Proc. 1988 International Conference on Parallel Processing, vol I1I, Penn. State U., pp. 104-107

CONSTANT-TIME GEOMETRY ON PRAMS
Preliminary Version

Quentin F. Stout
Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122 USA

Abstract

Given n points chosen uniformly and independently from the unil
square, it is shown that a parallel random access machine (PRAM)
with n processors can solve several geometric problems in constant
expected time, achieving linear speedup. The PRAM is assumed to be
synchronous, with concurrent read and “‘collision detecting” write,
where if two or more processors write (o the same memory location
simultaneously then the memory value becomes “collision”. Problems
solvable in constant expected time include determining for each point
whether it is an extreme point of the convex hull, determining for each
point if it is dominated by any other points, determining for each domi-
nated point a maximal point that dominates it, finding the closest pair
of points, and finding the furthest pair of points. These results extend
io points chosen uniformly from the unit cube in d-dimensional space,
and to many nonuniform distributions.

1. Introduction

It has well-known that synchronous concurrent read, concurrent
write parallel random access machines (CRCW PRAMS) are strictly
more powerful than most other parallel computers. For example, ann
processor CRCW PRAM can determine the minimum of # numbers in
©B(log log n) time [Val], while it is easy to show that on a PRAM with
either an exclusive read (ER) or an exclusive write (EW), or on a dis-
tributed memory machine, at least Q(log n) time is needed. However,
Valiant's results do not really need the full power of concurrent writes,
and we show that a weaker property, here called detecting write (DW),
can solve many problems equally rapidly. DW is intermediate between
CW and EW, in that if two or more processors wrile 1o the same mem-
ory location at the same time, then the value becomes “collision™, no
matter what values were being written. Valiant's approach can be util-
ized on a CRDW PRAM and still finish in only 8(log log n) time.

It is also well-known that some geometric problems involving data
known to be chosen from a uniform distribution can be solved faster,
in the expected case, then the same problems for arbitrary data. For
example, n points chosen uniformly and independently from the real
interval [0,1] can be serially sorted in ©(n) expected time, as opposed
to the Q(xn log n) expected time for comparison-based sorts, Given n
points chosen uniformly and independently from the unit square in
2-space, the convex hull and nearest neighbor of each can be deter-
mined by a serial computer in 8(n) expected time [BeSh, BWY], as

104

opposed to the C(n log n) time needed for arbitrary planar data sets
[Yao].

This paper shows that by combining the synchronous CRDW
PRAM model with use of randomization in the algorithms and data
sets generated randomly via uniform distributions, several geometric
problems can be solved in constant expected time. Note thal the best
processor CRCW PRAM algorithm known for sorting n points chosen
uniformly from [0,1] takes &(log) time, i.c., it is not known how to
sort such data sets any faster than arbitrary data sets. Since determin-
ing the extreme points of the convex hull of a set of points in the plane
requires as much time as sorting [Yao], this would seem to imply that
it takes Q(log n) time for a CRCW PRAM to determine which points
are extreme points, cven when the data is generated from a uniform
distribution. However, the proof that determining extreme points is as
hard as sorting holds only for a worsi-case analysis, and we will show
that the extreme points can be determined in constant expected time in a
CRDW PRAM with a linear number of processors. To the best of our
knowledge, these are the first constant expected-time algorithms for
these problems on any parallel machine with only a linear number of
ProCessors.

Because of length limitations, results will be given with only
skeiches of their proof. The algorithms involve doing preliminary
work which, with high probability, reduces the data sel to a small
number of points remaining to be considered. For these points, the
Processor to point ratio is very high and significanily different tech-
niques can be utilized. However, the remaining points must be first
moved together into a small array so that all the processors can locate
them and help in the processing. Usually the points would be packed
into the initial positions of the array, but this would take more than
constant time. Therefore the array is made larger than the expected
number of points remaining, and the points are mapped to random
locations. The array must be large enough so that with high probabil-
ity no two points are mapped to the same location, but it must also be
small enough so that the processor o array size ratio remains suffi-
ciently high.

The algorithms also have the property that if a step is reached
where something undesired happens, then they resort to a standard
worst-case polylogarithmic time CREW PRAM algorithm. Since this
happens with very small probability, the expected time remains 8(1).

Throughout, no attempt has been made to optimize constants.

2. Results

The phrase randomly chosen points will mean points ¢hosen inde-
pendenily and uniformly on the unit square [0,1] x [0,1] in Euclidean
2-space. Algorithms will also require that processors (PEs) generate
pseudo-random integers in given intervals. It is assumed that these
can be computed in constant time, and that they are uniformiy and
independently distributed on the interval. Distance will be measured
with the Euclidean metric, though any other Lp~me.tric could be used.
A point in a finite set § is an extreme point of § if it is one of the cor-
ners of tfie smallest convex polygon containing 5. The point (xp,y()
dominates the point (x,,y,) if X, 2 X, and yq > y,. A point is maximal
in a set if it is not dominated by any other point in the set.

The following lemma is used whenever many points have been
eliminagied from further consideration, and those remaining mus! be
compressed into a small array so that processors can find them. If the
expecied number of points remaining is k, then the array will be at
least of size k2. Each processor holding such a point must find a place
in the array to put the point.

2.0.1 Lemma Ona CRDW PRAM of k processars, in 8(1) time
each can probably be allocated a unique position in an injtialized inte-
ger array of £2 positions, with probability of failure o(k 0-5),

Sketch: Suppose each position of the integer array is initialized to -1.
Each PE writes its ID (a unique positive integer) to a vandom array
posilion, and then reads that position. If it reads its ID then that is its
allocated position, while otherwise a conflict occured. To determine if
any processors experienced conflicts, PE 0 writes "fafse” (o a boolean
variable problems. Next, if any PE experienced a conflict it writes
"true” 1o problems, while otherwise it pauses. Now all PEs read
problems, and are finished if and only if it is false. Otherwise (i.c.,
il it is wrue or conflict), another round is repeated by those PEs without
allocated positions, where now each such PE first reads the location it
picked and does not write (o it if it is already allocated. The process is
repeated 3 times. One can show that the probability that some PE still
has not been allocaled g position is ofk -03),

The proof of the lemma can be extended to show that for any > 1
and b > (), there is a constant C(a,b) such that k processors can be allo-
cated a position in an array of & positions in C(a,b) ilerations, with
probability of failure o(k).

2.1 Maximal Points and Extreme Points

The following lemma is based on a modification of Valiant's observa-
tion that a synchronous CRDW PRAM of k2 processors can determine
the maximum of k values in constant (worst-case) time, The reason
for including “Not a Point"” as a value is because later algorithms will
place a few points into a large array, and hence many entries wiil not
correspond to points.

105

2.1.1 Lemma In a CRDW PRAM of n processors, suppose each
entry of a global array p[0..x1/3-1] contains a point or the value NAP
(Not A Point). Then in constant worst-case time the maximal points
can be determined, and for each nonmaximal point a maximal domin-
ating point can be determined.

Proof: Let s=n1/3, and assume that arrays maximal:[0..s-1] of boolean
and dominator:[0..5-1] of poin) are initialized 1o trve and NAP, respec-
tively. When finished, maximal(i] is true if and only if p[i] is a maxi-
mal point, and if p(i] is a nonmaximal point then dominator{i] is one of
its maximal dominators. Each PE executes the following algorithm,
where { repregents the index of the PE (0 £i < p-1), a local variable
which is already initialized. Other local variables in each PE are i1, i2,
and i3. A temporary global boolean array T:[0..s-1, 0..5-1] is also
used. Throughout, whenever conditional instructions occur where
some PEs may take one branch and others take the other branch, i1 is
implied that pauses are inserted so that all PEs complete each branch in
the same time,

1. Read pi], and if it is NAP then write false to maximal[i].

2. Letil=i div s i2=(i div) mod s, and i3=i mod s.

{Notice that for each i1,i2,i3 triple with 0<i1,i2,i3<5-1,
there is exactly one PE with that triple}.

3. Ifi3=0) then write true to T[i1,i2]. (At the end of step 5,
T1i1,i2] will still be true only if p{i2] dominates pfil].)

4. Read p[il], p[i2], and p[i3]. If p[il] or p[i2] are not points,
or if p[i2] does not dominate p[il], then write false to
TIil,i2] and go 1o 6.

5. Otherwise, if p[i3] is a point and p[i3] dominates plil] and
13<i2 then wrile false to T[il,i2]. [This signals that, even
though p[i2] could be used to show that pfil] is not maximal,
there is a dominating point of smaller index and p[i2] should
not be used. It doesn't matter whether T[i1,i2] ends up with
the value false or *‘collision™].

6. If i3=0 then read T[i1,i2], and if it is true then write false to
maximal[il].

7. [At this point, maximal is correctly determined for all
positions. Now for each nonmaximal point we locate the
maximal dominator of minimal index. These steps are
similar to steps 3-6}

If i3=0 then write true to T[il.i2].

8. Read maximal{i2] and maximal(i3). ¥ pfil}or pli2] is not a
point, or if p(i2] does not dominate p[i1], or if p[i2] is not
maximal, then write false to T[i1,i2] and go to 10.

9. Otherwise, if p[i3] dominates p[il], p[i3] is maximal, and

i3<i2 then wrile false 1p T[i1,i2).

I 3= then read T[il,i2], and if it is true then write pli2] to

dominator[il].

10.

Since each step takes constant time, the algorithm finishes in constant
time.

Figure 1

2.1.2 Theorem On a CRDW PRAM with n processors, given a
set of # randomly chosen points, in constant expected time it can be
determined which points are maximal. Further, in constant expected
time, for each dominated point one of the maximal points dominating it
can be determined.

Sketch: A sequence of steps is used to continually reduce the number
of candidate extreme points for the next step. First it is determined if
there are any points in the "corner” [1-n%45,1] x [1-n"045,1]. With
probability close to 1 there are some, but not more than n%11, If there
are points in the corner, then they are moved to an array of size 13,
and the maximal points are determined. In this set, the points with
greatest x-coordinate and greatest y-coordinate are put in prespecified
locations. Every PE i reads them and determines if the i* point is
dominated by them. If so the point is marked as not maximal, and
dominator is set.

For those remaining there are two groups: those in section A and
those in section B of Figure 1. These are treated similarly, so only A
will be discussed. Now it is determined if there are any points in A
with x-coordinates in [1-n-93,1-2"045], With high probability there

are some, but not more than #%11

. These are also moved to an array
of size n and the maximal points determined. Then the point with
the largest y-coordinate of this set is read by all PEs corresponding to
points not yet dominated, and if they are dominated by this point they
set maximal and dominator to appropriale values. This leaves a set A'
as in Figure 2.

The process is repeated using regions with x-coordinates in the
ranges [1-2°055,1-2°05), [1-2°0-6,1-1°055] ___ [0,1-n°027]. With
probability o(z"%-%1) each step is completed successfully. If any step
does not complete successfully (i.e., either there are no points in the
region, or else the PEs corresponding to the points cannot be allocated
a position in the array of size a1/ in constant time) then all PEs revert
o using a deterministic CREW PRAM algorithm taking 8(log n)
worst-case time [AtGeo]. The total expected time is 8¢(1).

A similar approach can be used to determine extreme points of the
convex hull of the points, starting at the corners and working inwards.
In case of failure al some step, CREW PRAM algorithms which finish
in polylogarithmic worst-case time [ACGOY, AtGo, MiSt] are used.

106

+ Maximal point

Figure 2

2.1.3 Theorem Onz CRDW PRAM with n processors, given a sel
of n randomly chosen points, in constant expected time it can be deter-
mined which points are extreme points. Further, in constant expected
time, for each point which is not extreme, three extreme points which
contain the point in the triangle they form can be determined (or two
can be determined, if the point is on the boundary of the convex hull).

Let £ denote the number of extreme points. One can show that the
expected value of E is 8(log n) [ReSu], which implies that, for any
integer k, with probability close to 1 the ratio n/E is Q(E*). Using
this, in constant expected time one can apply algorithms which
examine all possible combinations of & of the extreme points. This
easily yiclds the following.

2.1.4 Corollary On a CRDW PRAM with n PEs, given a setof n
randomly chosen points, in constant expecied time the maximal dis-
tance between any pair of points can be determined, and enclosing rec-
tangles and circles of minimal area can be determined.

2.2 Closest Pair

A significantly different problem is to determine the closest pair of
points. For this problem there is no immediate technique to eliminaie
points, since even if n-1 points are known it is not possible 10 deter-
mine the closest pair without knowing the last point, and the closest
pair might consist of the last point and any of the previously examined
points. However, one can reduce the expected number of pairs for
which the distance must be determined, by partitioning the unit square
into subsquares of edgelength L. If it is known that at least one square
has two points in it, then the answer is known 1o be no more than V2
L. In this situation, if a point is in square § in Figure 3, then it may be
part of the closest pair only if there are points in § or the 20 nearby
squares. By choosing L to be n%-%, then with probability close to 1
there is a square with at least 2 points, no square has 4 or more points,
and the number of squares with 2 or more points is o(n™-1).

Figure 3. The 20 neighbors with points within ¥2 L of S.

Using this fact, first poinis are writlen 1o their squares. All points
in squares with collisions, or which are in one of the 20 squares near a
square with collisions, are written to a new array of size n%2. The
closest pair within this new array is determined, and also the closest
pair involving a square and one of its 20 nearby squares, where all 21
have at most one point in them. The closest pair for the original set is
the closer of these two pairs. As before, if any steps cannot be com-
pleted properly, then the PEs resort to using a polylogarithmic CREW
PRAM algorithm [AtGo].

.2.1 Theorem On a CRDW PRAM with n processors, given a sct
of n randomly chosen points, in constant expected time a closest pair
can be determined.

3. Final Remarks

This short preliminary version of the paper skeiches some ways to
accomplish constant time algorithms using random data on a synchro-
nous CRDW PRAM. To the best of my knowledge, these are the first
constant expected time algorithms for these problems on any parallel
model using a linear number of processors. It seems that the CRDW
PRAM is the "weakes!” parallel computer which can solve these prob-
lems in constant time using only a linear number of processors, bul it
is not clear how to formalize this properly, let alone prove it.

Many existing algorithms for CRCW PRAMs can be modified to
work in the same time on CRDW PRAMs. This occurs because the
only concurrent writes they utilize have the property that whenever two
PEs are writing to the same memory location at the same time, then
they are writing the same value. Such algorithms can often be con-
verted to a scheme as in Lemma 2.0.1, where “conflict” is as useful as
the value that was being written. However, not all CRCW PRAM
algorithms are of this form, and more work nesds to be done to under-
stand which problems can be solved faster on a CRCW PRAM than on
a CRDW PRAM.

The algorithms given herein extend quite naturally higher dimen-
sional data. For any fixed dimension 4, given n random poinis chosen
from the d-dimensional unit cube, an n processor CRDW PRAM can
solve the d-dimensional domination, extreme points, furthest pair,
smallest enclosing box, smallest enclosing sphere, and closest pair
problems in constant expected time.

The algorithms can also be easily extended to many nonuniform
distributions, such as the d-dimensional normal distribution. How-
ever, some distributions will cause difficulties because the number of
maximal or extreme points may be too large to permit the use of
techniques which assume a high processor/point ratio. For example,
using the uniform distribution on the unit sphere will result in &(n1/2)
extreme points, on average [Rayn], rendering the approach of
Corollary 2.1.4 invalid.

Acknowledgements

This research was partially supported by Incentive for Excellence
Awards from Digital Equipment Corporation, and by National Science
Foundation grant DCR-85-07851.

References

[ACGOY] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and
C. Yap, "Parallel computaticnal geometry”, Proc. IEEE Symp.
on Found. Comp. Sci, 26 {1983), pp. 468-477.

[A1Go] ML]. Atallah and M.T. Goodrich, "Efficient parallel solutions
to geometric problems”, CSD-TR-504, Dept. of Comp. Sci.,
Purdue Univ., 1985.

[BeSh] I. Bentley and M.I. Shamos, "Divide and conguer for lincar
expected time”, Info. Proc. Let. 7 (1978), pp. 87-91.

[BWY] I. Bentley, B.W. Weide, and A.C. Yao, "Optimal expected
Lime algorithms for closest point problems”, ACM Trans. Math.
Software 6 (1980), pp. 563-580.

[MiSt] R. Miller and Q.F. Stout, "Parallel algorithms for convex
hulls”, Proc. Comp. Vision and Pat. Recogn. 1988, 10 appear.

. [Rayn] H. Raynaud, "Sur 'enveloppe convexe des nuages de points

107

aleatoires dans R". I", J. Appl. Prob. 7 (1970). pp. 35-48.

[ReSu] A. Renyi and R. Sulanke, "Uber die konvexe Hulle von n
zufallig gewahlten Punkten, I", Z. Wahrschein. 2 (1963), pp.
75-84,

[Val] L. Valiant, "Parallelism in comparison problems"”, SIAM J.
Computing 4 (1975), pp. 348-355.

[Yao] A.C. Yao, "A lower bound to finding convex hulls", /. ACM
28 (1981), pp. 780-789.

