
In Proc. 1985 International Conference on Parallel Processing, pp. 727–630.

Tree-Based Graph Algorithms for some Parallel Computers
(Preliminary Version)

Quentin F. Stout�

Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109 USA

Abstract
This paper gives several optimal mesh computer, VLSI, and
pyramid computer algorithms for determining properties of
an arbitrary undirected graph, where the graph is given as an
unordered collection of edges. The algorithms first find span-
ning trees and then use them to determine properties of the
graph. By using edges, instead of requiring an entire adja-
cency matrix, these algorithms use only�

�
e1=2

�
time on a

2-dimensional mesh, instead of the
(v) time required with
matrix input. Further, the edge-based algorithms extend natu-
rally to meshes of arbitrary dimensiond, finishing in�

�
e1=d

�

time. All of the times are optimal, and the algorithms extend
to VLSI and pyramid models.

1 Introduction

This paper gives a collection of optimal algorithms for deter-
mining various properties of an undirected graph, where the
graph is given as an unordered collection of edges. This is
the most flexible form of graph input and is usually the most
space efficient, and, as will be shown, also yields the most
time efficient algorithms for the computational models con-
sidered here. (In this paper, the space is either the number
of processing elements or the area on a chip.) All of the al-
gorithms are based on first finding a spanning tree for each
connected component, and then using it to determine proper-
ties of the graph. Aspanning forestconsists of a spanning
tree for each connected component.

The primary contribution of this paper is in producing a
collection of optimal algorithms for the general edge input
format. For serial computers, it has long been known that
many graph properties can be efficiently determined by us-
ing spanning forests, particularly when the forest is gener-
ated by a depth-first search [Ta]. Depth-first search does not
parallelize well [Re], but by alterating the algorithms often
any spanning tree can be used. For parallel computers this
approach has been used before [TV], and was utilized exten-

�Research supported by National Science Foundation Grant MCS-83-
01019

sively in [AK] to give several 2-dimensional mesh computer
algorithms for determining properties of graphs. However,
the algorithms in [AK] required that one start with an ad-
jacency or weight matrix, which implies that all algorithms
must take
(v) time, wherev is the number of vertices. For
important classes such as planar graphs this input format uses
the square of the area needed by edge input.

This paper gives algorithms for the problems considered
in [AK], plus additional problems, but eliminates the require-
ment of matrix input. (The algorithms will also work with
matrix input, or, indeed, with any standard form of graph
input.) As a reviewer and others have noted, it is a fairly
straightforward matter to convert the matrix algorithms in
[AK] to edge-based ones requiring�

�
e1=d log e

�
time for a

graph ofe edges stored in a d-dimensional mesh ofe process-
ing elements. Further, with such input any algorithm must
take


�
e1=d

�
time, so the main contribution of this paper is in

achieving optimality by eliminating the extra logarithmic fac-
tor. One important step is the optimal algorithm in [RS,St3]
which finds spanning forests in�

�
e1=d

�
time, versus the

well-known�
�
e1=d log e

�
algorithm of [NS]. Other tree op-

erations are based on repeated use of path compression, ran-
dom access read, and random access write [NS,MS1]. Most
of these tree operations were introduced in [St1,St3], and all
are optimal, finishing in�

�
e1=d

�
time.

Section 3 contains mesh algorithms for determining prop-
erties of trees, and Section 4 uses tree algorithms to derive
graph algorithms for meshes. In Section 5 it is shown that the
same algorithms are optimal for a physically realistic model
of VLSI, and in Section 6 it is shown that they can be used to
give good algorithms for a pyramid computer. Another use of
the mesh algorithms appears in [MS3]. Because of space lim-
itations, only sketches of proofs can be included. Complete
proofs will appear in the final version.

2 Terminology

Let d andn be positive integers, wheren = md for some in-
tegerm. A d-dimensional mesh (computer) of sizen consists
of n processing elements(PEs) arranged in a d-dimensional



integer lattice of edgelengthm, where each PE has commu-
nication links to its2d neighbors. (PEs along the sides have
fewer links.) The mesh is usually considered to be an SIMD
machine, although for the purposes of this paper it is irrele-
vant whether it is SIMD or MIMD. All operations, such as
addition or exchanging a word of data with a neighbor, take
unit time, and the word size is
(logn). Some basic mesh
algorithms appear in [AK,MS1,NS,RS,TK,Va].

By an algorithm beingoptimalwe mean that no algorithm
can be faster by more than a multiplicative constant. The
optimality of mesh algorithms taking�

�
n1=d

�
time follows

from the fact that information going from one corner of a d-
dimensional mesh of sizen to the opposite corner must cross
at leastd

�
n1=d�1

�
wires. For each problem considered here,

it is easy to show that there are instances in which data must
travel from one corner to the opposite one.

Let n be a positive integer which is an integral power of
4. A (2-dimensional)pyramid (computer) of size nconsists
of layers of mesh computers, with additional links between
the layers. The base is a mesh of sizen, the next layer is a
mesh of sizen=4, then a layer of sizen=16, and so on to the
apex, which is a mesh of size 1. Notice that a pyramid of size
n actually has(4=3)n � (1=3) PEs. Each PE is connected
to its four children on the layer below, and its parent on the
layer above, as well as to its four neighbors on the same layer.
The wordsize is again
(logn), and operations take unit time.
Some basic pyramid algorithms appear in [Mi,MS2,St2,Ag].

A graph will be given as a set of edges stored in an un-
sorted fashion one per PE in the mesh, or one per base PE in
the pyramid. When analyzing times on a d-dimensional mesh
of sizen, d will be considered to be fixed and the time will
be analyzed as a function ofn. Not all papers analyze times
in precisely this manner, but there are difficulties when vary-
ing d due to the fact that a PE in ad1-dimensional mesh is
different from a PE in ad2-dimensional mesh whend1 6= d2.

Only undirected graphs are considered in this paper. Given
a graphG = (V;E), whereV is the set of vertices andE is
the set of edges, thecyclic indexof G is the largest integers
such thatV can be partitioned into setsV0; V1; : : : ; Vs�1, so
that, for any edge(x; y) 2 E, if x 2 Vi theny 2 V(i�1)mod s.
G is said to bebipartite if the cyclic index is even. An edge
is a bridge edgeif its removal increases the number of con-
nected components, and a vertex is anarticulation point if
its removal (along with all incident edges) increases the num-
ber of components.G is biconnectedif for any two disjoint
vertices, there are at least two disjoint paths between them.

3 Tree Algorithms on the Mesh

The following result is used repeatedly:

3.1 Theorem [RS,St3] Given a graph stored one edge per
PE in a d-dimensional mesh of sizen, in �

�
n1=d

�
time a

spanning forest can be found, where finding a spanning forest
means that each PE has a flag, and the flag is set true if and
only if the PE’s edge is in the spanning forest. Further, this
time is optimal.

If a forest of rooted trees is being stored one edge per PE,
and if each PE knows which endpoint of its edge is closer
to the root, then we say the computer is storing anoriented
forest.

3.2 Theorem Given an unoriented forest stored one edge per
PE in a d-dimensional mesh of sizen, and given a vertex in
each tree which has been chosen to be the root, the forest can
be oriented in�

�
n1=d

�
time. Further, this time is optimal.

Sketch of proof: The algorithm follows the basic outline of
the algorithm in Theorem 3.1 [RS]. The “standard” parallel
version of Sollin’s component labeling algorithm, as in
[HCS], is used ford + 1 iterations, dividing the number of
unfinished “clubs” (in the terminology of [HCS]) by a factor
of 2d+1. These form “super vertices”. Each quadrant finds a
spanning forest for its super vertices, and then the spanning
forests of the super vertices and the clubs are combined at
the end. The [HCS] procedure gives each club a natural
orientation. When finished, the super vertices form a tree
which is then oriented by a recursive application of this
algorithm. This orientation is combined with that of the
clubs, rearranging part of each clubs’ orientation. Only a
single path in each club needs to change its orientation, and
path compression techniques handle this easily.

The next theorem shows that we can rapidly calculate
some functions defined on oriented forests. This is done with
a slight bit of generality, which unfortunately increases the
notation. It may be useful to keep the example at the end
of this paragraph in mind when examining the theorem. Let
S be some set and let� be an associative binary operation
with identity onS which can be computed in�(1) time. Let
F = (V;E) be a forest of rooted trees, and letL : V !S be
any map. DefineD :V !S by

D(v) = �fL(w) : w a descendant of vg;

and defineU :V !S by

U(v) = �fL(w) : w an ancestor of vg:

(If a set is empty, then the value is the identity element for�,
while if a set has just one element then the value is that ele-
ment.) For example, ifS is the natural numbers,� is addition,
andL is the constant 1 function, thenD(v) is the number of
descendents ofv, andU(v) is the depth ofv.

The following theorem is proven by an extensive use of
path compression, random access reads, and random access
writes.



3.3 Theorem Given an oriented forest stored one edge per
PE in a d-dimensional mesh of sizen, givenS, L, and� as
above, and given that a PE with edge(x; y) also contains
L(x) and L(y), then in �

�
n1=d

�
time D and U can be

calculated, meaning that a PE with edge(x; y) will also
containD(x); U(x); D(y); and U(y). Further, this time is
optimal.

3.4 Corollary Given an oriented forest stored one edge
per PE in a d-dimensional mesh of sizen, in �

�
n1=d

�

time each PE can determine the depth and height of each
endpoint of the edge it contains, and can determine the num-
ber of nodes in their subtrees. Further, this time is optimal.

3.5 Corollary Given an oriented forest stored one edge per
PE in a d-dimensional mesh of sizen, in �

�
n1=d

�
time the

mesh can determine both a preorder numbering and postorder
numbering for each tree. Further, this time is optimal.

Proof: The string generation algorithm in [St1] assigns
vertices to locations from which one can directly generate
preorder or postorder numberings. (The algorithm was
only given for a 2-dimensional mesh since the topological
transformation only made sense for 2-dimensional data, but
it extends naturally to other dimensions.) The algorithm in
[St1] requires that the depth and size of the subtree of each
vertex be known, which is provided by Corollary 3.4.

4 Graph Algorithms for the Mesh

The following theorem was announced in [St3].

Theorem 4 Suppose trees T1 and T2 are stored in a mesh of
sizen, with one edge of each per PE. Then in�

�
n1=d

�
time

the mesh can decide if T1 and T2 are isomorphic. Further,
this time is optimal. (This is actually two results: if the trees
both have roots, then it is rooted isomorphism which is being
decided, while otherwise it is unrooted isomorphism.)

Sketch of proof: For rooted isomorphism, [St1] showed that
the isomorphism could be decided in the indicated time if
each PE knew the depth and subtree size of each of the edge
endpoints stored in the PE. Corollary 3.4 shows that this in-
formation can be obtained for arbitrary trees.

For unrooted isomorphism the goal is to identify “natural”
roots, reducing the problem to rooted isomorphism. For the
root we use a node which minimizes the height of the result-
ing rooted tree. Such a node may not be unique (consider a
tree of only two nodes), but there are at most two such nodes
per tree. If each tree has a unique natural root, then apply the
rooted isomorphism, while if each tree has two candidates
then pick one ofT1’s candidates as its root and try both ways

of matchingT2’s candidates. (If one tree has a unique can-
didate and one has two candidates then they are not isomor-
phic.)

To find the root, pick any nodep as a root and apply
Corollary 3.4. Each PE can now determine, for each vertex
of its edge, if the vertex is on a path of maximal length
originating fromp. Either there are nodes which have two
children on such a path, in which case the root is betweenp
and the node of least depth with this property, or else there is
only a single path of maximal length, in which case the root
is along this path. In either case, a straightforward search can
locate it.

The next theorem follows the matrix algorithms of [AK]
quite closely. Those algorithms repeatedly used trees and to
determine properties of the graph, using several matrix oper-
ations. These operations are replaced by using the algorithms
of Section 3 to generate the needed information.

Theorem 5 Suppose a graphG is stored one edge per PE in
a d-dimensional mesh of sizen. Then in�

�
n1=d

�
time the

mesh can:

a) decide ifG is bipartite.

b) determine the cyclic index ofG.

c) find all the bridge edges ofG.

d) find all the articulation points ofG.

e) decide ifG is biconnected.

Further, all these times are optimal.

5 VLSI

A 2-dimensional mesh computer is one model of 2-
dimensional computation, and VLSI is another. Actually,
there are many different models of VLSI. See, for example,
[Ja] for a discussion of some of these and their relationships
to lower bounds for graph problems. We will consider a quite
realistic model in which there is sufficient area to hold all of
the information, the chip is a square with input/output ports
only along its border, and information has a finite velocity,
i.e., it takes
(s) time for information to travel along a wire
of lengths. (The finiteness of information velocity is often
ignored. See [BPP] for a discussion of information velocity.)

With these assumptions it is quite easy to show that the
minimal time to solve any problem considered herein is at
least the square root of the area. Notice that the 2-dimensional
mesh algorithms in this paper solved all the problems in time
which was the square root of the number of PEs. There are,
however, two principle differences between the mesh and our
VLSI model:



i) each edge, and each PE, requires�(logn) area.

ii) operations need�
�
log1=2 n

�
time.

For all of the problems considered in this paper, the in-
put size is�(n � logn) bits, i.e., it is a factor oflogn larger
than the “area” (number of PEs) of the 2-dimensional mesh.
Further, the VLSI algorithms will be a factor oflog1=2 n
slower than the 2-dimensional mesh algorithms. Thus we
will still have T = A1=2, which is optimal. Therefore all
of the 2-dimensional mesh algorithms in this paper also yield
optimal VLSI algorithms, at least for our model of VLSI.
(Further, if 3-dimensional VLSI ever becomes a reality, the
3-dimensional mesh algorithms yield optimal 3-dimensional
VLSI algorithms.)

6 Pyramids

The pyramid computer algorithms are a combination of the
mesh algorithms and the following result.

Theorem 6[Mi,MS2] a) Suppose a graphG with v vertices
is stored one edge per base PE of a pyramid computer of

sizen. Then in�
�
log(n) + v1=2

�
1 + log(n=v)

�1=2�
time a

spanning forest ofG can be determined.

b) Suppose the adjacency matrix of a graphG is stored in
natural order, one entry per PE, in the base of a pyramid
computer of sizen. Then in�

�
n1=4

�
time a spanning forest

of G can be determined.

Whether the pyramid has an adjacency matrix or unsorted
edges in its base, the mesh algorithms are tranported to the
pyramid by finding a spanning tree and then moving its edges
to the highest level withv PEs. At that level, mesh algorithms
taking�

�
v1=2

�
time can be run, in some cases requiring ad-

ditional information from the base. The movement up and
down uses pyramid data movement operations introduced in
[Mi,MS2]. Using this general transference technique from
the mesh to the pyramid, we obtain the following results first
noted in [Mi,MS2].

Theorem 7 Suppose a graphG with v vertices is stored one
edge per base PE of a pyramid computer of sizen. Then in

�
�
log(n) + v1=2

�
1 + log(n=v)

�1=2�
time the pyramid can:

a) decide ifG is bipartite.

b) determine the cyclic index ofG.

c) find all the bridge edges ofG.

d) find all the articulation points ofG.

e) decide ifG is biconnected.

Theorem 8 Suppose the adjacency matrix of a graphG is
stored in natural order, one entry per PE, in the base of a pyra-
mid computer of sizen. Then in�

�
n1=4

�
time the pyramid

computer can:

a) decide ifG is bipartite.

b) determine the cyclic index ofG.

c) find all the bridge edges ofG.

d) find all the articulation points ofG.

e) decide ifG is biconnected.

It seems that the algorithms in Theorems 7 and 8 are op-
timal, but currently the best lower bound known for pyramid
computer solutions of these problems is a factor oflog1=2 n
lower [MS2].

7 Conclusion

It has been shown that, given an arbitrary undirected graph
specified as an unsorted collection of edges, a d-dimensional
mesh computer can determine many properties of the graph
in time which grows as the communication diameter of the
mesh, which is the best that one can ask for. This is done
by first constructing a spanning forest, and then determining
properties of the forest and of the graph. This “tree algo-
rithms yield graph algorithms” approach has been used pre-
viously (e.g., [Ta,TV]). For 2-dimensional mesh computers
it had been previously used by [AK] for some of the prob-
lems considered here, but that paper required that the entire
adjacency matrix of the graph be given. This may signifi-
cantly increase the size of the mesh needed, and guarantees
that each algorithm must use time linear in the number of ver-
tices, rather than the square root of the number of edges. Of
course, the edge algorithms given here work if given an ad-
jacency matrix, but for important classes of graphs such as
planar graphs, trees, forests, trivalent graphs, and functional
digraphs, the number of edges grows as the square root of the
size of the adjacency matrix. In general, edge input is the
most efficient, and our contribution has been to optimize a
collection of algorithms for this input.

It was further shown that all the optimal mesh algorithms
give optimal VLSI algorithms. Finally, they also form the
core of efficient algorithms for the pyramid computer. It is
interesting that the mesh’s edge-input graph algorithms are
needed for the pyramid even when the pyramid starts with an
adjacency matrix. The reason for this is that the pyramid is
faster than the 2-dimensional mesh only when the amount of
data remaining can be rapidly reduced, for then this data can
be moved up the pyramid. Edge-based mesh algorithms per-
mit a more concise representation of spanning forests which



can be moved up to the middle level of the pyramid, but
matrix-based ones do not.

REFERENCES

[Ag] A. Aggarwal, A comparative study of X-tree, pyramid,
and related machines,24th Symp. on Found. Comp. Sci.
(1984), 89–99.

[AK] M.J. Attalah and S.R. Kosaraju, Graph problems on
a mesh-connected processor array,J. ACM 31(1984),
649–667.

[BPP] G. Bilardi, M. Pracchi, and F.P. Preparata, A critique
and appraisal of VLSI models of computation,Proc.
CMU Conf. VLSI Syst. Comp., H.T. Kung, R. Sproull,
and G. Steele, Eds. (1981), 81-88.

[HCS] D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate,
Computing connected components on parallel comput-
ers,C. ACM 22(1979), 461–464.

[Ja] J. Ja’Ja, the VLSI complexity of selected graph prob-
lems,J. ACM 31(1984), 377-391.

[Mi] R. Miller, Pyramid Computer Algorithms, Ph.D. thesis,
State University of New York at Binghamton, 1984.

[MS1] R. Miller and Q.F. Stout, Geometric algorithms for
digitized pictures on a mesh-connected computer,IEEE
T. on PAMI7 (1985), 216–228.

[MS2] R. Miller and Q.F. Stout, Data movement techniques
for the pyramid computer, submitted.

[MS3] R. Miller and Q.F. Stout, Varying diameter and prob-
lem size in mesh-connected computers,Proc. 1985 Int’l.
Conf. Parallel Proc., 697–699.

[NS] D. Nassimi and S. Sahni, Finding connected compo-
nents and connected ones on a mesh-connected parallel
computer,SIAM J. Computing9 (1980), 744–757.

[Re] J. Reif, Depth first search is inherently sequential,Info.
Proc. Letters20 (1985), 229–234.

[RS] J. Reif and Q.F. Stout, Optimal component labeling al-
gorithms for mesh computers and VLSI, to appear.

[St1] Q.F. Stout, Topological matching,Proc. 15th ACM
Symp. Theory of Comput.(1983), 24-31.

[St2] Q.F. Stout, Sorting, merging, selecting, and filtering on
tree and pyramid machines,Proc. 1983 Int’l. Conf. Par-
allel Proc., 214–221.

[St3] Q.F. Stout, Optimal component labeling algorithms for
mesh-connected computers and VLSI,Abstracts AMS5
(Jan. 1984), 148.

[Ta] R.E. Tarjan, Depth-first-search and linear graph algo-
rithms,SIAM J. Computing1 (1972), 146–160.

[TV] R.E. Tarjan and U. Vishkin, Finding biconnected com-
ponents and computing tree functions in logarithmic par-
allel time,Proc. 25th Symp. Found. Comp. Sci.(1984),
12–20.

[TK] C.D. Thompson and H.T. Kung, Sorting on a mesh-
connected parallel computer,C. ACM 20(1977), 263–
271.

[Va] F.L. Van Scoy, The parallel recognition of classes of
graphs,IEEE T. Computers29 (1980), 563–570.


