19] G. Lewandowski, A Condon, E Bach. Asynchronous analg$iparallel dynamic program-
ming algorithms. IEEE Trans Parallel and Distributed Syst&:425-438, 1996.

[20] B Lokuta, M Tchuente. Dynamic programming on two dimensl systolic arrays. Inf Proc
Letters 29:97-104, 1988.

[21] Test Guideline 425: Acute Oral Toxicity — Up-and-DowroBedure, Organization for Eco-
nomic Cooperation and Development (OECD),
www.epa.gov/oppfeadl/harmonization/docs/E425gueghdf, 2001.

[22] R Oehmke. High-Performance Dynamic Array StructuradParallel Computers. PhD dis-
sertation, University of Michigan, Ann Arbor, MI, 2003.

[23] R Oehmke, J Hardwick, QF Stout. Adaptive allocationhie presence of censoring. Com-
puting Science and Statistics 30:219-223, 1998.

[24] R Oehmke, J Hardwick, QF Stout. Scalable algorithmsaftaiptive statistical designs. Sci-
entific Programming 8:183-193, 2000.

[25] S Ranka, S Sahni. String editing on a SIMD hypercube icwitputer. J Parallel and Dis-
tributed Computing 9:411-418, 1990.

[26] W Rytter. On efficient parallel computations for somedsnic programming problems. The-
oretical Computer Science 59:297-307, 1988.

[27] D Tang. An efficient parallel dynamic programming aligfom. Computers and Mathematics
with Applications 30:65-74, 1995.

[28] R Sastry, N Ranganathan. A systolic array for approxenséring matching. Proc IEEE Int'l
Conf on Computer Design, pp 402—-405

28

[29] R Simon. Adaptive treatment assignment methods anctelitrials. Biometrics 33:743-744,
1977.

[30] SA Strate, RL Wainwright, E Deaton, KM George, H Berg€él,Hedrick. Load balanc-
ing techniques for dynamic programming algorithms on hgplee multicomputers. Applied
Computing: States of the Art and Practice, pp 562-569, 1993.

[31] X Wang. A bandit process with delayed responses. SthPaab Letters 48:303-307, 2000.

[32] Y-G Wang. Sequential allocation in clinical trials. @m in Statist: Theory and Meth 20:791—
805, 1991.

[33] LJ Wei, S Durham. The randomized play the winner rule gdioal trials, J Amer Stat Assoc
73:840-843, 1978.

29

