
In Proc. 1985 International Conference on Parallel Processing, pp. 697–699.

Varying Diameter and Problem Size
in Mesh-Connected Computers

(Preliminary Version)

Russ Miller� Quentin F. Stouty

Mathematical Sciences Elec. Eng. and Comp. Sci.
State University of New York University of Michigan
Binghamton, NY 13901 USA Ann Arbor, MI 48109 USA

Abstract
On a mesh-connected computer, moving data across the mesh
is the most time-consuming operation in many algorithms.
This time can be reduced by using a mesh with smaller di-
ameter, i.e., with fewer processing elements. To accomodate
inputs of the same size, this requires that the processors have
more memory. For image processing and graph theoretic al-
gorithms we analyze the time as a function of the mesh di-
ameter and problem size. We show that for many problems,
smaller diameters can yield faster algorithms, and that there
is a choice of diameter that is simultaneously best for several
of these problems. Further, for these problems and this num-
ber of processing elements (or any smaller number), the mesh
is an optimal interconnection scheme.

1 Introduction

Mesh-connected computers (hereafter calledmeshes) have
long been suggested for a variety of problems, and several
meshes have been built [DL,HF,Re,Ro]. Their nearest neigh-
bor connections reduce the interconnection costs, and many
input formats, such as matrices or digitized pictures, map nat-
urally onto the mesh. However, the mesh is often critisized
as being too slow, having a communication diameter which
grows as the square root of the number of processing ele-
ments, instead of logarithmically as occurs in some other in-
terconnection schemes. In this paper we show that if one re-
duces the communication diameter by using fewer processing
elements, then many problems can be solved more quickly.
While this fact is common knowledge for simple problems
such as finding a minimum, we show that it is also true for
higher level problems in image processing and graph theory.

�Current address: Department of Computer Science, 226 Bell Hall, State
University of New York, Buffalo, NY 14260 USA

yResearch supported by National Science Foundation Grant MCS-83-
01019 and Naval Research Lab. Contract 65-2068-85.

The standard (2-dimensional)mesh of size n(n a per-
fect square) is an SIMD machine in whichn processing el-
ements(PEs) are arranged in a square lattice. For1 �
i; j � n1=2; PE(i; j) is connected via unit time communi-
cation links toPEs(i � 1; j) andPEs(i; j � 1), if they ex-
ist. Each PE has a fixed number of words of memory, each of
length
(logn), and all operations take unit time. This model
appears in [DR,MS,NS,Ro,RS,St,TK].

There are many algorithms for a mesh of sizen which
finish in �

�
n1=2

�
time [DR,MS,NS,RS,St,TK]. This is not

surprising, for in this time then PEs can do�
�
n3=2

�
op-

erations, and for many of the problems considered there are
serial algorithms needing only�(n) or �(n � logn) opera-
tions. Unfortunately, it takes


�
n1=2

�
time for information to

cross the mesh, so the�
�
n1=2

�
time is necessary. The only

way to reduce the running time while keeping all the advan-
tages of a mesh is to use a smaller mesh. (One could add new
interconnections or busses, but these involve additional cost.)
That is, if the original problem hadn pieces of data initially
distributed one per PE in a mesh of sizen, we now consider
what happens if it is in a mesh of sizes, 1 � s � n, where
each PE is initially givenn=s pieces of data. This reduces the
diameter to2

�
s1=2 � 1

�
, but it sacrifices some of the paral-

lelism. For several problems, we analyze the fastest possible
algorithm as a function ofn ands, and determine the optimal
value ofs. To make the comparisons meaningful, the speed
of the PEs is fixed, and only the amount of memory given
each PE is changed, along with the number of PEs.

Throughout, all analyses consider worst-case time. Be-
cause of space limitations, proofs have been omitted or
sketched. Complete proofs will appear in the final version.

2 Bounds

For simple semigroup problems such as summing, finding the
minimum, parity, etc., there is an easy lower bound. First, no



PE can receive data from all other PEs in less than2�bs1=2=2c
time units. (Only a center PE can communicate with all oth-
ers this rapidly.) Second, it takes each PE at leastn=s time to
examine all of its initial data. Thus any nontrivial semigroup
operation requires at leastmax

�
2�bs1=2=2c; n=s

	
time. Fur-

ther, this bound holds for any problem of sizen (i.e., initially
havingn words of data) in which each PE must examine all
of its initial data, and in which there is at least one PE which
has to receive information which might originate in any of the
PEs. Such a problem is said to requireglobal communication.
This bound is minimized whens = �

�
n2=3

�
, so we obtain:

2.1 Proposition On a mesh of sizes, for any prob-
lem of size n requiring global communication, at least
max

�
2 � bs1=2=2c; n=s

	
steps are needed. Therefore, for a

problem of sizen, no matter what size mesh is used,

�
n1=3

�

time is needed.

If the problem is to compute a commutative semigroup op-
eration, and if the operation can be computed in unit time,
then for alln ands this time can be achieved. This is accom-
plished by having each PE first apply the operation to all of
its initial data, and then sending these values towards a center
PE, combining them in transit. For anyn ands, this com-
putes the semigroup operation in�

�
n=s+ s1=2

�
time, and in

particular finishes in�
�
n1=3

�
time whens = �

�
n2=3

�
. This

observation is a sort of folk theorem.
Unfortunately, not all problems with global communica-

tion can achieve this lower bound. For example, supposen
initial values are to be sorted. Even in the expected case, half
of the values on the right half of the mesh must cross to the
left half, and vice versa. There are onlys1=2 wires crossing
the centerline, so


�
n=s1=2

�
time is needed. Sincen � s,

this is minimized whens = n, for which a�
�
n1=2

�
algo-

rithm is known [TK]. Usings = �
�
n2=3

�
takes�

�
n2=3

�

time.
Hence no single value ofs as a function ofn can give

optimal solutions to all problems. However, we will show
that s = �

�
n2=3

�
is optimal for many nontrivial problems,

and therefore seems to be a good choice.

3 Images

In this section, the input to each problem is ann1=2�n1=2 ar-
ray of black/whitepixels(picture elements), which is thought
of as a white background with black figures. This is apicture
of size n. When stored in a mesh of sizes, each PE receives
a (n=s)1=2� (n=s)1=2 subsquare. Two black pixels areadja-
centif they share an edge, and areconnectedif there is a path
of adjacent black pixels from one to the other. Thecompo-
nent labeling problemis to assign a label to each black pixel,
where two black pixels receive the same label if and only if
they are connected. The set of black pixels with the same

label is afigure. [NS] gives a�
�
n1=2

�
time component label-

ing algorithm for the mesh of sizen. Notice that this problem
requires global communication.

3.1 Theorem There is an algorithm, independent ofs
andn, that labels the components in�

�
n=s + s1=2

�
time

when given a picture of sizen stored in a mesh of sizes,
1 � s � n.

Outline of the algorithm: Each PE uses a serial algorithm to
label its subsquare in�(n=s) time. Then the subsquares are
connected up, correcting labels of figures which are in two
or more subsquares. Such figures must touch the boundary
of the subsquare, so each PE need only correct


�
(n=s)1=2

�

labels in its subsquare. As in [NS], information concerning
such labels is joined together in increasingly larger squares.
The [NS] algorithm must be modified to account for the fact
that a PE may have many labels to correct, but this can be
done in the indicated time bounds.

Two important features of the above algorithm are the
linear-time serial algorithm which can be applied to initial
subsquares, and the fact that squares can be combined by con-
sidering an amount of data which grows as the perimeter of
the squares, i.e., as the square root of the size of the square.
These two features are present in many other problems.

For problems involving distance or convexity,PE(i; j) is
identified with the integer lattice point(i; j). Any lp metric
can be used in the algorithms below, although in practice usu-
ally just thel1 (“taxi-cab” or “city block”), l2 (“Euclidean”),
or l1 (“chessboard”) metrics are used. Thedistance between
sets A and Bis defined to bemin

�
d(a; b) : a 2 A; b 2 B

	
,

whered is the given metric. Given a black/white picture
with its components labeled, thenearest neighbor problem
is to determine, for each component, the closest figure to
it. The diameter problemis to determine the external diam-
eter of each figure, where the external diameter of a setA is
min

�
d(a; b) : a; b 2 A

	
.

Thesmallest box problem[FS] is to determine a (not nec-
essarily unique) smallest rectangle containing each figure.
Thearea problemis to determine the number of pixels in each
figure, and theperimeter problemis to determine the number
of pixels on the border of each figure.

The convex hull problemis to find the extreme points of
each figure, i.e., the corners of the smallest convex polygon
containing the set. (Other definitions of convexity are possi-
ble [KR].) Thedisjoint convex hulls problemis to decide, for
each figure, if its convex hull intersects the convex hull of any
other figure.

For a picture of sizen stored in a mesh of sizen, all of
the above problems can be solved in�

�
n1=2

�
time [DR,MS].

These problems have the two properties mentioned above for
the component labeling problem, which allows us to build the
following algorithms.



3.2 Theorem For each of the nearest neighbor, diameter,
smallest box, area, perimeter, convex hull, and disjoint
convex hull problems, there is an algorithm, independent
of n ands, that solves the problem in�

�
n=s + s1=2

�
time

when given a picture of sizen stored in a mesh of sizes,
1 � s � n.

4 Graphs

In this section the input is an adjacency or weight ma-
trix for a graph ofn1=2 vertices, where each PE receives a
(n=s)1=2 � (n=s)1=2 submatrix. This input format is agraph
of size n. Only undirected graphs with positive weights will
be considered. Thecomponent labeling problemfor graphs
is to assign a label to each vertex, with two different vertices
receiving the same label if and only if there is a path between
them. Theminimal spanning forest problemis to determine
the edges in a minimal weight spanning tree of each com-
ponent. It has been noted that an algorithm for one of these
problems is easily modified to solve the other [CLC,SJ].

On a standard mesh of sizen, both of these problems can
be solved in�

�
n1=2

�
time [AK], and on a serial computer

a simple depth-first search solves them in�(n) time. On a
mesh of sizes, if one uses the serial algorithm on the sub-
squares followed by the [AK] algorithms to combine squares,
the time will be�

�
n3=2=s

�
because of the matrix calculations

in [AK]. Replacing the matrix calculations with the edge-
based graph algorithms in [RS] allows one to rapidly combine
the squares, giving:

4.1 Theorem For the component labeling and minimal
spanning forest problems, there is an algorithm, independent
of n ands, that solves the problem in�

�
n=s + s1=2

�
time

when given a graph of sizen stored in a mesh of sizes,
1 � s � n.

There are several other graph problems which can be
solved in the same time, again using edge-based graph al-
gorithms to combine squares. We refer to [St] for definitions
and the appropriate edge-based graph algorithms.

4.2 Theorem There are algorithms, independent ofn ands,
that take a graphG of sizen on a mesh of sizes, 1 � s � n,
and decide ifG is bipartite, find the cyclic index ofG,
find all bridge edges ofG, find all articulation points of
G, and decide if all components ofG are biconnected, in
�
�
n=s+ s1=2

�
time.

5 Optimality

There are several ways to express the optimality of the re-
sults obtained in the previous sections. First we show there

is a choice ofs which is simultaneously optimal for all of
the problems considered, and then we show that the smaller
diameter mesh is an optimal interconnection scheme.

5.1 Theorem For each of the component labeling, nearest
neighbor, diameter, smallest box, area, perimeter, convex
hull, disjoint convex hulls, component labeling for graphs,
minimal spanning forest, bipartite, cyclic index, bridge
edge, articulation point, and biconnectedness problems, if
s = n2=3 then there is an algorithm solving the problem in
�
�
n2=3

�
time. Since each of these problems requires global

communication, this is an optimal choice ofs for all of them.

Suppose an algorithmA takesT (n; s) time to solve a
problem of sizen on a mesh of sizes. A is said to have
linear speed-up in the range1 � s � U(n) if there are
positive constantsC andD, independent ofn and s, such
thatC � s � T (n; 1)=T (n; s) � D � s for arbitraryn and
1 � s � U(n). An algorithmA is (worst-case)optimalfor a
uniprocessor if there is a positive constantC so that, for any
sizei of input, for any algorithmB solving the same problem,
the worst-case time forB on an input of sizei is at leastC
times the worst-case time forA on an input of sizei.

5.2 Theorem For each of the problems mentioned above,
there is an algorithm, independent ofn ands, that is optimal
for a uniprocessor (s = 1) and that exhibits linear speed-up
in the range1 � s � n2=3.

Perhaps the most surprising feature of these algorithms
is that any parallel computer solving any of the problems
mentioned above must do
(n) calculations, no matter how
many PEs there are nor how they are interconnected. For
1 � s � n2=3, a mesh of sizes does only�(n) calculations
when using the above algorithms, giving the following result:

5.3 Theorem For each of the problems mentioned above,
given a problem of sizen, the mesh of sizes is an optimal
interconnection scheme among all computers withs PEs
for 1 � s � n2=3, meaning that there is a constantC
which depends only upon the problem, such that any other
computer withs PEs (with the same instruction set and speed
of operation for each instruction) must take time which is at
leastC times that used by the mesh.

6 Summary

For image data and graph data, we have analyzed the effect
of using a mesh of sizes on a problems of sizen, where1 �
s � n and each PE has
(n=s) words of memory. We have
shown that, for many problems, there is a speed-up possible
by using a mesh withs < n, and that choosings = n2=3 gives
optimal times. Further, for these problems and this choice of



s (or any smaller value), the mesh achieves linear speed-up
and is an optimal interconnection scheme.

For some reason, meshes with extra memory per PE have
not had much attention, though there are notable exceptions
such as the Illiac IV. In particular, most image processing
meshes have been built with very little memory per proces-
sor, and discussions of these machines often concentrate on
their speed for local tasks, such as edge detection, which
do not require global communication. We believe that the
problems considered here are more indicative of higher-level
problems, and that building image processing machines with
more memory per PE will decrease the total time needed to
analyze a picture.

However, it must be determined whether usings < n will
slow down input/output operations, and for some problems,
such as sorting, we have shown that the algorithms must be
slower whens < n. The question of whether overall, in some
“standard” mix of problems, choosings = n2=3 is best will
depend on more analysis, and requires a better view of the rel-
ative importance of various problems. Whatever the results,
it will be useful to have more analyses which consider the sit-
uation when input size exceeds the number of PEs, since the
owner of any given machine sees the problem sizes increase
rapidly.

References

[AK] M.J. Atallah and S.R. Kosaraju, Graph problems on
a mesh-connected parallel processor array,J. ACM 31
(1984), 649–667.

[CLC] F.Y. Chin, J. Lam, and I.-N. Chen, Efficient parallel
algorithms for some graph problems,C. ACM25 (1982),
659–665.

[DL] P.E. Danielsson and S. Levialdi, Computer architec-
tures for pictorial information systems,IEEE Computer
14 (1981), 53–67.

[DR] C.R. Dyer and A. Rosenfeld, Parallel image process-
ing by memory augmented cellular automata,IEEE T.
on PAMI3 (1981), 29–41.

[FS] H. Freeman and R. Shapira, Determining the minimal-
area encasing rectangle for an arbitrary closed curve,C.
ACM 18 (1975), 409–413.

[HF] K. Hwang and K-s. Fu, Integrated computer architec-
tures for image processing and database management,
IEEE Computer15 (1982), 51–60.

[KR] C.E. Kim and A. Rosenfeld, Digital straight lines and
convexity of digital regions,IEEE T. on PAMI4 (1982),
149–153.

[MS] R. Miller and Q.F. Stout, Geometric algorithms for
digitized pictures on a mesh-connected computer,IEEE
T. on PAMI7 (1985), 216–228.

[NS] D. Nassimi and S. Sahni, Finding connected compo-
nents and connected ones on a mesh-connected parallel
computer,SIAM J. Comput.9 (1980), 744–757.

[Re] A.P. Reeves, Parallel computer architectures for image
processing,Comp. Vision, Graphics, and Image Proc.
25 (1984), 68–88.

[Ro] A. Rosenfeld, Parallel image processing using cellular
arrays,IEEE Computer16 (1983), 14–20.

[RS] J. Reif and Q.F. Stout, Optimal component labeling al-
gorithms for mesh computers and VLSI, to appear.

[SJ] C. Savage and J. Ja’Ja, Fast, efficient parallel algorithms
for some graph problems,SIAM J. Comput.10 (1981),
682–691.

[St] Q.F. Stout, Tree-based graph algorithms for some paral-
lel computers,Proc. 1985 Int’l. Conf. on Parallel Proc.,
727–730.

[TK] C.D. Thompson and H.T. Kung, Sorting on a mesh-
connected parallel computer,C. ACM 20 (1977), 263–
271.


