826 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32. NO. 9 SEPTEMBER 1983

Mesh-Connected Computers with Broadcasting

QUENTIN F. STOUT, MEMBER. 1EEE

Abstract—We consider the effects of augmenting an arbitrary
mesh-connected computer with a second communication system called
broadcasting. In broadcasting, a processor sends a value to all the other
processors simultaneously, taking unit time, with the restriction that
only one broadcast occurs at any one time. We show that this signifi-
cantly decreases the time to do sample problems such as semigroup
calculations or finding the median, but it cannot significantly improve
sorting. For example, in a one-dimensional mesh-connected computer
without broadcasting, if there are n numbers, each stored separately
in consecutive processors, then O(n) time is needed to find their mini-
mum, find their median, or sort them. while with broadcasting, this can
be done in ©(n!/2), B((n log n)'/2), and O(n) time, respectively.

Index Terms—Broadcasting, mesh-connected computer, parallel
computing, selection. semigroup computations, sorting.

I. INTRODUCTION

ESH-CONNECTED computers, or grid graphs, are
an important class of physically realizable parallel
computers. They can be represented as infinite, connected,
point-symmetric undirected graphs whose vertices are com-
puters and whose edges are bidirectional communication links
through which information passes in unit time. (Point sym-
metry means that, given any two vertices, there is an isomor-
phism of the graph onto itsell which maps the first vertex onto
the second.) We require that each vertex have finite degree.
A standard example has computers placed at the points (i, j)
in the plane where 7 and j are integers, with the computer at
(7, /) linked to the computersat (i + 1,7). (i — 1, /), (i, 7+ 1),
and (i, j — 1). There are more exotic possibilities, such as an
infinite rootiess tree where each vertex has degree three, or
again having computers at the integer lattice points of the
plane, but now the computer at (i, j) is connected to those at
G+HLD =1L+ 1) G = 1)+ 2,4+ 2) (i —
2,j—=2), i+ 3,j—3).and (i — 3, j + 3). Specific mesh-
connected computers include [7], [9]-[11], [15], [20], [21],
[31]. [32].

In mesh-connected computers, typical problems are as fol-
lows: there is a finite subset of n computers, each of which has
a piece of information. One must either rearrange this infor-
mation among the computers in a specified pattern, such as
occurs when sorting, or have some designated computer
evaluate a function whose parameters are these pieces of in-
formation. such as occurs when computing sums or minimums.
Some problems, such as matrix multiplication, contain features
of both types of problems. Examples of such problems occur
in [1], [3]. [S], [6]. [8]. [13]. [14]. [16], [17], [24], [27],
[33].

We assume that each computer only has a finite number of
registers to store information, prohibiting any one computer

Manuseript received March 2. 1982: revised August 13, 1982 and April
5, 1983,

The author is with the Department of Mathematical Sciences, State Uni-
versity of New York. Binghamton, NY 13901.

from being able to store all of the pieces of information.
Technically, the size of each register must be at least 1g () (Ig
means log base 2), and hence the size varies with #. Over a
practical range of values, this variation can be ignored. Early
studies of mesh-connected computers. c.g., [3]. [9], [10]. [13],
[14], [18], [22]. [23], [32]. [33], assumed that the processors
were copies of a fixed finite-state automaton, which is equiv-
alent to our model with the restriction that the register size does
not vary with 2. While this is a natural model. it does not quite
capture what is desired, and more recent studies, e.g., [19],
[25], [30]. use the model used here.

In many problems, the worst case solution time is con-
strained by the number of communication links along which
a single item must pass. For example, if we have a computer
at each integer f on a line, and if the computer at 7 is linked only
toits neighbors at i + 1 and i — 1, then sorting # numbers into
ascending order, one number per computer, must have a worst
case time of Q(n). (We use O for “order no greater,” for
“order at least,” and ! for “order exactly™.) The worst case
occurs when the numbers start in descending order, for then
the smallest number must traverse at least # —1 communica-
tion links. Further, if the numbers start in consecutive com-
puters, then simple algorithms can be used to attain a worst
case sorting time of #(n). Abelsen [1]. Gentleman [8]. and
others have analyzed more complicated problems where again
the worst case solution time is constrained by the data move-
ment. We should mention that there are many other features
to be considered. such as the relative merits of SIMD versus
MIMD organization, but we will ignore these and concentrate
on difficulties which arise solely due to properties of the con-
nection graph.

Given that the solution times of many problems on a
mesh-connected computer are constrained primarily by data
movement considerations. a desirable goal is to design a
computer which retains the natural mesh-connected config-
uration and supplements it with a faster mechanism for moving
data long distances. Gentleman [8] was apparently the first
to consider a supplemental mechanism called broadcasting.
When a processor broadcasts a value, it is simultaneously re-
ceived by all other processors. To avoid pandemonium, we
allow only one broadcast at a time. We assume that there is
a central clock, and that at the start of each time unit, a pro-
cessor may send information along any or all of its links, as well
as sending a broadcast. During the remainder of the time unit,
each processor receives all values sent to it and can do a fixed
amount of computation.

Gentleman's Theorem 3 seems to indicate that broadcasting
is of little use, at least in O-notational analysis. In this paper.
we show that, in a finite-dimensional setting, broadcasting is
quite useful for problems which are sufficiently decomposable.
Broadcasting is physically unrealistic in that it propagates
information at infinite speed, but for practical situations this

0018-9340/83/0900-0826801.00 © 1983 IEEE

STOUT: MESH-CONNECTED COMPUTERS WITH BROADCASTING

may reasonably be ignored. This approach has been taken by
Jordan and Sawyer [12] in their design of a mesh-connected
computer with broadcasting. A similar combination of mixing
realistic constraints, such as allowing only a fixed number of
communication links per processor, with slightly unrealistic
assumptions. such as allowing information to be transmitted
arbitrarily far in a single time unit, is advocated for parallel
computers such as the shullle-connected computer [23],
pyramid cellular array [29], etc.

In the next section, we show that semigroup operations can
be computed more quickly using broadecasting, and that our
results are the best possible. In the third section, we analyze
sorting and show that broadcasting is of no significant use, but
that it is useful for the related problem of selecting the median.
Our final section has a few concluding remarks. Throughout,
the term k-dimensional lattice computer means a parallel
computer with individual processors at each point (i, -+, ix)
where each i; is an integer, with the processor at (iy, -, x)

K
connected to the one at (j;.---.jx) ifand only if 3° |iy — ji|
=1

= 1. Whenever we do an analysis of an algorithm for a k-
dimensional lattice computer, we assume that k is fixed and
we only vary the size of the problem. Some papers analyze the
effect of varying both k and the size of the problem, but this
makes the analysis more complicated. Further, since a pro-
cessor in a k-dimensional lattice computer is fundamentally
different from one in a (A + 1)-dimensional lattice computer,
one must be extremely cautious when varying k.

II. SEMIGROUP COMPUTATION

For a given mesh-connected computer, define the distance
between two processors to be the minimum number of com-
munication links needed to go from one to the other. Choose
a processor and define (7). 1 a nonnegative integer, to be the
number of processors at distance 7 or less from the given one.
Since the connection graph is point symmetric, ¢ is indepen-
dent of the choice of processor. For the two-dimensional lattice
computer, o(t) = 212+ 21 + 1. and the k-dimensional lattice
computer has a(z) = 25({**') 4 1, which for any fixed k is
#I(t*). The infinite rootless tree where all vertices have degree
k(k>2)haso(t)=1+k[(k—1)"— 1]/(k — 2), which for
any fixed & is #((k — 1)?). To be physically realistic, since each
processor requires a certain minimum volume, the speed of
light is finite. and we want the communication links to take unit
time. one should have a(r) = 0(73). Currently, most real
mesh-connected computers have a(7) = 0(22).

The o function gives a lower bound to many computations,
namely, il a processor is to compute a value which depends on
the initial contents of # processors, then at least ¢~ '(n) time
is needed il no broadcasting is used, When a(r) = 0(t%),
a~Yn) = (nV*). The equivalent lower bound for broad-
casting-based computers is contained in the following theorem,
which was simultaneously discovered by Bokhari [4].

Theorem I: Let = be a semigroup operation. Suppose that
there are n distinct processors P(1), - -, P(n) where P(i)
contains a number s(7). and there is a processor P which is to

827

compute s(1) = 5(2) =+ -+ * s(n). If o(z) = 0(¢%), then P has
a worst case of time Q(»!/*¥) using no broadcasting, but can
finish in @(x!/(k+1)) time if broadcasting is used and the pro-
cessors are properly arranged. Further, this time is optimal.

Proof: The comments preceding this theorem show that
Q(n /%) time is necessary when no broadcasting is used. To
show that #(n!/(5*1)) is possible using broadcasting, let / =
[nk &+ m = [n/l], and arrange the processors into m
groups where i group, 1 =<7 < m, contains processsor P(/ - i
— [+ 1), -+, P(min (/-i,n)). Let Q(i) denote processor P(/
«i— [+ 1). Assume that group i is arranged around Q(i) so
that @(i) can compute g(f) = s{{-i—=1+ 1) %% s(min (/
i, n))in ¢~ 1(/) time. Have all Q(i) compute their values si-
multaneously, and at time ¢~ (/) + i, have Q(i) broadcast
q(i). P computes g(1) =---=g(m) =5(1) =---=5(n) in time
g (I + m = O(n!/tk+11),

To show that broadcasting requires Q(#!/(4+1)) time, sup-
pose that processor P is finished at time 7. Through only
standard communication links, P can use at most (7)) of the
s(i) in computing its value. If P receives a broadcast at time
t, then the processor sending it can have used at most o(f — 1)
of the s(i) which were not previously used to compute a
broadcast message. Therefore, at most o(7) + Z0(t — 1)
= f(T**!) of the 5(i) can have been used. If = is nontrivial,
then all # of the s(i) must be used, so T must be Q(n!/(A+1)).

O

Notice that if o grows so fast that o(T) = U2/ o (1)),
then, in an O-notation analysis, broadcasting is useless. This
is what Gentleman’s theorem shows, but it is somewhat ob-
scure. Further, this requires o 1o grow exponentially, which
is impossible for any finite-dimensional mesh-connected
computer.

Theorem 1 shows that a k-dimensional lattice computer
with broadcasting can do semigroup operations such as sums,
products, minima, and maxima of # properly placed numbers
in B(n)/(A+ 1) time. All that is required of the operation is as-
sociativity.

[1l. SORTING AND SELECTING

We will show that broadcasting does not significantly aid
sorting. However, we must be somewhat careful about the
values that can be broadcast. For example, if we are sorting
a collection of natural numnbers, we want to require that only
one element of our collection can be broadcast at a time.
However, given two natural numbers /i and j, we could
broadcast the single number 273/ and simultaneously convey
both values. To prevent this. we assume that our items to be
sorted come {rom some ordered set S, and the only operations
available are to compare two of the given items or to transmit
a single item.

In a one-dimensional lattice computer, if the processors at
1.2, , neach start with an element of S. and if we are to sort
these values so that the smallest value is in position 1 and the
largest value is in position #, then, as was previously mentioned,
without broadcasting the worst case time is (n). and there
are simple algorithms which need no more than f(n) time.
More generally, in a k-dimensional lattice computer, if the n

828 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-32. NO. 9, SEPTEMBER 1983

processors in locations (i1, -~ -, i), | <i; < n'/* each start
with an element of S, and if these are to be sorted into some
specified order (row-major. snake-like, etc.), then without
broadcasting at least Q(n'/*) time is needed, and indeed
sorting can be accomplished in #(z /%) time. (See Thompson
and Kung [30].) Theorem 2 shows that broadcasting is of little
help for such problems.

Theorem 2: Suppose that (1) = (), suppose that there

are n different processors P(1).---. P(n).each of which con-
tains a different element of S, and suppose that there are n
different processors Q(1), ---. Q(n), where perhaps some

processors occur both in the P list and @ list. Then with or
without broadcasting, the worst case time to sort the items in
the P’s so that the smallest item is in Q(1), the second smallest
isin Q(2), etc., is Q(nl/*).

Proof: Without loss of generality, we assume that § =
{1, -, n}. We construct a permutation w on {1,---, n} by in-
duction. Since the Qs are distinct, there is an i such that d(P-
(1), O(i)) = a~!(n). Let w(1) be defined to be i. Assuming
that (1), - - -, (/) have been defined for 1 <[<n, we define
w(! + 1) as follows: since the set X = {1,---, a}\fw(1),---,
(1)} has # — [elements, there is an i in X such that d(P(/ +
1), Q(i)) = o= '(n —I). Define w(/ + 1) to be i.

Suppose that processor P(i) initially contains 7 (i) for 1 =
i < n. Notice that the item in P(7) must be moved to @(w(i)),
and hence must travel at least d(P(i), O(w(i))) units. If no
broadcasting is used. then sorting must take at least 6~ '(n)
= Q(n!/*) time. If broadcasting is used, assume that [
broadcasts occur. If 7 = #/2. then the broadcasts themselves
take £2(n) time. Otherwise, there is an/ < n/2 such that the
value (/) 1s never broadcast, which implies that the sorting
takes at least o~ (n — 1) = e~ (n/2) = Qn/*) time. O

The next theorem shows that a closely related problem can
be improved with broadcasting, but not as much as were the
semigroup computations.

Theorem 3: If n consecutive processors of a one-dimensional
lattice computer each contain an element of S, then any des-
ignated processor can determine the median of these values
in f((xr log n)'/?) time if broadcasting is used, while at least
£)(n) time is necessary if no broadcasting occurs.

Proof: For ease of exposition. we only treat the case where
all values are distinct. Think of the n processors as being in m
groups of n/m consecutive processors where m = n/l, (n)'/2.
Sort all groups in parallel, taking #(n/m) time. Throughout
the following algorithm, we assume that each processor knows
which group it is in, its relative position in the group, and the
values of the items in its adjacent neighbors. Further, each
processor keeps track of the proceedings, which requires
keeping a fixed number of counters. This allows instructions
such as “broadcast the median of the /th group” to be obeyed
in unit time where the processor containing the value is the one
which broadcasts it.

Through the algorithm. each processor starts in an active
state, and eventually may become passive. A passive processor
is one known to contain a value which is not the median.
Within cach group, the active processors are always contigu-
ous, and each processor in the group can keep track of this
interval of active processors. We proceed in a series of passes.
In each pass, the groups. in order, transmit the number of ac-
tive processors in the group and the median of the values in the

active processors. (Notice that while all the processors in a
group know which processor in their group contains the median
of the active processor, most of them cannot know what that
median value is since they cannot remember all the values in
their group.) If w(i) is the number of active processors in group
i, and if 7(7) 1s the median of their values, then there is a unique
I such that

Shw(i)r(i) < r(i)} 2 [i w(:‘)]/Z

i=1

and

m

2w(i)r(i) <r(D} < (Z w{t‘)}fl
i=1
We call r(7) the weighted median of the broadcasted numbers.
In each group j, the processor containing r(j) is computing
Ziw(i):r(i) < r{j)and Zw(i) as the w(7), (i) pairs are being
broadcast. When this broadcasting is done, the processor
containing the weighted median rebroadcasts it. Now the ith
group, in turn, broadcasts the number b(7) of items in the
group that are less than or equal to #(7). (If r(I) 1s less than
all items in the group, then the first processor broadcasts 0.
Otherwise, there is a unique processor which contains a value
no greater than r(/), and which knows that the next processor
is in a different group or contains a value greater than r(J).
This processor broadcasts its position within the group.) If
2M,b(i) = [n/2]. then the algorithm is finished. Otherwise,
suppose that Z72,;5(i) <[n/2]. the > case being similar. Then
r(I) is smaller than the true median, and hence the first b(i)
processors in group i are now passive. Each processor in group
i remembers A(f) when it is broadcast, and all processors
compute Z7_,b(i), and so at the end of this pass, each pro-
cessor knows the indexes of the active processor in its
group.

Passes are repeated until the median is found. Each pass
takes no more than Cm time for some constant C. To deter-
mine the number of passes, suppose that in one pass r(/) was
too small. Since () is a weighted median, at least half of all
active processors are in a group where the median of the active
processors is no greater than »(7). In each such group. at least
half of its active processors become passive at the end of the
pass. Therefore, each pass reduces the number of active pro-
cessors by at least one fourth; so the number of passes is no
more than logy,s (). The time for all passes is at most 0(m log
(n)) = 0((n log (n))1/2). Finally, it is easy to see that &(#) time
may be required if no broadcasting occurs, m}

The author does not know if Theorem 2 gives the best pos-
sible result, although there is not much room for improvement.
There is also the question of designing an algorithm to find the
median in optimal expected time.

We should mention that Theorem 3 was stated only for
one-dimensional lattice computers because they provided a
natural ordering to the processors within each group and to the
groups themselves, and on such a computer, a contiguous group
of G processors can easily sort their contents in #{a~1(G))
time. There are similar orderings and sort algorithms available
for k-dimensional lattice computers (sec Thompson and Kung
[30]), and these can be used to find the median in #((n log
(n)k)1/tk+1)) time. Extending Theorem 3 to other mesh-con-
nected computers first requires extending the necessary sorting
results.

STOUT: MESH-CONNECTED COMPUTERS WITH BROADCASTING

V. FURTHER REMARKS

We have analyzed some of the improvements that one could
attain by adding broadcasting to a2 mesh-connected computer.
The improvement for a specific problem depends both on the
o-function of the mesh-connected computer, and on the ability
of the problem to be sufficiently decomposed. For example,
on a one-dimensional lattice computer for which a(z) = 21 +
1, given m numbers, each initially ina different processor, with
broadcasting, one can find the minimum, their median, or sort
them in 8(x!/2), 8((n log n)'/2), and 6(n) time, respectively,
while all three problems require f/(n) time if no broadcasting
is employed. For a standard single processor, these problems
take f(n), (n), and A(n log n) time, respectively. (See, e.g..
2]

Apparently the first mesh-connected computer with
broadcasting is the one outlined in Jordan and Sawyer [1:2]:
They had analyzed the computational requirements of doing
finite element analysis on a mesh-connected computer and they
concluded that broadcasting provided a significant improve-
ment. Further, finite element analysis is sufficiently important
to deserve a special machine. Perhaps a similar machine will
be built for image processing since this area is of considerable
importance, and [25] and [26] show that there are several
image processing problems for which broadcasting is useful.
The decision to build machines with broadcasting depends on
analyzing a range of algorithms to determine which speed-ups,
if any, are possible.

Broadcasting seems to be of least use when the answer itself
is composed of several pieces, each of which is to be in a sepa-
rate processor. Examples of such problems are sorting,
merging, and matrix multiplication. Even though broadcasting
may speed up the computation of any single subproblem, its
one-at-a-time nature prohibits it from significantly improving
the simultaneous computation of all of them. On the other
hand, if the subproblems are sufficiently related, then perhaps
broadcasting is of use. Examples of this appear in [25] and
[26]. This raises the following theoretical question, motivated
by Gentleman’s paper [8]: how long does it take a two-di-
mensional lattice computer with broadcasting to multiply two
N X N real matrices? We assume a unit cost criterion for op-
erations on real numbers, and we assume that each entry of
each matrix is initially in a separate processor. We conjecture
that the answer is #(/¥), which is the same as the time without
broadcasting. This problem is harder to analyze than was
sorting because we are allowing values to be broadcast which
are combinations (sums and products) of the original entries.
For example, it was not until Strassen’s work [28] that people
realized that on a single processor, matrices could be multiplied
faster by computing somewhat unusual combinations of the
entries.

The form of broadcasting considered here is the most re-
strictive possible, and is analogous to a complete prohibition
of write conflicts for parallel random access machines
(PRAM’s). Just as some authors permit write conflicts on a
PRAM as long as all the processors writing to a given memory
cell are writing the same value, so could one consider the effect
of allowing simultaneous broadcasts as long as the values being
broadcast are the same. Suppose that a one-dimensional lattice
computer has this feature, and that processors 1-n — 1 contain

829

a0ora 1. To find the processor of lowest index which contains
a | takes 8(#n) time without broadcasting, f/(n'/2) time with
standard broadcasting, but only #(log (n)) time with this more
liberal broadcasting. To accomplish this, at time 1, have any
processor numbered 1-n/2 broadcast 1 if it contains a 1. At
time 2, if a | was broadcast at time 1, then any processor
numbered 1-n/4 should broadcast 1 if it contains a 1, while
if no 1 were broadcast at time 1, then any processor numbered
n/2 + 1-3n/4 should broadcast 1 if it contains a 1. Continuing
this binary search gives a f(log (n)) algorithm. While this more
liberal broadcasting helps a few problems, it seems unable to
improve upon the semigroup, sorting, or selection algorithms
considered earlier. Even if we allow multiple values to be si-
multaneously broadcast, with the stipulation that the minimum
value broadcast is the one which all processors receive, there
are still very few situations where this form of broadcasting
is superior to the original.

Finally, while we have assumed that a broadcast reaches all
processors in unit time, in practice broadcasting may be im-
plemented by a mechanism which takes fi(log (n)) time.
(Physically, of course, broadcasting must take Q(n!/3) time,
but the logarithmic delay is probably a better model over a
realistic range of n.) If each broadcast must wait 8(log (1))
time units after the previous one, then the algorithms will be
somewhat slower. For example, on a one-dimensional lattice
computer, by using groups of size (n log (7)) 1/2_ one can do
semigroup calculations in #((n log (n))1/2) time, and with
groups of size n'/? log (1), one can find the median in 0(n'/2
log (n)) time. However, if the broadcasts can be pipelined, with
each starting one time unit after the previous one, then the
semigroup and median computations can be completed as
quickly (in f notation) as before.

REFERENCES

[1] H. Abelson, “Lower bounds in information transfer in distributed
computation,” J. Ass. Comput. Mach., vol. 27, pp. 384-392, 1980.

[2] A.V.Aho,J.C. Hoperoft, and 1. D. Ullman. The Design and Analysis
of Computer Algorithms. Reading, MA: Addison-Wesley, 1974,

[3] W.T. Beyer, “Recognition of topological invariants by iterative arrays,”
Ph.D. dissertation, M_1.T., Cambridge, 1969.

[4] S. H. Bokhari, "MAX: An algorithm for finding maximum in an array
processor with a global bus.” in Proc. [98] Int. Conf. Parallel Pro-
cessing, pp. 302-303.

(5] S.N.Cole, “Real-time computation by n-dimensional iterative arrays

of finite-state machines.” JEEE Trans. Comput..vol. C-18, pp. 349-365,

1969.

L. P. Cordella, M. 1. B. Duff, and S. Levialdi, “An analysis of compu-

tational cost in image processing: A case study,” J[EEE Trans. Comput.,

vol. C-27, pp. 904-910, 1978

[7] M. J. B. Duff, "CLIP4: A large seale integrated circuit array parallel
processor,” in Proc. 3rd Int. Joint Conf. Pattern Recognition. 1976, pp.
T728-832.

[8] W.M.Gentleman, “Some complexity results for matrix computations
on parallel processors,” J. Ass. Compui. M ach.,vol. 25, pp. 112-115,
1978.

[9] M.J. E.Golay, “Hexagonal parallel pattern transforms.” IEEE Trans.

Comput., vol. C-19, pp. 733-740, 1969.

S. B. Gray, “Local properties of binary images in Lwo dimensions,” JEEE

Trans. Comput.,vol. C-21, pp. 351-569. 1971.

J. Gregory and R. McReynolds, “The SOLOMON computer,” [EEE

Trans. Comput., vol. C-13, pp. 774-781, 1963,

H. F. Jordan and P. L. Sawyer, A multimicroprocessor system for finite

clement structural analysis,” Compui. Struc., vol. 10, pp. 21-29,

1979,

W. H. Kautz, K. N. Levitt, and A. Waksman. “Cellular interconnection

arrays,” JTEEE Trans. Comput.,vol. C-17. pp. 443-451. 1968,

[14] S.R. Kosaraju, “Fast parallel processing array algorithms for some

6

(1]
(i1
[12]

[13]

830

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22

[23]

[24]

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-32. NO.. 9. SEPTEMBER 1983

graph problems.” (Preliminary version), in Proe. 11th ACM Symp.
Theory Compuz.. 1979, pp. 231-236.

B. Kruse, “A parallel processing machine.” [EEE Trans, Comput,, vol.
C-23, pp. 1057-1087, 1973.

D.). Kuck and A. H: Sameh. “Parallel computations of eigenvalues of
real matrices,” in Information Processing 71. Amsterdam: North-
Holland, 1972, pp. 1266-1272.

S. Levialdi, “On shrinking binary picture patterns,” Commun. Ass.
Comput. Mach. vol. 15, pp. 7-10, 1972,

K. N. Levitt and W. H. Kautz, “Cellular arrays for the solution of graph
problems.” Commun. Ass. Comput. Mach., vol. 15, pp. T89-801,
1972.

D. Nassimi and S. Sahni. “Finding connected components and connected
ones on a mesh-connected parallel computer,” STAM J. Comput., vol.
9, pp. 744-757, 1980,

K. Preston, “Feature extraction by Golay hexagonal transforms,” JEEE
Trans. Compui_, vol. C-21, pp. 551-369, 1971.

AL P. Reeves, A systematically designed binary array processor.” JEEE
Trans. Comput.. vol. C-29, pp. 278-287, 1980,

A_ Rosenfeld, “A characterization ol parallel thinning algorithms.”
Inform. Contr.,vol. 29, pp. 286-291, 1975.

J. T. Schwartz, “Ultracomputers,” ACM Trans. Programming Lang.
Syst., vol. 2, pp. 484-521, 1980.

H. S. Stone, “Parallel tridiagonal equatiion solvers,” ACM Trans. Math.
Software, vol. 1, pp. 289-307, 1975.

[25] Q. F. Stout, “Broadcasting in mesh-connected computers,” in Proc. 1982

[26]
[27]

[28]

Conf. Inform. Sci. Syst.. Princeton Univ.. 1982, pp. 85-90.

. “Geometric algorithms for a mesh-connected computer with
broadcasting,” to be published.

. “The usc of clerks in parallel processing,” in Proc. 23 IEEE
Symp. Foundations Comput. Sci., 1982, pp. 272-279.

V. Strassen. “Gaussian elimination is not optimal,”™ Numer. Marh., vol.
13, pp. 354-356, 1969,

[29] S. L. Tanimoto and A. Klinger, Eds., Structured Computer Vision:
Machine Perception Through Hierarchical Computational Structures.
New York: Academic, 1980.

[30] C.D. Thompson and H. T. Kung, “Sorting on 2 mesh-connected parallel
computer,” Commun. Ass. Comput. Mach., vol. 20, pp. 263-271,
1977.

[31] S. H. Unger. “A computer oriented toward spatial problems,” Proc. IRE,
pp. 1744-1750, 1958.

[32] —, “Pattern detection and recognition,” Proc. IRE, pp. 1737-1752,
1959.

[33] F.L. VanScoy, “The parallel recognition of classes of graphs,” IEEE
Trans. Comput., vol. C-29, pp. 563-570, 1980.

Quentin F. Stout (M’32) was born in Cleveland,
OH, on September 23, 1949. He received the B.A.
degree in mathematics from Centre College, Dan-
g ville, KY, in 1970, and the Ph.D. degree in mathe-
matics from Indiana University, Bloomington, in
1977.

Since 1976 he has been an Assistant Professor
in the Department of Mathematical Scicnces,
State University of New York, Binghamton. His
teaching and research interests include algorithms
and data structures, particularly algorithms for
paralle] computers.

