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Improved Prefix Encodings of the Natural Numbers 

QUENTIN F. STOUT 

Aktmct--Two classes of encodhgs of the ~tural numbers are intr* 
duced, all of which are universal asymptotically optimal. The asymptoti- 
cally best encodings in these classes are deterndned and are found to 
improve on previous emmbgs. The resuM.3 are related to channel capacity 
and unbounded search@. 

I. INTRODUCTION 

For example, R,(lOOO)= 100 1010 1111101000, where for reada- 
bility there are blanks between [log( ]log lOOO] + 1) J + 1, 
[log 1000 J + 1, and 1000. Each such group is called a block. The 
decoding is quite simple. Suppose R, was used and the first ten 
bits are 1101000110. Since we are using R, we look at the first 
three bits, which represent a six. The first bit of the second block 
is a 1, so it is not a message string. Therefore we look at the six 
bits of the second block, which represent 35. The next bit is a 0, 
so the 35 bits following the 0 are the first message string. 
Following those 35 bits would be a block of three bits starting 
the representation of the second message. 

Suppose there is an infinite sequence cri, a,, . . . of message 
strings to be transmitted in the order given through a noiseless 
channel. Suppose there are no a priori bounds on the length of 
each message, so a procedure must be devised to separate one 
from the next. Usually one adds a new symbol, a “comma”, to 
separate the messages and recodes each message in this extended 
character set. Unfortunately this makes each string grow by an 
amount proportional to its length, resulting in a fixed decrease in 
channel capacity. If the messages are very long then better 
encodings have been devised by Elias [2] and Even and Rodeh 
[3]. In Elias’ terminology, these encodings are universal arymptot- 
ical& optimal, i.e., for each encoding there is a function R: 
(0, co)+(O, ma), with lim,,, R(t)= 1, such that, for any set of 
numbers with probability distribution P and entropy H(P), if 
E(P) is the resulting average codeword length then 
E(P)/max(l,W(P))< R(H). 

R, is the code R of Even and Rodeh. R, is similar to Elias’ 
“penultimate” code (there is no “ultimate” code), except that his 
code uses R(]log n J) instead of R( [log n] + 1) in the recursive 
step. His code is intermediate between R, and the S, code we 
introduce later. 

Notice that if I< k, then R,(n) has at least as many blocks as 
R,(n), and all blocks but the leftmost one of R,(n) are also in 
R,(n). If the leftmost block of R,(n) represents 2’- 1 or less 
than R,(n) and R,(n) will have the same number of blocks and 
the leftmost block of R,(n) will be k-l bits shorter. Therefore 

min,[length (R,(n))-length(R,Jn))]=Z-k. (1) 
On the other hand, if the leftmost block of R,(n) represents 
2’-- 1, then on reading from right to left R,(n) and R,(n) will be 
identical until R,(n) ends, at which point R, will still need to 
encode k. Therefore 

This correspondence considers a class of prefix codes which 
includes those of Elias and Even and Rodeh as special cases. We 
define an ordering of codes called “improvement” and use it to 
analyze this class. A second class is introduced which is some- 
what better than the first, removing a redundancy in the first 
class. We also show how a code in either class determines a 
search algorithm for unbounded searching. Since better codes 
yield better search algorithms, this work gives a slight improve- 
ment upon the search algorithm of Bentley and Yao [ 11. Finally, 
some of these codes are compared over a realistic range of 
message lengths. 

max,[length(R,(n)) - length(R,(n))] = length(R,(k)). (2) 
Further, R, will be length(R,(k)) bits longer than R, for any xi 
defined by x, = 2k - 1 and xi+ r = 2% - 1. Therefore 

lim sup,,[length(R,(n)) -length(R,(n))] =length(R,(k)). (3) 

Finally, if R,(n) has two or more blocks then the leftmost block 
represents at least k+ 1. Rk takes k bits to encode this and R, 
takes length( R,(k + l)), giving 
lim inf,,[length(R,(n)) - length(Rk(n))] 

II. R, CODES =length(R,(k+ I))-k. (4) 

For simplicity, all messages and codes are binary and all 
logarithms are to the base 2. If the messages are u,, u,, . . . , and 
if E is an encoding function, then our resulting message stream 
will be 

E(length( u,))Ou,E(length( u,))Ouz- . . . 

This simplifies the description of the code, as well as the actual 
encoding/decoding, because we need to encode only natural 
numbers. The 0 signals the end of E(length( (I)) and the start of u 
in a manner that is made clear below. We allow for the possibil- 
ity that length(u)= 0. This differs from Even and Rodeh, who 
use the null message to signal the end of all messages. One could 
use that interpretation in our codes also, but it is not required. 

Let B(n,l) denote the l-bit binary representation of n, where 
0 <n < 2,- 1. For example, B(6,5)=00110. The standard binary 
representation of n (n > 1) is B(n, [log n] + 1). Note that the 
leftmost bit of B(n, ]log n J + 1) is a 1. For any I > 2, we define 
an encoding R, of the natural numbers by 

We are interested in long messages, which motivates the 
following definitions: an encoding A of the natural numbers is a 
weak improvement of encoding B if lim inf,llength(B(n))- 
length(i(n))] > 0 and lim sup,[iength( B( n)) - length(rl(n j)] > 0. 
A is an imurovement of B if lim inf-llenath( B(n)1 - 
length(d( n))] 5 0. (It is possible to base a defiztion’of improve- 
ment in terms of the rate at which the R function in Elias’ 
definition approaches 1, but for our purposes the definitions 
given are most useful.) Facts (3) and (4) show that R, is an 
improvement of R,, R r is a weak improvement of R, (and 
hence an improvement of R,), R4 is an improvement of Rz, and 
R, is a weak improvement of R,. Straightforward checks show 
that these are the only R, codes which weakly improve R, or R,. 

Theorem I: If Rk is a weak improvement of R,( k#l) then 
I=2 or 1=3. 

R,(n) = 
1 

B(n,l), ifO<n<2’-1, 
R&log nJ + l)B(n, llog n] + I), if n > 2,. 

Proof: Because of (3) we may assume k > I. Suppose 2,- 1 > 
k. Then length( R,(k+ 1)) = I, so by (4) R, is not a weak im- 
provement of R,. Suppose k > 2’- 1 and I > 4. Then any n > k + 1 
such that the leftmost block of Rk( n) represents k + 1 will have a 
representation k - length( R,( k + 1)) bits shorter in R,. By (1) this 
is at least 
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k-(length(R,(k+l))-2+Z). (*) 

I Q log( k + 1), so (*) > k + 2 - length( R 2( k + 1)) - log( k + 1). Since 
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Z>4, k> 15. For m> 12, m-length(R,(m))-log(m)>O, so (*) 
> 1. Therefore Rk is not a weak improvement of R,. Cl 

III. S, CODES 

The work of Bentley and Yao [ 1, theorem A] shows that there 
is not much room for improvement upon the R,. Elias mentions 
one possibility but notes that no improvement would occur until 
the messages are longer than Eddington’s estimate of the num- 
ber of particles in the universe. Nonetheless, for small I the 
following codes offer some realistic improvement. For I > 2 
define S, by 

S,(n)= Btn, 9, if O<n<2’- 1, 
SItllog nJ -W(n, llog nJ + I>, ifn>2’. 

Decoding is similar to R, and will not be given. The S, code 
removes the redundancy in RI whereby a 1 in the (I+ 1)st bit 
implies that the first I bits represent a number which is at least 
I+ 1. The S, are complete prefix codes while the R, are not. Elias’ 
code is also complete, but his elimination of redundancy favored 
very small numbers. 

Theorem 2: For any I > 2, 

a) min,[length(R,(n))-length(S,(n))]=O, 
b) lim inf, [length( R ,( n)) - length( S,( n))] = 0, 
c) lim sup,[length(R,(n))-length (S,(n))]= 00. 

Therefore S, is a weak improvement of R,. 

Proof: a) is obvious. To show b), define the following 
sequence: n,=2’-1, and nk+,=2”k-1. Then R,(n,+,) is I+ 
Zik,,ni bits while S/(nk+i) is B(n, -I- 1, Z)B(n, - l- 
4 nJ- * * B(n,+,, n,), which is also I+Xf=‘,,ni bits. To show c), 
let n be such that S,(n) has k blocks, each of which are all ones. 
Then R,(n) has at least k+ 1 blocks where each but the first and 
last is one bit longer than the corresponding block of S,(n). q 

Since their encoding/decoding algorithms are nearly identical, 
S, is to be preferred to R,. Transitivity shows that S7 is a weak 
improvement of R3 and an improvement of R,, S, and S, 
improve R,, and Ss weakly improves R,. Further, if 1 <k, then 
lim sup,, [length( S,( n)) - length( S,( n))] = co. Somewhat surpris- 
ingly, that is all that can be said, as the following theorem 
indicates. Its proof is omitted, being similar to Theorems 1 and 
2. 

Theorem 3: For any k and 1, k#I, 

a) if Sk is a weak improvement of RI then I =2 or 3, and 
b) Sk is not a weak improvement of S,. 

Iv. SEARCHING 

Bentley and Yao [l] have shown that there is a comection 
between prefix codes for the natural numbers and searching for 
the integral zero of a monotone function with no bound on its 
location. If a fixed search method is used then whether each 
probe is too high or low translates into a 0 or 1 of a binary string 
which uniquely identifies the zero. They ask if, conversely, every 
prefix code determines a search algorithm. A detailed examina- 
tion of this correspondence appears in Stout [4]. The answer 
depends on how much one is willing to rearrange an encoding, 
since any search-generated encoding must be in lexicographic 
order, and for the natural numbers this implies that the number 
of initial ones in the encoding of n tends to infinity as n does. 
For the R, and S, codes this rearrangement is easily carried out, 
as shown below. Bentley and Yao describe an “almost optimal” 
algorithm for searching which is basically a rearranged version 
of R,. They first determine the number of blocks needed and 
then determine the blocks from left to right. For example, such a 
representation of 1000 is 11110 1 00 010 111101000, while 

TABLE I 
A COMPARISONOPSOMECODELENGTHS 

Length of Prefix 
Length of Message (bits) 

(bits) R, S, R, S, S, Septenary 
10 

loo 
1000 

104 
16 
iod 
10’ 
108 
109 
:;:: 
10’2 
10’3 
10’4 
10’5 

10 7 8 
13 13 ii 
20 16 18 
24 21 22 
28 24 26 
31 28 29 
35 32 33 
38 35 36 
41 38 39 
46 42 44 
49 46 
52 49 50 50 52 48 
56 53 54 54 56 51 
59 56 
62 59 

47 

57 
60 

8 5 
11 13 
14 16 
22 20 
25 23 
29 26 
33 30 
36 33 
38 36 
43 40 
47 43 

57 59 54 
60 62 57 

9 
12 
15 
18 
21 
27 
30 
33 
36 
39 
45 

Rz(lOOO)= 11 100 1010 1111101000 0, where blanks have been 
inserted between blocks and the boldface bits are moved be- 
tween the codes. Incidentally this rearrangement of R, is related 
to the code Elias mentions as a theoretical improvement upon 
his “penultimate” code. The initial block is just a unary encod- 
ing of the number of blocks and hence could be improved by 
coding it using RZ. Any RI or S, can be improved this way, but 
again, no improvement will occur in this universe. 

Bentley and Yao’s search algorithm can be improved by 
finding the number of blocks in R,(n) and then filling in the 
blocks. For example, to use R, to find a zero located at 1000, we 
first determine if the zero is less than 23, 2’, or 2”‘. The yes 
response to the last probe indicates that three blocks are needed. 
The first block is lab. To determine a we determine if the zero is 
less than 23’ 03’ - 1 being the largest three-block number start- 
ing with lob). Knowing that a is 0, we determine if the zero is 
less than 215. Since this is also true, we know the first block is 
100, and hence the second block is lcde. Continuing in this 
manner we would determine the rest of the blocks. Using the S, 
codes produces even better searches (see the Appendix). 

V. CONCLUSION 

Elias and Even and Rodeh introduced prefix encodings of the 
natural numbers that are universal asymptotically optimal but 
that are capable of some improvement (as are any encodings). 
We first extend these codes to the class R,, all of which are 
universal asymptotically optimal, and analyze when one code 
improves upon another. For example, R, improves R,, and R, 
weakly improves R, . However, each RI has a slight redundancy 
whereby a 1 in the (I+ 1)st bit implies that the first I bits 
represent a number that is at least I+ 1. The S, codes remove this 
redundancy, yielding improved codes with almost no additional 
encoding/decoding difficulty. These improved codes also yield 
slight improvements in the unbounded searching problem con- 
sidered by Bentley and Yao. 

It must be understood however that most of the improvements 
discussed here are in the realm of theory and not practice. For 
example, even though lim sup,, [length( R ‘( n)) - length( S7( n))] = 
00, n must be at least 2r2’( > 1038) for there to be any difference 
in the lengths. For those more interested in the physical world, 
Table I lists the prefix length versus message length for R2, S,, 
R,, S3, Ss, and a septenary code. The septenary code uses 
000,001; * * , 111 to represent 0, 1, . . . ,6, “ , ” respectively. Each 
message is prefixed with the symbol for the comma followed by 
the message length written in base 7. For example, if u as 102 
bits then it is encoded as OlOOOOlOOlllu. Asymptotically the 
septenary code is quite inferior. 
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APPENDIX 

The following algorithm is a search algorithm corresponding 
to S,. When it is finished, the root is at the position n. It assumes 
that there is some way to test if the root is greater than a given 
value. For example, this is possible for monotone functions. The 
first line recursively defines a function largest(a, c) which gives 
the largest number such that S, has c blocks and the leftmost 
block represents the number a. 

largest(a, c)tif c = 1 then a else largest (T+‘+ ’ - 1, c - 1); 
blocks+ 1; 
while root > largest (2’- 1, blocks) do blockstblocks + 1; 
lengthto; 
nt0; 
for btblocks downto 1 do begin 

for ktn + I downto 1 do 
if root > largest (length + 2k+’ - 1, b) 

then lengthtlength+2k-‘; 
ntlength 
lengtht2*+‘; 

endfor; 

The algorithm for RI is nearly identical. The 1+ 1 is removed 
from the first line, the fifth line is ntl+ 1, and in’lines 7 and 11 
“n + I” is changed to “n - 1”. 
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Phonetic Test Sentences 

EDWARD F. MOORE, MEMBER, IEEE 

Abstract-A method has been devised for obtaiuing fists of words which 
use each sound of the English language (with American pronunciation) 
exactly once. The method is sufficiently automatic that it can be carried 
out by a person kuowing no pkonetics, or even by a digital computer. 
Trying the procedure with slight modifications produced several such lists, 
one of which could be transformed into a sentence: “Hum, thou wbirring 
fusion; yes, Joy, pay each show; vie, thaw two wool dock bags.” Tkis 
sentence, or one of the lists, might be usable for testiug telephone 
transmission, testfug speeck defects, or providing the pronunciation key at 
the bottom of the page of a dictionary. Care was taken to avoid the use of 
words which have different pronunciations in different parts of the U.S. or 
in different phrases. Although this Iii was composed iu terms of au 
assumed list of 42 English sounds, it seems quite likely tbat anyone wbo 
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considers a slightly different list of sounds to be the basic ones could do 
the same tbiog by applying this method, with appropriate modifications, to 
his list. 

A fairly explicit procedure is given for constructing the shor- 
test possible sentence containing all the sounds of English. The 
following list of 42 speech sounds of English was chosen some- 
what arbitrarily, although the same method could easily be 
repeated with any other designated list. The list was arranged 
with the hard-to-use sounds first, and the easy ones last. The 
symbols are those of the International Phonetic Association: 

[ 3,3, ju, u, u, i, 31, a, hw, A, au, 8, aI, 
ae, 8, c, 3, t 1, 0, e, 0, I, d3, j, w, v, d, 
1, m, h, S , f, g, P, k s, n, b, t, a, z, rl. 

This list was originally obtained by arranging the sounds in 
the approximate order of increasing frequency, with some revi- 
sions, since [3] is always followed by [r], [u] is rare in words 
which do not have a pronunciation using [u] or [A], and other 
specific corrections. The first few times the method was applied 
to the original list it failed, but the list was improved after each 
failure by moving the leftover sounds nearer to the front of the 
list. After four attempts (in which the leftover sounds were all 
vowels, since our list has too many vowels per consonant), the 
list above was obtained, with the vowels mainly in the first half 
of the list. The method then worked on five of the next six 
attempts, even though deviations from it were made to try to 
find words which could be more plausibly joined together into 
sentences. 

The method consists of choosing words one at a time, marking 
off the above list those sounds which have been used, and 
choosing each word to use sounds which are as close to the 
beginning of the list as possible. Be sure to use up the first 
unused sound each time and try to avoid using any sounds near 
the end of the list. Try to use words which have no more vowels 
than consonahts. The following lists of words were obtained on 
the first three trials with the list above: 

1) fusion, err, pull, woo, each, joy, dock, whet, young, thou, 
thaw, vie, ash, home, say, big; 

2) vision, err, youth, full, woo, each, joy, pod, whey, young, 
house, shy, cam, though, egg, awe; 

3) fusion, whirring, wool, two, each, joy, dock, hum, thou, 
thaw, vie, bag, yes, show, pay. 

Each of these word lists use all 42 sounds except [z], which can 
be added to most nouns (plural) or verbs (third person singular). 
The omission of [z] was done to give more freedom to arrange 
the words into a sentence. List 3 was rearranged to give the 
sentence finally chosen, which is [hilm, 8au hwano fjusan; jes 
d331, pe it J 1 o; vaI, 83 tu wul dak baegz.] 

All the words chosen were checked in A Pronouncing Dic- 
tionary of American English, by Kenyon and Knott, to get their 
phonetic alphabet representation. No words were used which 
had more than one pronounciation listed, except for the sub- 
stitution of [IU] for fiu] and of [3"] for [sr], both of which seem to 
be unavoidable. This attempt, to be sure that whoever reads the 
sentence would utter all 42 sounds, resulted in the exclusion of 
many common English words (garage, father, was, a, the, and, 
but, in, etc.) which, if allowed, would have permitted the con- 
struction of a sentence much more like colloquial English. 

Incidentally, the corresponding problem for letters was solved 
by C. E. Shannon, H. 0. Polk& and the author: “Squdgy fez, 
blank jimp crwth VOX.“, “Batz jink frev squdgy cwm phlox.” and 
“Shiv fyrd cwm qung jab tez phlox.“, all of which are legal and 
meaningful English sentences. 
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