Proceedings of the 1983 International Conference on Paralle! Processing, pp. 214-221

SORTING, MERGING, SELECTING, AND FILTERING
ON TREE AND PYRAMID MACHINES

(Preliminary version)

Quentin F. Stout
Mathematical Sciences
State University of New York

Binghamton, NY

ARSTRACT: We develop some fundamental
algorithms for d-dimensional pyramid com-
puters, where a i-dimensional pyramid is
typically called a tree and a 2-dimern-
sional pyramid is what is commonly meant
by a pyramid computer. We zive optimal
6(n/lg(n)) algorithms for sorting and
merging n items stored in a tree, and
show that for higher dimensional pyramids
well-known algorithms are optimal. We
give a selection algorithm, suitable for
pvramids of all dimensions, which runs in
less than n*%e time for any e > O .

e also consider median filtering of a
noisv digitized picture, giving an opti-

mal algorithm whose rumning time 1s 6(D)
when using a D x U window.

1. INTRODUCTION

Sorting, merging, and s
(i.e., finding the k'th item) are funda-
mental problems, and for almost any
machine architecture efficient algorithms
have heen devised for them. However, for
certain tree and pvramid computers we
show that when the data is already In the
base of the computer the 'obvious' algo-
rithms are not always optimal, and we
present algorithms superior to any previ-
ously published. Some authors 12,3,8,11]
have presented optimal sorting algorithms
for tree machines in which the data
passes through the root, but we are
interested in situations where the data
is already present and must be rear-
ranged. Such situations arise when a
different kev is now being used to deter—
mine the ordering, or when data can he
entered directly into the base. This
latter possibility has been raised for
pvramid machines devoted to image proces-
sing, for which the speed-ups introduced
here mav be of use. If the data must
pass through the apex then all algorithms
are at best linear in the number of
items, and {2,3,8,111 showed that linear

Partially supported by NS¥ CGrant Number
MCS-8301019.

0190-3918/83/0000/0214$01.00 © 1983 IEEE

13901 USA

algorithms exist. However, In our situ-
ation one can obtain sublinear algorithms
for sorting and merging, where the speed-
up depends upon the dimension of the
pvramid (defined below). For selection we
show that the possible speed-up is even
more impressive, giving an algorithm
which finds, on a pyramid of any dimen—
sion, the k’th item among n in oln**g)
time for any ¢ > 0 .

Our interest in pyramid machines
stems from our belief, and that of many
others, that their geometric hasis makes
them a natural parallel architecture to
consider for various database [Z,3,11]
and image processing [4,5,6,9,12,13,15,
16,17,191 applications, applications in
which significant parallelism is possi-
hle. Pyramids are more attractive than
meshes because they have the potential
of logarithmic algorithms. Furthermore,
the regularity of a pyramid structure
makes it feasible to construct such ma-
chines with a large number of processing
elements. Several tree and pyramid ma-
chines are in various stages of design
[2,3,8,11,15], and we expect that more
advanced machines, with a very large
number of processing elements, will he
constructed.

Our results are primarily ol theo-
retical use, in that the algorithms are
somewhat complicated, but they do at
least show that certain problems have so-
lutions which are asymptotically better
than was previously thought. Further-
more, our algorithms tend to use the
pyramid structure in ways that are dif-
ferent from previocusly published algo-
rithms, and perhaps such techniques will
prove useful in other problems.

Throughout we will use lg to de-
note log base 2, and 8, 0, 0, and o
to denote "order exactly", 'order at
least', "order at most', and Yorder
strictly smaller than', respectively.
Optimal will always mean optimal to with-
Tn a multiplicative constant.

2. MACHINWE MODELS

have been
he called

\‘tcs m%vht Q%t
pyramid’!
, 1,2%a17,19]. The mgch
ed here can be viewed a
sh—connected machines,
hetveen the lavers. To
of arbitrary dimension,
mesh-~connected computer
rension. “%raﬂﬁhsut we
indicate the d
mesh-connected
d-MCC of size
copies of a single
(PR , arranged Iin
jattice. PEs have
(11,...1d4) , where
1 <1 «d PRg (1
(J1, ..., 0d) RN §
Sd fru-gw| = 1 U TFach PR
those on sides)
has a unit-time comm
each of them.

»dels
;r?.iy
e

5 12,3,4,5,6,
nes consid-

{except
neighbors and
munication link £o

A d-dimensional pyramid computer of
size n¥Rd la d=PC TGT size nradl-con-
5ists of a d-MCC. of size n**d , a
A-MCC of size (n/2)%%d,..., and a
C of 55?9 1, along with additional
communication lln&s snecified helow.

(Note that a d-MCC of size n**d has
exactly n*¥d ?Es i d-PC ~ of size
n**d has between - 2%nRd
PEs.} The d-MCC of siz nk*d is
cailed the base of the pyramid, and the
d-MCC of size 1 is the apex. The d-MCC
of size (n/2%¥)*%d is at level &
e.g., the hase is level 0 and the apex
is level “lgin) . A PE at position
(11,...,1d) on level k is connected to
all 2%%d of its sons, which are those

processors on leve 1 which are at a

each. Ji ds.eirher 2%Ii. ov-ol+2%11 .
Thus, except for Processors along the
sides, each PE 1is conmected to 2%%d +
1+ 2%d others, nameiv its Z%%d sons on
the level belo its parent at the level
ahove, and 2 d neighbors at the same
level. Figure la shows a 1-PC ., typical-
iy called a tree machine, and. Figure 1b
shows. a 2-PC ., which is often what .is
meant by..a pyrami id.-machine.. To-date we
triow-of-ono serious. interest in pyramids
£ higher dimensions,. but. since ..our
lgorithms natvrniiy extend ‘Lo higher
iz

oL O
-
3
o

ensions. we have dorie. so. ..Wealso . nobe

hat here is beginning to be some dnters
est 3-dimensional digitizations [71,

and Qw«Cs are .a natural architecture for

such problems.

We .assume that the PEs have.a fixed
numhbar of rAQistﬂrs, sach of which holds
a word of length 84lgln)) -, and.all
operations take unit time A1L communi-~
cation links.are bidirectional, and:any
PE . can send and receive. a word along any
or all ‘links simultaneouslyy.all taking
unit time. . We also assume each processor
holds its level .and its coordinates with-
inthat level. If this is not the case,
it can easily be performed in 5.{lzln})
cime. (Hote: all analyses of time
assume d is fixed and consider time as
a function of n . While: some authors
[10] also consider. . .as a parameter,
this is made difficult by the fact that
a PE in a.. d-PC is fundamentally
different from one in a. (ds1)-PCJ. .
Earlier pyramid models [4,12,13,19]
assumed that the PEs were copies of a
finite state automation wnich was
designed independent of n ., in which
case a single PE _ could not store the
level it was on nor its position within
rhat. level. Using finite state automata

position of the form (J1,...,Jd) where also drastically changes the nature of
level 3
level 2
level 1
level O
A 1-PC of size 8 A 2-PC of size 16
a) b)
Figure 1

215

sorting, merging, and selection since
there can only be a fixed number of keys,
independent of n .

3. SORTING AND MERGING

[2,3,8,11] considered the problem of
using machines similar to a 1-PC to
perform selection, insertion, deletion,
and retrieval operations. Requests
arrive at the apex at unit time intervals
and are performed on-line, although there
is a logarithmic delay between the time a
request arrives and its answer appears.
This approach sorts n items in &(n)
time, and is optimal if all items are
required to pass through the apex. How-
ever, we are interested in situations
where the data is already in the pyramid,

stored one item per PE in the base.
For example, in a d-PC of size n¥**d
we can sort n¥*d items in 9(n) time

by ignoring everything except the base
and using the d-MCC sorting algorithm
in [18]. This compares quite favorably
with the §(n**d) time required if all
items pass through the apex, and it is
natural to ask if we can do even better
by utilizing the rest of the pyramid.
We prove that further speed-up is pos-
sible if and only if d=1 .

Suppose we have a 2-PC of size
sitting 'naturally" in 3-dimension-
al space, by which we mean the layers are
all square grids parallel to each other,
with each parent above the middle of its
four offspring. If we consider a plane
cutting perpendicular to both the base
and one of its edges, and passing just to
one side of the apex, we see that the
plane will cut n wires at level 0O
n/?2 wires at level 1,...,2 wires at
level 1lgin)-1 , and 2 wires connecting
the apex to level 1lg(n)-1 , cutting a
total of 2n wires. To sort
items stored one per PE in the base it
may be that all of them must pass through
the plane, giving a worst case time of
2n) . Furthermore, on average half of
the items must pass through the plane,
giving an expected time of &(n) also.
Since one can sort in 6(n) time using
only the base, we see that the rest of
the pyramid is of no significant use.
This argument holds whenever d 2 2 .

ne%2

N2

However, if we consider a 1-PC of
size n and cut it by a line slightly
off-center, the line will cut 1lg(n)+1
wires. This gives a (n/lgi(n)) lower
bound for the worst case and expected
case sorting times, a bound which is un-
attainable using the base alone.

Theorem 1 The algorithm outlined below
for sorting on a 1-PC of size n has a

216

worst case and expected case time of
8(n/lg(n)) , and is thus within a con-
stant multiple of optimal.

Our algorithm is a simple merge sort,
utilizing the fact that the two sons of
the apex can be viewed as the apexes of
disjoint subpyramids.

To sort on a 1-PC of size n ,
n z 1 , sort each half (separately
and in parallel), and merge.

If S(n) denotes the worst case sorting
time, we have

S(1) =0

S(n) = S(n/2) + M(n) n >1
where M(n) 1is the worst case time to
merge two runs in a 1-PC of size n
We see that ’

- tis(w) *

S(n) =], 257 M(a/2%K)
In Theorem 2 below we show that M{n) =
6(n/lgin)) , which proves Theorem 1.
MERGING

Suppose we have a run R1 of items
in processors O..k of the base, and a
run R2 of items in processors
(k+1)..(n-1) . We merge these into a
simple run as follows:

1. Find the median of all the items
(since n 1is even we will just
use the n/2'th item).

2. There are 4 subruns to consider:
those items in R1 less than or
equal to the median (called sub-
run S1), those items in R1
greater than the median (S2)
those items in R2 1less than or
equal to the median (S3) , and
those items in R2 greater than
the median (S4) . S1 and 5S4
stay in place, S3 moves behind

81 , and S2 moves in front of
S4 Notice 81 and 83
together hold half of the items,
as do 82 and S4 .

3. Merge within each half (sepa-
rately and in parallel).

Theorem 2 The above algorithm for merg-
ing on a 1-PC of size n has a worst
case time of 6(n/lg(n)) , and hence is
within a constant multiple of optimal.

worst case
To show that
the time

Proof: As for sorting, the
time must be f(n/lgin)) .
this is attained we analyze
spent in each step. Step 1 can be done
by a simple binary search. First the
median of R1 1is sent up to the apex and

hack down to the hase, at which time each
processor whose item is less than or
equal to this sends up a 1 . These are
summed, after which it is known if the
value is too high or low. Then the
median of R2 1is sent up, then an appro-
priate quartile point of R1 , then a
aquartile point of R2 , etc. There are
at most 8(lg(n)) probes, each taking
89(1lg(n)) time, for a total of
6(lg(n)**2) time for step 1.

It is step 2 which takes most of the
time. It can be reduced to two appli-
cations of the following problem: how
fast can a run be moved to its destina-
tion? To do this rapidly we divide the
hase into M = |lg(n)/2] blocks. PEs
0..n/™MJ-1 are in block 1,
In/MJ..2%In/MJ-1 are in block 2, etc.

We define a sequence of processors
Gl,...,6M by taking Gl to be the apex
and Gf{i+1) as Gi's right son. For
each 1 we construct a path Pi con-
necting Gi to the leftmost processor in
block 1 , with the property that all
paths are disjoint. The paths are con-
structed recursively, with Pl being the
leftmost edge of the pyramid. For 1i>1,
Pi is construced from the base upwards,
at each processor going upwards if it
does not run into P(i-1) , and otherwise
going right. (See Figure 2.) It can be
shown that the longest path has length
o{n/lgin)) , and in oi(n/lg(n)) time
each processor can decide which, if any,
path it is on and which of the processors
it is connected to are on the same path.

We notice that when a run needs to
move, for anv block i <containing some
items in the run there is a j such that
either all of those items are to be moved
to block j , or else some go to block j
and the others go to block j+1 . We

call block j the goal of block i ,
and move all the run's items from block

i to bhlock j . If some of these helong
to block j+1 then we move them along
the base from block j to block j+1 .
e construct a path Qi from the left-
most PE in block i to the leftmost

PE in block i as follows: let
k=min(i,j) . Qi follows Pi wup to
level k , then moves sidewavys to meet

P3i , and then goes down Pj . Since any
block is the goal of at most two blocks,
it is easy to see that any procesor is in
at most 3 of the (Q paths. An item
starting in block 1 moves left until it
reaches the start of 0i , then follows
0i , and then moves right in block j

and also in block j+1 1if that is its
destination. The total distance. is
0(n/lgi(n)) , and since no procesor is in
more than 3 paths the data movement can
be arranged so that the worst case time
for step 2 is 8{(n/lgi(n)) .

Therefore M(n) , the worst case
time to merge two runs in a 1-PC of
size n satisfies the equations:

M1 = 0
M(n) € A¥lg(n)**2 + B¥n/lag(n) +
M(n/2) n 31

which gives M(n) = 6(n/lg(n)) . This
completes the proof of Theorem 2.

4, SELECTION

In this section we consider the pro-
blem of finding the k'th smallest item.
To simplify notation we will discuss only
1-dimensional pyramids (i.e., trees), but
all of our results hold for pyramids of
higher dimensions. We will also simplify
discussion by assuming that all the items
have distinct kevs.

Gl

Blvck Bl‘ck
1 2

Figure 2

217

s the son
that item fo pass up ano
ind R ;LQ«T

T €1 ¢

noted this merovement

a>anﬁoﬁznﬁ sorting w

hetter, finding the &
i for any ¢ > 0 .

To solve the s ti@ﬁ problem we
need to solve the w selection pro-
hiem, in which we a iven k and N
pairs (vi,wi) , wh vi is the value
of the pair and wi its positive
integral weight. The wvi are all dis-
tinct, and we want to find the vI such
that

Jiwic >k and Jiwi:ivi<vIi <k .
Fach of th nal items in the base
has a w ig and intermediate cal-
culations items with greater
weights.

Initially each item is "active", and
may later become inactive when it 1is
known that it camnnot be the answer. The

algorithm is:
if n=1
else if

the item is the answer

then both items are
sent to the apex,
which determines
the answer

then
n:?/

else reneat
Stage Fach processor at level
lg(n}/Z takes as its value the
median of the active items beneath
it, and as its weight the number
of active items beneath it.

Stage 2: The apex finds the
weighted median of the items found
in the previous stage, call this
W , and transmits it to all pro-
cessors din the base.

Verification: Each base processor

sends up a 1 1f its item is less

than or equal to W . These 1's

are summed on their way up to the

apex, which determines if W is
the k'th item or is too large or
too small. In the last two cases
it sends down a message which

deactivates all items as large as

218

at most
ed. To

s
St
ro
during
5
as la
on th
items

To see how much time this algorithm
takes it is easiest to work with the
eight of the tree {ie, lgi{n}) instead
of its width. If T{(h) denotes the
worst case time on a 1-PC of height h ,
rhen

TG

Tih) 2y % [2%T(h/2) +

h > 0

The solution is
NeicFh I¥w [lg(h where
C = 2%llog, /4 , which is oln**&)
for any ¢
Theorem 3 In o(n¥*g) time, for any
£ >0 , the above algorithm finds the
kith item among n items stored in the
base of a 1-PC of size n .

We make no claims about the optimal-
ity of our algorithm. 1In fact, if one
uses lgllgln})/2 stapes, instead of
2 used above, each determining the
weighted median of items determined bhelow
in the previous stage, then one can do
selection in
ollg(ni®*[lgllgin))/lgllgllgin)))])
time. Further fine-tuning of this
approach does not seem very interesting.
e conjecture that ©6(lg(n}) is unat-
tainable as a worst case time for selec-
tion, but-have .been unable to prove this.
There is also the question of expected
case time, and we do not even know the
expected time of our algorithm.

the

5. MEDIAN FILTERING

In this section we consider the
problem of median filtering of a noisy
digitized picture stored one pixel per
PE in the base of a 2-PC . In median
filtering the idea is to replace each
pixel with the median of the pixel values

ina Dx* N square, N odd, whose
center is the original pixel. We call
this sauare a window. Median filtering
is a well-known technidque {see, for
examnle, [20] and the references therein)
and is applicable to data of any dimen-
sion., Nur reason for concentrating on
the 2-dimensional probhlem is a paper of
Tanimoto [16] which gives a simple algo-
rithm. QOur goal is to minimize the run-
ning time as a function of N , where we
show below how to eliminate any depend-
ence cn the size of the 2-PC We give
an optimal algorithm, but we must mention
that our asvmptotic result is misleading
since in practice D is quite small.

Tanimoto [16] noted that any depend-
ence on the size of the pyramid could be
eliminated by partitioning the image intc
a set of nonoverlapping regions of area
BT*52) Processors at height [1g(DJ]
are viewed as the apex of a subpyramid in
which filtering is performed, with each
subpvramid responsible for computing the
new value for each pixel within it. Vin-
dows around pixels in one subpyramid can
include pixels from an adjacent subpyra-
mid, so first all necessary information
is exchanged between adjacent subpyra-
mids. This exchange can easily be done
in 6(D) time.

Within each subpyramid Tanimoto com-
puted the new pixel values one at a time.
The total time for this method is
BNEA2 % T(D)Y |, where T(D) 1is
needed to compute the median in a

the time
2-PC

of size Dv*2 The procedure he first
mentions finds the median in 06(D%*2)
time, giving a total time of 6(D¥<4) |

e also notes that by iust sorting in the
base the median can bhe found in 8(D)
time, giving 8(D*3) total time. By
instead using the selection algorithm of
the preceeding section one can perform
median filtering in o(D¥*[2%¢]) time
for all e> 0O .

However, Tanimoto's approach is not
very efficient as it ignores the fact
that calculating the median at one point
is closely related to calculating the
median at any adjacent point. By ex-
nloiting this we are able to give an al-
gorithm taking 8(D) time. A straight-
forward data movement analvsis, as in
section 3, shows that this is an optimal
worst-case time. It seems that this is
alsc an optimal expected-case time.

Theorem 4 In a 2-PC or a 2-MCC
LlERren Z A . ; .
Using a D » D window, median filtering
can be accomplished in 8(D) time.

The theorem is proved by the follow-
ing algorithm, which is only briefly
sketched. We use only the bhase of a

219

AN

B!Gik
/

NeigﬁEcrLooJ
N

jo}an

Figure 3

2-PC , partitioned into D xD blocks .
Within each hlock each processor will
determine its new pixel value. Because
windows of pixels in the block can fall
outside the block; the block needs to
know all pixel values in a (2D-1) x (2D-1)
square called a neighborhood. Also, for
reasons that wilT be explained later, the
block actually must simulate the actions
of processors lying in a (3D-2) x (3D-2)
square called a region. (See Figure 3.)
Fach processor in the block simulates the
actions of a saquare of 9 processors from
the region, with the algorithm being de-
scribed as if all of the processors in
the region are assisting the block.

Via sorting, each neighborhood pro-
cessor determines the order position of
its pixel value, e.g., a processor may
determine that its pixel value is the
fifth smallest in the neighborhood.
nelighborhood processor x sends this
order position to the form processors
cl,c2,c3,¢cb4 indicated in Figure 4

Fach

4.

These four processors are the corners of
the square of all processors whose win-
dows include x . Notice that the region
has been chosen so that if x 1is in the
neighborhood then «c¢l,c2,¢3, and c4 all
lie within the region.

Jsing these corners, given any order
interval there is a "spreading wave' pro-
cess taking 8(D) time, after which each
processor in the block will know how many
pixels values in its window fall in the
order interval. There are 4D%*2 - 2D + 1

Cl

3

Figure &4

pixels in the neighborhood, so by using

4D order intervals each has at most D
values. We repeat the spreading wave
process 4D times, pipelining the waves

so that it takes only 8(D) time. When
finished, each processor in the block
knows which order interval contains the
median of its window. The processor also
knows a relative description of which
pixel value in the order interval is the
median of its window, e.g., the processor
mav know that in the appropriate order
interval it is looking for the third
smallest pixel value belonging to its
window. A final combination of sorting
and searching, also taking 6(D) time,
finishes the algorithm.

The algorithm sketched above can be
modified to provide an optimal
8(n/log(D)) median filtering algorithms
using a window of size D , for l-dimen-
sional data, stored in the base of a
1-PC . It can also be adapted to d-PCs
and d-MCCs , d > 2 , using windows of
size D*%d , but the adaptions give
8(N%*(d/2)) algorithms. The only lower
hound known to the author is ©(D} , so
it seems that optimal algorithms for
higher dimensions will require different
techniques.

6. CONCLUSION

Our results can be rearranged to
allow a better comparison between pyra-
mids of different dimensions. If we have
a d-PC of size n , with one item per
hase processor, then these n items can
be sorted in B(n/lg(n)) time if d=1,
and 8(n**¥(1/d)) time if d > 1 . (This
holds for both worst case and expected
case times.) The 1-PC algorithm is

220

new, while the others are well-known, and
all are optimal to within a constant
multinle. Our 1-PC sorting algorithm
devended on a new optimal merging algo-
yithm, UWhile there was no time to ex—
plore further here, the 1-PC sorting
aloorithm gives several other optimal,
G{n/lo~(n)) algorithms.

e also considered selection, pro-
viding an algorithm much faster than
previous ones. Previous algorithms
utilized sorting, which does not fit the
pyramid structure very well. Pyramids
provide logarithmic paths between any two
nrocessors, but if there is too much data
movement, such as occurs with sorting,
then the apex becomes a bottleneck. By
reducing the amount of data being moved
we reduced the time to oln**eg) for any
£ >0 . Thus seletion is faster than
sorting on serial computers [1], mesh-
connected computers with broadcasting
{141, and pyramids.

Our selection algorithm also gives a
faster median filtering algorithm which,
when using a D x D filtering window,
takes o(D¥%[2+c]) time for any ¢ > 0 .
Uowever, by making better use of the fact
that windows of adjacent processors over—
lap extensively we are able to give an
optimal 9(D) algorithm. In a future
paper the author will consider a variety
of windowing operations on data stored in
mesh-connected computers and in pyramid
computers.

1. A.Y. Aho, J.Il. Hopcroft, and J.D.

Ullman, The Design and Analysis of
2= 2%

Algorithms, Addison~Wesley, 1074.

2. M™.J. Atallah and S.R. Kosaraju, A
generalized dictionary machine for
VLSI, Dept. E.E. Comp. Sci., Johns
Hopkins Univ.

3. J.L. Bentley and H.T. Kung, Two
papers on a tree-structured parallel
computer, Dept. Comp. Sci., Carnegie-
Mellon Univ., Rep. CMU-CS-79-142,
1979.

C.R. Dyer, A fast parallel algorithm
for the closest pair problem, Info.
Proc. Let. 11 (198CG), 49-52.

i~
.

5. C.R. Dyer, A quadtree machine for
parallel image processing, Dept.
Comp. Sci. Univ. Illinois at Chicago
Circle, Tech. Rep. KSL 51, 1981.

10.

11.

12.

13.

A.R. Hanson and E.M. Riseman,
Preprocessing cones: a computation-
al structure for scene analysis,
Univ. Mass., COINS Tech. Rep. 74C-7,
1974.

C.E. Kim and A. Rosenfeld, Convex
digital solids, IEEE Trans. P.A.M.I.
4 (1982), 612-618.

C.E. Leiserson, Systolic priority
queues, Dept. Comp. Sci., Carnegie-
Mellon Univ., Rep. CMU-CS-79-1153,
1979.

R. Miller, An efficient data movement
technique for the pyramid computer,
to appear.

D. Nassimi and S. Sahni, Finding
connected components and connected
ones on a mesh-connected parallel
computer, SIAM J. Comput. 9 (1980),
744-757.

T.A. Ottmann, A.L. Rosenberg, and
L.J. Stockmeyer, A dictionary
machine (for VLSI), IEEE Trans.
Comput. 31 (1982), 892-897.

B. Sakoda, Parallel construction of
polygonal boundaries from given
vertices on a raster, Dept. Comp.
Sci., Penn. State Univ., Tech. Rep.
csg1 1-21, 1981.

Q.F. Stout, Drawing straight lines
with a pyramid cellular automation,
Info. Proc. Let. 15 (1982), 233-237.

221

14,

15.

16.

17.

18.

19.

20.

Q.F. Stout, Mesh-connected computers
with broadcasting, IEEE Trans.
Comp., to appear.

S.L. Tanimoto, Towards hierarchical
cellular logic: design consider-
ations for pyramid machines, Dept.
Comp. Sci., Univ. Washington, Tech.
Rep. 81-02-01, 1981.

S.L. Tanimoto, Sorting, histogram-
ming, and other statistical opera-
tions on a pyramid machine, Dept.
Comp. Sci., Univ. Washington, Tech.
Rep. 82-08-02, 1982.

§.L. Tanimoto and A. Xlinger (eds.),
Structured Computer Vision: Machine
Perception Through Hierarchical
Computation Structures, Academlc
Press, 19&0.

C.D. Thompson and H.T. Kung, Sorting
on a mesh-connected parallel com-
puter, Comm. A.C.M. 20 (1977), 263-
270.

L. Uhr, Layered 'recognition cone"
networks that reprocess, classify,
and describe, IEEE Trans. Comp. 21
(1972), 758-768.

Two Dimensional Digital Signal Pro-
Cessing 11, Iransforms and Median
Filters, Springer-Verlag, 1981,
particularly the articles by B.I.
Justusson and S5.G. Tyan.

	p1
	p2
	p3
	p4
	p5
	p6
	p7
	p8

