IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

1605

Efficient Parallel Convex Hull Algorithms

RUSS MILLER, MEMBER, IEEE, AND QUENTIN F. STOUT, MEMBER, IEEE

Abstract—In this paper, we present parallel algorithms to
identify (i.e., detect and enumerate) the extreme points of the
convex hull of a set of planar points using a hypercube, pyramid,
tree, mesh-of-trees, mesh with reconfigurable bus, EREW
PRAM, and a modified AKS network. It is known that the
problem of identifying the convex hull for a set of planar points
given arbitrarily cannot be solved faster than sorting. For the
situation where the input set of n planar points is given ordered
(by x-coordinate) one per processor on a machine with ©(n)
processors, we introduce a2 worst case hypercube algorithm that
finishes in O(log 1) time, a worst case algorithm for the pyramid,
tree, and mesh-of-trees that finishes in ©(log? n/(log log n)?)
time, and a worst case algorithm for the mesh with a reconfigura-
ble bus that finishes in ©(log? n) time. Notice that for ordered
data the sorting bound does not apply. We also show that our
O(log n) time hypercube algorithm for ordered data extends to
yield an optimal time and processor O(log n) worst case time
EREW PRAM algorithm for the case where the set of planar
points is distributed arbitrarily one point per processor. We also
show that this algorithm can be extended to runm in worst case
O(og n) time on a modified AKS network, giving the first
optimal O(log n) time algorithm for solving the convex hull
problem for arbitrary planar input on a fixed degree network.

Index Terms—AKS network, computational geometry, convex
hull, EREW PRAM, hypercube, mesh, mesh-of-trees, parallel
algorithms, pyramid, reconfigurable mesh.

1. INTRODUCTION

HE CONVEX hull is a geometric structure of primary
importance that has been well studied for the serial model
of computation [8], [47], [52], [56], [60]. It has applications to
normalizing patterns in image processing, obtaining triangula-
tions of sets of points, topological feature extraction, shape
decomposition in pattern recognition, and testing for linear
separability, to name a few. Some general references which
describe such problems, show some of their uses, and provide
some serial algorithms solving them are [46], [47], [56].
Compared to the number of serial algorithms for solving
such problems, the number of parallel algorithms is quite
small. A number of parallel algorithms have been presented
which computed geometric properties of digitized pictures
(c.f., [17], [26], [35]-[37], [40], [42], and the references
contained therein). However, problems that involve digitized

Manuscript received February 17, 1988; revised July 15, 1988. This work
was supported by National Science Foundation Grants DCR-8507851, DCR-
8608640, IRI-8800514 and by an Incentives for Excellence award from
Digital Equipment Corporation.

R. Miller is with the Department of Computer Science, State University of
New York, Buffalo, NY 14260.

Q. F. Stout is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 8824087.

pictures are significantly different from the problems that arise
when the figures are represented as sets of points, which is a
much more general form of input, and one that allows for
larger problems to be solved on existing machines. In the early
1980’s, parallel algorithms for convex hull problems using
point data began to appear [3], [13], [44]. In 1984, the authors
published a preliminary version [34] of [38] that included
parallel algorithms for several problems involving geometric
properties, such as convexity, proximity, area, intersection,
and containers on a mesh computer, and Chazelle published a
paper using a one-dimensional systolic computer to solve some
problems involving convexity, proximity, and intersection
[12]. Subsequently, additional papers with parallel algorithms
for point data input have appeared {11, [6], [7], [19], [24],
[30], and it can be expected that this trend will continue.
Parallel computers provide the possibility of substantial
improvements in the running time of algorithms, allowing
larger problems to be solved in a feasible amount of time.

Elegant serial solutions to many problems are based on
being able to efficiently construct the planar Euclidean
Voronoi diagram of a set of planar points, or use sophisticated
data structures specifically designed for geometric problems
[52]. However, it is not clear that manipulating data structures
for constructing Voronoi diagrams is as useful in parallel
computers, since operations such as following a pointer may
be very efficient on a serial computer but less so on a parallel
one. Some of our algorithms are for local-memory parallel
computers where information must be exchanged as messages
between processors. In such a setting, the distance information
must travel and the communication patterns that govern
multiple messages become dominant considerations.

In this paper, we give algorithms to identify (i.e., detect
and enumerate) the extreme points of the convex hull for a set
of planar points on a hypercube, pyramid computer, tree
machine, mesh-of-trees, mesh with reconfigurable bus,
EREW PRAM, and a modified AKS network. It is known that
the problem of identifying the convex hull for a set of planar
points given arbitrarily cannot be solved faster than sorting
[47]. Therefore, given a set S of n planar points, distributed
arbitrarily one point per processor on a network M with n
processors, sorting bounds dictate that solutions to the convex
hull problem require Q(Ty,(n)) worst case time, where T (1)
represents the worst case time to sort # items, stored one item
per processor on network M.

The concentration of this paper is on developing poly-
logarithmic (i.e., O(log® n), for ¢ = 1 a constant) time
algorithms for a variety of parallel machines. Since the convex
hull is a geometric structure of importance to solving many
other problems, there will be occasions when one is concerned

0018-9340/88/1200-1605301.00 © 1988 IEEE

1606

with identifying the extreme points of a set of planar points as
an intermediate step in solving computationally intensive
problems. In this situation, it is reasonable to assume that
preprocessing of the data has been, or can be, performed to
order the data. Most of the algorithms presented in this paper
assume the input set S of planar points is initially distributed in
an ordered fashion so that the x-coordinate of the point in
processor P; is less than the x-coordinate of the point in
processor P;, for i < j. (This ordered data assumption was
used independently in [19] for obtaining an optimal O(log n)
time algorithm for the CREW PRAM.)

Generally, the worst case running times of our convex hull
algorithms that assume ordered data input are far superior to
the worst case running times of algorithms possible for
arbitrary input since these are bounded by sorting. In fact, for
some of the mesh-based models discussed in this paper, for a
set of planar points distributed arbitrarily, a best possible
worst case lower bound on the time to solve the convex hull
problem is Q(n'2). For the pyramid and mesh-of-trees, in
which this (n!/2) time bound applies, optimal ©(n'/2) worst
case time solutions to this problem are known [38]. A contrast
in the running times of the algorithms based on differences in
input can be seen by the fact that the algorithm we introduce
for input size n on a pyramid with # base processors finishes in
worst case O(log® n/(log log n)?) time when the data are
ordered. This algorithm is also extended to give a worst case
O(log? n/(log log n)?) time algorithm for ordered input on a
tree and mesh-of-trees architecture, and to give a worst case
O(log? n) time algorithm for ordered input on a mesh with a
reconfigurable bus. A somewhat different approach is used to
give an optimal worst case ©(log n) time algorithm for
ordered input on a hypercube. Lower bounds are discussed
more fully in Section II-D.

As a byproduct of the algorithms that we develop for
ordered input on a hypercube, we also introduce an optimal
worst case O(log n) time and n-processor EREW PRAM
algorithm for solving the convex hull problem for planar point
data input distributed arbitrarily one per processor. This
improves on the optimal worst case O(log n) time CREW
PRAM algorithm given in [1] and [6] in that we use the
weakest PRAM model, the EREW PRAM, which forbids
concurrent reads and concurrent writes. We also give an
expected O(log n) time algorithm for the hypercube to solve
the convex hull problem for planar point data input distributed
arbitrarily one per processor. Finally, we give the first worst
case O(log n) time algorithm to solve the convex hull problem
for planar point data input distributed arbitrarily one point per
processor on a fixed degree network, specifically, a modified
AKS network.

On parallel machines, the convex hull is often a fundamental
step in determining minimum-area containers into which
points can fit, the diameter of the set of points, linear
separability of two sets of objects, and so forth. Since its
applications are so wide ranging, it makes sense to consider
running times of algorithms for different machines and
different types of input.

In Section II, the notation, models of computation, and
definitions that are used throughout the paper are defined.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

Furthermore, lower bounds are given for solving the convex
hull problem, and different assumptions regarding the form of
the input data are discussed. In Section III, a general parallel
algorithm is given for solving the convex hull problem for
ordered data. Worst case O(log? n/log log n) time implemen-
tations of this algorithm are then given for the pyramid, tree,
and mesh-of-trees, while an efficient O(log? n) implementa-
tion is given for the mesh with a reconfigurable bus. The
algorithm given in Section IV for solving the convex hull
problem on a hypercube is different from the algorithms given
in Section III, and has a worst case running time of ©(log n).
In this section, we also give an expected O(log n) time
algorithm to solve the convex hull problem for planar data
initially distributed in an arbitrary fashion. In Section V, we
show how to combine ideas developed in Section IV with the
algorithms given in Section III to derive worst case O(log> n/
(log log n)?) time algorithms for the pyramid, tree, and mesh-
of-trees. In Section VI, we show that the hypercube algorithm
that is developed in Section IV can be modified to yield an
optimal worst case ©(log n) time, n-processor, EREW PRAM
algorithm for solving the convex hull problem assuming an
arbitrary ordering of the planar point data input. In Section
VII, we show that the hypercube algorithm that is developed in
Section IV can be modified to yield an optimal worst case
O(log n) time algorithm for a fixed degree network assuming
arbitrary planar point data input. This is the first algorithm
presented that solves the convex hull problem in worst case
O(log n) time on a fixed degree network. Section VII is the
conclusion.

II. PRELIMINARIES
A. Order Notation

Throughout this paper, O, O, and § notation are used,
where O is used to mean *‘order exactly,”” O is used to mean
‘‘order at most,’” and is used to mean ‘‘order at least.’” That
is, given nonnegative functions f and g defined on the positive
integers, we write f = O(g) if and only if there are positive
constants C;, C,, and a positive integer N such that C, * g(n)
< f(n) = C, * g(n), whenever n > N. We write f = O(g) if
and only if there is a positive constant C and an integer N such
that f(n) < C*g(n), for alln > N, and we write f = Q(g) if
and only if there is a positive constant C and an integer /V such
that C * g(n) < f(n), foralln > N.

B. Models of Computation

In this section, the models of computation that are used in
this paper are defined and some standard terminology is
reviewed.

The communication diameter of a machine is defined to be
the maximum of the minimum distance (number of communi-
cation links) between any two processors in the network.
Therefore, the communication diameter of a machine gives a
lower bound on the running time for problems where data need
to be exchanged between processors at maximum distance.

Another method of determining lower bounds for problems
that require extensive data movements is by a wire-counting
(or wire-cutting or cut-set) argument. For instance, suppose
one is concerned with the minimum time necessary to sort or

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

route data on a particular machine and it can be shown that in
the worst case all of the data from one “‘half’’ of the machine
must be exchanged with all of the data from the other *‘half”’
of the machine. If there are w wires that connect the two
halves of the machine, then in one unit of time only 2w
elements can cross these w bidirectional communication
wires. Therefore, if each half of the machine has n/2 pieces of
data, then Q(n/w) time is required simply to move data
between the two halves of the machine.

1) Mesh Computer: An optimal mesh algorithm for
identifying the extreme points of the convex hull is given in
[34], [38], and [40]. The description of the mesh is presented
in this section for convenience since a number of the other
architectures of interest in this paper are mesh-based, e.g., the
pyramid, mesh-of-trees, and mesh with reconfigurable bus.

The mesh computer (mesh) of size n is a machine with n
simple processing elements (PE’s) arranged in a square
lattice. To simplify exposition, it is assumed that n = 4¢ for
some integer ¢. For all i, j € [0, ---, n'2 — 1], PE P;,
representing the PE in row 7 and column j, is connected via
bidirectional unit-time communication links to its four neigh-
bors, PE’s P;., ;+, assuming they exist. (See Fig. 1.) Each
PE has a fixed number of registers (words), each of size
O(log n), and can perform standard arithmetic and Boolean
operations on the contents of these registers in unit time. Each
PE can also send or receive a word of data from each of its
neighbors in unit time. Each PE contains its row and column
indexes, as well as a unique identification register, the
contents of which are initialized to the PEs’ proximity order
index, as discussed below.

Several of the algorithms presented in this paper rely on
ordering data with respect to the proximity ordering of
processors (which is based on the concept of space-filling
curves). There is no single natural ordering of a two-
dimensional mesh, so many orderings of processors have been
used. Some of the more useful and popular orderings are given
in Fig. 2. Notice that snake-like ordering has the useful
property that PE’s with consecutive numbers in the ordering
are adjacent in the mesh, while shuffled row-major ordering
has the property that the first quarter of the PE’s form one
quadrant, the next quarter form another quadrant, etc., with
this property holding recursively within each quadrant. This
property of shuffled row-major ordering is useful in many
applications of a divide-and-conquer approach. Proximity
ordering combines the advantages of snake-like and shuffled
row-major order. Some properties of proximity ordering
follow. Given row and column coordinates of a PE P, in
O(log n) time a single processor can compute the proximity
order of P by a binary search technique. Similarly, given a
positive integer i, the row and column coordinates of the PE
with / as its proximity number can be determined in O(log n)
time by a single processor. Given any positive integers i < j,
the shuffled row-major property of recursively dividing
indexes among quadrants gives the property that the distance
from PE number i to PE number j is O((j — i)"?), and that a
path of length O((j —)!/?) can be achieved using only PE’s
numbered from i to j. Furthermore, the PE’s numbered from i
through j contain a subsquare with more than (j — /)/8 PE’s.

Ncube [ZI], FPS [ZU], ana AMEEK |J].

1607

Processing Element

E 2 — Communication Link
a'’?
-1
Fig. 1. A mesh computer of size n.
0 1 2 3 0 1 4 5
4 5 6 7 2 3 6 7
8 9 110 | 11 8 9 |12 113
12 [13 |14 |15 10 [11 | 14 | 15
(@) (b)

0 1 2 3 4] 1 14 | 15
7 6 5 4 312 [13]12
8 9 [10 | 11 4 |7 8 | 11
15 {14 [13 |12 5|6 910

(©) @

Indexing schemes for the processors of a mesh. (a) Row-major. (b)
Shuffled row-major. (c) Snake-like. (d) Proximity.

Fig. 2.

The communication diameter of a mesh of size n is O(n'/?)

as can be seen by examining the distance between PE’s in
opposite corners of the mesh. This means that if a PE in one
corner of the mesh needs data from a PE in another corner of
the mesh at sometime during an algorithm, then a lower bound
on the running time of the algorithm is Q(n'/2).

2) Pyramid Computer: A pyramid computer (pyramid)
of size n is a machine that can be viewed as a full, rooted, 4-
ary tree of height log, n, with additional horizontal links so
that each horizontal /evel is a mesh. It is often convenient to
view the pyramid as a tapering array of meshes. A pyramid of
size n has at its base a mesh of size n, and a total of %n - %
PE’s. The levels are numbered so that the base is level 0 and
the apex is level log, n. A PE at level i is connected via
bidirectional unit-time communication links to its nine neigh-
bors (assuming they exist): four siblings at level i, four
children at level i — 1, and a parent at level i + 1. (A sample
pyramid is given in Fig. 3.) It is assumed that each PE has a
fixed number of words (registers), each of size ©(log n), and
that arithmetic, Boolean, and communication operations with a
neighbor take unit time. Each PE contains registers with its
row, column, and level coordinates, the concatenation of
which provides a unique label for the PE.

Notice that the communication diameter of a pyramid
computer of size n is O(log n). This is true since any two
processors in the pyramid can exchange information through
the apex. (The reader is referred to [40] for O(log n) time
algorithms that solve a variety of problems on a pyramid of
size n.) Of course, if too much data are trying to be passed

COMITIUIIICATION TIAIMETIET. A FIKAIVI IS UIICH UESCIIUCU X I IS

1608

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

level 2

level 1

level 0

Processing Element

Fig. 3.

Communication Link

A pyramid computer of size 16.

- Processing Element in the base

- Processing Elementin a tree over the base

—— - Communication Link

Fig. 4. A mesh-of-trees of base size n = 16. Note: The mesh connections
have been omitted for clarity.

through the apex, then the apex becomes a bottleneck. In [39]
and [40], it is shown that for a variety of problems on a
pyramid computer of size n, the Q(log n) lower bound is
overly optimistic and can be replaced by a bound closer to
n'/4, Notice that efficient pyramid algorithms must avoid
operations that require extensive data movement, such as
sorting or routing all of the data in the base, since a simple
wire-counting argument shows that Q(n!?) time is required.
To see this, consider the number of wires crossing the middle
of the pyramid versus the number of items that potentially
must move from one half to the other. In the base of the
pyramid, there are nl/? wires crossing the middle of the
pyramid, in the next level there are n!2/2 such wires, and so
on, giving the total number of wires crossing the middle of
a pyramid of size n to be =% ™! n172/2i, which is 2n1/2 —
2. Since all n pieces of data that initially reside in the base of
the pyramid may need to cross from one side of the base mesh
to the other, then [n/(2n'/?2 — 2)] time units, or (n'/2) time,
is required just to get data across the middle of the pyramid.
Pyramid computer projects have been proposed [57] and
several are under construction [10], [11], [14], [18], [51],
[55].

3) Mesh-of-Trees Architecture: A mesh-of-trees of base
size n, where n is an integral power of 4, has a total of
3n — 2n'2 PE’s. n of these are base PE’s arranged as a mesh

of size n. Above each row and above each column of the mesh
is a perfect binary tree of PE’s. Each row (column) tree has as
its leaves an entire row (column) of base PE’s. All row trees
are disjoint, as are all column trees. Every row has exactly one
leaf PE in common with each column tree. Fig. 4 shows a
sample mesh-of-trees. Each base processor is connected to six
neighbors (assuming they exist): four in the base mesh, a
parent in its row tree, and a parent in its column tree. Each PE
in a row or column tree that is neither a leaf nor a root is
connected to exactly three neighbors in its tree: a parent and
two children. Each root in a row or column tree has its two
children as neighbors. It is assumed that each PE has a fixed
number of words (registers), each of size ©(log 1), and that all
arithmetic, Boolean, and communication operations with a
neighbor take unit time. Each PE contains identity registers
with its row, column, and level coordinates (the base being
level 0), the concatenation of which provides a unique label for
the PE.

Like the pyramid, the mesh-of-trees also has a communica-
tion diameter proportional to the logarithm of the number of
base PE’s. Also, like the pyramid, a simple wire-counting
argument shows that for operations that require extensive data
movement, such as sorting or routing, Q(n'/2) time is required
since only 2n'/2 wires cross the middle of the mesh-of-trees.
However, due to the multiple paths available between proces-

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

1609

0100

1010

0101

0111
0011

1111

1001

1011

- Processing Element

— - Communication Link

Fig. 5. A hypercube of size n = 16 with the processors labeled using a
binary representation.

sors, the mesh-of-trees is often able to provide solutions to
problems that are more efficient than those possible for the
pyramid [40]. In fact, while it is of no use for the convex hull
problem considered in this paper, [40] has shown that the
mesh-of-trees can sort a restricted amount of data given in
certain configurations in ©(log 7) time. The mesh-of-trees is a
very useful architecture in VLSI because it embeds nicely into
the plane [58], although no significant mesh-of-trees has been
built yet. It should be noted that the mesh-of-trees is not
always defined to include the connections between base PE’s,
but it is easy to show that these additional connections do not
change the planar embedding properties of the mesh-of-trees.

4) Hypercube: A hypercube of size n, where n is an
integral power of 2, has n PE’s indexed by the integers {0,
-++, n — 1}. Viewing each integer in the index range as a
log, n bit string, two PE’s are connected via a bidirectional
communication link (i.e., they are neighbors) if and only if
their indexes differ by exactly one bit. A hypercube of size n is
created recursively from two hypercubes of size n/2 by
labeling each hypercube of size n/2 identically and indepen-
dently with the indexes {0, ---, (n/2) — 1}, and then
appending a 1 in front of the bit strings of one of the cubes and
a 0 in front of the other, which ‘‘creates’’ a new link from each
PE in one cube to the corresponding PE in the other cube. See
Fig. 5. It is assumed that each PE has a fixed number of words
(registers), each of size ©(log n), and that all arithmetic,
Boolean, and communication operations with a neighbor take
unit time.

It is easy to see that like the mesh-of-trees and pyramid, the
communication diameter of a hypercube of size 7 is O(log n).
However, unlike the mesh-of-trees or pyramid, a wire-
counting argument only shows that Q(1) time is required for
operations that require extensive data movement, since there
are n/2 wires that connect two subhypercubes of size n/2 in a
hypercube of size n. This is encouraging, and in [40] it is
shown that many problems can be solved much more
efficiently on a hypercube than on other machines. A variety
of hypercubes are marketed commercially, including fine-
grained machines such as the Connection Machine [22], and
medium-grained machines by companies such as Intel [23],
Ncube [21], FPS [20], and Ametek [5].

5) Mesh with Reconfigurable Bus: For many applications,
it is desirable to have an interconnection scheme that may be
reconfigured during an algorithm. We consider a reconfigura-
ble array of processing elements that combines the advantages
of a number of architectures including the mesh, pyramid,
mesh-of-trees, and meshes with broadcast buses. (For descrip-
tions of a mesh with multiple broadcast buses, the reader is
referred to [27] and [54].) The mesh with reconfigurable bus
(reconfigurable mesh) of size n consists of an n'/2 x nl/2
array of processors connected to a grid-shaped reconfigurable
broadcast bus, where each processor has four locally control-
lable bus switches, as shown in Fig. 6. Other than the buses
and switches, the reconfigurable mesh is similar to the
standard mesh in that it has O(n) area, under the assumption
that processors, switches, and individual links have constant
size. In one unit of time, each processor can perform standard
arithmetic and Boolean operations on its own data, can set any
of its four switches, and can send and receive a piece of data
from the bus. The restriction is that within any maximally
connected subbus, simultaneous writes to the subbus are only
allowed if the same piece of information is being written,
otherwise simultaneous writes to a subbus are prohibited. This
differs from the model used in [31]-[33] in which simultane-
ous writes are strictly prohibited.

Notice that the switches allow the broadcast bus to be
divided into subbuses, including row and column buses, a bus
within each disjoint submesh, and so forth, where each subbus
can function as a smaller mesh with a reconfigurable bus. This
architecture is much more general than the mesh augmented
with row and column broadcasts, and still requires only O(n)
area to layout an n-processor mesh with reconfigurable bus.
Furthermore, except for small differences, the reconfigurable
bus is used as an interconnection network in the polymorphic-
torus network [29] and in the latest version of the content
addressable array parallel processor (CAAPP), which is the
lowest level of the image understanding architecture (IUA)
[59] There are also similarities between the reconfigurable
mesh and the CHiP architecture [53].

6) PRAM: A parallel random access machine (PRAM) is
an idealized parallel model of computation, with a unit-time
communication diameter. A PRAM is often described in terms

1610

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

Q Processor

Reconfigurable Bus

[] Locally Controllable Switch

Fig. 6. A reconfigurable mesh of size n = 16.

of a machine consisting of identical processors and a global
memory, where all processors have unit-time access to any
memory location.

Three of the common variations of the PRAM are now
described. A concurrent read, exclusive write (CREW)
PRAM permits multiple processors to read data from the
same memory location simultaneously, but permits only one
processor at a time to attempt to write to a given memory
location. A concurrent read, concurrent write (CRCW)
PRAM permits concurrent reads as above, but allows several
processors to attempt writing to the same memory location
simultaneously, with some tie-breaking scheme used so that
only one of the competing processors succeeds in the write.
An exclusive read, exclusive write (EREW) PRAM is the
most restrictive version of a PRAM in that only one processor
can read and write from a given memory location at a given
time. Some bus-based machines with a small number of
processors, such as those marketed by Alliant, ELXSI,
Encore, and Sequent, to name a few, are conceptually similar
in design to a PRAM.

7) Modified AKS Network: Given n items distributed no
more than one per processor, [2] gives an n-processor O(log 7)
degree network and an 7 log n processor bounded degree net-
work that sorts the items in worst case ©(log n) time. In [28],
Leighton gives a construction that when combined with this
AKS network gives an O(n) processor bounded degree
network that sorts 7 items, distributed no more than one per
processor, in worst case O(log n) time. This processor
organization will be referred to as LeiAKS in this paper.

The cube-connected cycles network (CCC} of size n [48)
is a fixed degree network with n processors capable of
simulating with constant delay a hypercube of size n for a wide
variety of algorithms, including ©(log n) time bitonic merge
and broadcasting. For n = 2, k an integer of the form k = r
+ 27, the processors of a CCC of size n are grouped into 24"
cycles, where each cycle consists of 2’ circularly connected
processors, and where the cycles are interconnected as a
(k — r)-dimensional hypercube. One drawback of a cube-
connected cycles network is that when trying to simulate
recursive divide-and-conquer hypercube algorithms, CCC’s
do not partition into smaller CCC’s. The problem is that cycles
get partitioned into paths. This can be remedied by introducing

additional interconnection links to form the desired cycles.
Furthermore, these additional interconnection links can be
added so that this modified cube-connected cycles network
will remain a fixed degree network.

Constructing a processor organization that gives each of n
processors LeiAKS connections, as well as modified cube-
connected cycles connections, gives a processor organization
that can sort in ©(log n) time and perform hypercube
operations and divide-and-conquer techniques that are used in
Section IV in the required time. This organization will be
referred to as a modified AKS network, and is defined more
fully in [41].

C. Convex Hull

In this paper, we give efficient algorithms for identifying
the extreme points that represent the convex hull of a set S of n
or fewer planar points, initially distributed one point per
processor. The convex hull of a set S of points, denoted
hull(S), is defined to be the minimum convex set containing
S. A point P € S is an extreme point of S if P & hull(S —
P). For several of the algorithms presented in this paper, it
will be useful to impose an ordering on the extreme points of
S. The ordering will be in a counterclockwise fashion,
starting with the easternmost point. Since the number of points
under consideration is finite, and we assume that no two points
have the same x-coordinate, then notice that there must be a
unique easternmost point.

In general, if S is finite, then hull(S) is a convex polygon,
and the extreme points of S are the corners of this polygon.
The edges of this polygon will be referred to as the edges of
the hull(S). (See Fig. 7.) We say that the extreme points of S
have been identified, and hence hull(S) has been identified,
if

1) for each PE P; containing a point of S, P; has a Boolean
variable ‘‘extreme’’ that is true if and only if the point
contained in P; is an extreme point of S, and

2) for each PE P; containing an extreme point of S, P;
contains the position of its point in the counterclockwise
ordering, the total number of extreme points, and its adjacent
extreme points in the counterclockwise ordering.

That is, the term identify is used throughout this paper to
mean detect (mark) and enumerate (number in counter-

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

@ Pointsof S
(® Enumerated Extreme Points of hull(S)

—— Edges of hull(S)
Fig. 7. Convex hull of S.

clockwise order). Finally, we define the convex hull prob-
lem to be the problem of identifying the extreme points of a
given set of planar points.

D. Lower Bounds

In [47], it is shown that sorting # elements can be reduced to
the problem of identifying the extreme points of the convex
hull of a set S of # planar points. Therefore, given a set S of n
planar points distributed arbitrarily, a serial machine will
require (7 log n) time in the worst case to identify (i.e., mark
and enumerate) the extreme points of hull(S). Furthermore,
this result shows that any reasonable O(n) processor parallel
machine requires Q(log n) worst case time to identify the
extreme points of hull(S) when the points of S are distributed
in an arbitrary fashion one per PE.

Proposition 1: Given a set S of n planar points stored
arbitrarily one per processor on machine M that takes
Q(Ty(n)) worst case time to sort # elements, a lower bound on
the worst-case time to identify the extreme points of hull(S) on
M is Ty (n)). a

Therefore, for mesh-based machines with ©(n) processors,
such as the mesh, mesh-of-trees, and pyramid, Q(n!/2) worst
case time is required to solve the convex hull problem for a set
of planar inputs arbitrarily distributed throughout the base
processors of the machine. These worst case lower bounds are
easy to derive through wire-counting arguments, as discussed
previously in this section. Furthermore, [38] and [40] give
optimal ©(n!’2) worst case time algorithms for solving the
convex hull problem on these machines with arbitrary planar
point data input. Notice also that an easy wire-counting
argument shows that a tree machine with n pieces of data
stored one per leaf processor must take {(n) time to sort the
data in the worst case. Therefore, the worst case running time
to solve the convex hull problem for planar point data that is
initially distributed in an arbitrary fashion one per leaf
processor on a tree with » leaf processors is Q(n). Finally, the
only provable lower bound on the worst case running time to
solve the convex hull problem for planar point data distributed
arbitrarily among the n processors of a hypercube is Q(log n),
based on the communication diameter. However, currently the
best worst case time to sort on a hypercube of size n is O(log?

1611

n) [9], which means that currently all algorithms bounded by
sorting take Q(log?) worst case time on a hypercube of size
n.

An interesting result is presented in [16], which shows that
Q(log n) is the best possible worst case running time for a
machine to solve the convex hull problem even if arbitrarily
many processors are allowed.

Proposition 2 [16]: Given a set S of n planar points stored
arbitrarily one per processor on a parallel machine with
arbitrarily many processors, a lower bound on the worst case
time to identify the extreme points of hull(S) is @(log n). W

It should be noted that this proposition applies to the
problem of identifying (i.e., detecting and enumerating) the
extreme points on a parallel machine. For the problem of
simply detecting the extreme points, it is easy to construct a
O(1) time CRCW PRAM algorithm that requires only
polynomially many processors.

An identification algorithm for the CREW PRAM is given
in [6] that is optimal with respect to both time and space, and is
used as a point of reference for the algorithms given
throughout this paper.

Proposition 3 [6]: Given a set S of n planar points stored
arbitrarily one per processor on a CREW PRAM with n
processors, the extreme points of hull(S) can be identified in
O(log n) time.]

III. PARALLEL ALGORITHMS FOR ORDERED INPUT

In this section, we describe a general parallel algorithm for
identifying the extreme points of the convex hull of a set S of n
planar points distributed in an ordered fashion throughout the
processors of the machine. As mentioned previously, the
points are assumed to be ordered so that the x-coordinate of the
point in PE P; is less than the x-coordinate of the point in PE
P;, for i < j. After describing the general algorithm, we give
efficient implementations of it on the pyramid, tree, mesh-of-
trees, and mesh with reconfigurable bus. It should be noted
that in Section V, we show how to incorporate techniques from
Section IV into the algorithms presented in this section to
further improve the running times for the pyramid, tree, and
mesh-of-trees.

The general parallel algorithm that we use to identify the
extreme points of a set S of n planar points is given below in
Algorithm Identify_Hull.

Algorithm Identify_Hull:

1. Divide the set S of n planar points into two subsets S; and
S,, each of size n/2, so that all points of S, have x-
coordinates less than those of S,, and such that S = §; U S,.

2. Recursively identify the extreme points of hull(S;) and
hull(S,).

3. Identify the upper and lower common tangent lines
between hull(S;) and hull(S,). See Fig. 8. It should be noted
that an extreme point py of S;, with p,_; and p;,, as its
preceding and succeeding extreme points, respectively, with
respect to the counterclockwise ordering of the extreme points
of Sy, is the left endpoint of the upper common tangent line
between S; and S; if and only if no points of S, lie above the
line p; . 1 px, while at least one point of S, lies above the line
DPrPr-1. (Recall that the extreme points are labeled in

1612

upper common tangent line

lower common tangent line

Fig. 8. Upper and lower tangent lines between linearly separable sets S, and

S,.

counterclockwise fashion.) Similar remarks can be made about
the other three endpoints.

4. Eliminate all extreme points between the common
tangent lines (i.e., all extreme points of S; and S, that are
inside the quadrilateral formed by the four endpoints repre-
senting the common tangent lines) and renumber the remain-
ing extreme points.

The remainder of this section is concerned with developing
efficient implementations of this algorithm for a variety of
models of computation, some of which will be improved
further in Section V.

A. Pyramid and Tree

Assume the points of S initially reside in the base of a
pyramid of size n ordered by x-coordinate with respect to the
proximity order indexing scheme of the base mesh. We now
give the implementation details corresponding to each step of
Algorithm Identify_Hull.

1. Due to the ordering of points in the base of the pyramid,
those points in processors labeled 0, 1, -+, (n/2) — 1
(conceptually corresponding to the left half of the base of the
pyramid) will represent S;, while those points in processors
labeled n/2, (n/2) + 1, -++, n — 1 (conceptually corres-
ponding to the right half of the base of the pyramid) will
represent S,.

2. Recursively identify the extreme points of hull(S;) and
hull(S,).

3. One of the keys to an efficient pyramid algorithm is in the
identification of the upper and lower common tangent lines
between hull(S;) and hull(S,). Assume that there are n,
extreme points in S, and n, extreme points in S,. Further,
assume the extreme points of S; are labeled 1, 2, -+, n;.
Since the extreme points of S; and S, have been identified in
Step 2, each processor that is responsible for an extreme point
of S; (S;) knows

a) its number in the counterclockwise ordering of the
extreme points of S; (S,),

b) the total number of extreme points, n; (ny), of S; (S),
and

¢) the points and processors that correspond to its preceding
and succeeding extreme points with respect to the counter-
clockwise ordering of the extreme points of S; (S;).

We now describe an algorithm to determine the left
endpoint of the upper common tangent line between S; and S,.

Pipeline through the apex of the pyramid a logarithmic
number of equidistantly placed extreme points from S, with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

respect to the counterclockwise ordering, down to the base
processors of the right side of the pyramid that are responsible
for S,. Let i = |n;/log, ny]. Specifically, in ©(log n) time
send copies of the extreme points, along with their preceding
and succeeding extreme points, labeled 1,1 + i, 1 + 2/, -,
1 + i|logy (n;) — 1] through the apex and down to the right
side of the pyramid where the extreme points of S, reside in
the base. As each extreme point p, sent from S,, with p,_, and
Di+1 its preceding and succeeding extreme points, arrives at a
base processor on the right side of the pyramid, the processor
receiving the extreme point will determine if the point of S,
that it is maintaining is above the line p;, px. The processor
will also determine if its point is above the line p,p,_,;. Each
of these results are recorded with a single bit in the processor.
So, each base processor on the right side of the pyramid
maintains a ©(log n)-bit vector to keep track of the intervals of
extreme points that it considers candidates for containing the
left extreme point of the upper tangent line between S, and S,.

After all |log, n,| points have reached the base processors
on the right side of the pyramid, the base processors on the
right side of the pyramid pipeline the bits of their vectors up to
the apex in pairs (each pair corresponds to a single extreme
point of S;), logically oring corresponding entries along the
way, until the apex knows the single interval of extreme points
of S; corresponding to possible candidates for the left endpoint
of the upper common tangent line between S; and S,.

The apex broadcasts to the base processors on the left side
of the pyramid the indexes of the two extreme points that
determine the single interval of O(n;/log n;) extreme points
that are candidates for the left endpoint of the upper common
tangent line. This binary search process continues recursively
in search of the left endpoint of the upper common tangent
line, where at each iteration of the search, the number of
extreme points under consideration is reduced by a factor of
O(log ny).

A similar operation is performed to find the right extreme
point of the upper common tangent line, and both extreme
points that correspond to the lower common tangent line
between S; and S,. The worst case running time for this
algorithm to find an endpoint of a common tangent line
between S and S, is given by T(n) = T(n/log n) + O(log n),
which is ©(log? n/log log n).

4. Once the four extreme points corresponding to the
endpoints of the two tangent lines are known, they are
broadcast, along with their counterclockwise ordering number
restricted to either S, or S, and their preceding and succeeding
extreme points restricted to S; or S, to all base processors.
This is accomplished by a straightforward bottom-up top-
down tree-like report and broadcast in ©(log n) time. All PE’s
containing an extreme point of S; or S; can now compute in
O(1) time whether or not they remain an extreme point of S,
and if so they may determine their possibly new number and
total number of extreme points of S, as well as their possibly
new preceding and succeeding extreme points.

Therefore, the worst case running time for this algorithm to
identify the extreme points of n planar points is given by the
recurrence T(n) = T(n/2) + O(log? n/log log n), which is
O(log? n/log log n). Since this pyramid algorithm only makes

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

use of the child—parent links of the pyramid and not of the
mesh links, the algorithm is easily extended to a tree machine.

Theorem 4: Given a set S of n planar points ordered by x-
coordinate in the base of a pyramid (leaves of a tree) of size n,
the implementation of Algorithm Identify_Hull given above
will identify the extreme points of hull(S) in 6(log? n/log log
n) time.]

B. Mesh-of-Trees

An algorithm to identify the extreme points of the convex
hull of a set S of » points, initially distributed ordered by x-
coordinate with respect to the proximity ordering in the base
mesh of a mesh-of-trees of base size n, follows directly from
the algorithm just described in Section III-A for the pyramid
and tree architectures. Data movement operations that perform
standard report and broadcast operations, as well as techniques
for pipelining data throughout the mesh-of-trees, are straight-
forward and can be found in {40]. Simply perform the abstract
data movement operations implied in the algorithm of the
preceding section to arrive at a ©(log? n/log log n) time mesh-
of-trees algorithm for solving the convex hull problem.

Theorem 5: Given a set S of n planar points ordered by x-
coordinate in the base of a mesh-of-trees of base size n, the
implementation of Algorithm Identify_Hull given in this
section will identify the extreme points of hull(S) in ©(log? n/
log log n) time.

C. Mesh with Reconfigurable Bus

In this section, we describe an algorithm to identify the
extreme points of the convex hull of a set S of »n points,
initially distributed on point per processor on a reconfigurable
mesh of size n, where the points are ordered by x-coordinate
with respect to the proximity ordering of the mesh. The
algorithm presented in this section follows the spirit of
Algorithm Identify_Hull given in Section III. However, the
implementation is tailored to this interesting architecture so as
to obtain an algorithm that finishes in ©(log? n) worst case
time. This improves on the running times of the convex hull
algorithms given for the pyramid, tree, and mesh-of-trees by a
factor of O(log n/log log n).

Using Algorithm Identify_Hull as a template, we give the
detailed implementation of an algorithm to identify the
extreme points of a set S of n planar points on a mesh with
reconfigurable bus of size n.

1. In order to obtain a proper subdivision of points into
subreconfigurable meshes, the switches of the reconfigurable
bus are set so as to partition the reconfigurable mesh with
respect to the proximity ordering of the processors. This
partitioning will have processors labeled 0, 1, - -+, (n/2) — 1
(conceptually corresponding to the left half of the mesh with a
reconfigurable bus) represent S;, while those points in
processors labeled n/2, (n/2) + 1, ---, n — 1 (conceptually
corresponding to the right half of the mesh with a reconfigura-
ble bus) will represent S,. This step is complete in ©(1) time.

2. The problem can now be solved recursively within each
submesh with reconfigurable bus of size n/2.

3. The endpoints of the upper and lower common tangent
lines between hull(S;) and hull(S;) can be identified in
O (log n) time by a binary search technique for each of the four

1613

required points. For instance, in order to determine the
extreme point that corresponds to the left endpoint of the upper
tangent line between S; and S;, do the following.

a) Suppose there are n; extreme points of S; labeled 1, 2,
cvo,n.Letl=1andr = n,.

b) Let k = |(/ + r)/2]. Use the bus to broadcast extreme
point p; of S; to the processors on the right side of the
reconfigurable mesh that are responsible for S,.

¢) Using simultaneous writes to the bus, all processors on
the right side of the reconfigurable mesh that maintain a point
above the line p . Pk, broadcast an identical message on the
bus to all n processors.

d) If there is at least one such point of S, that is above
Di+1Dx, then the binary search continues on the points labeled
k+1,k+2,--+,r. [i.e,set!l = k + 1 and return to Step
3b)].

e) If there are no points of S, above py. Py, then using
simultaneous writes to the bus, all processors on the right side
of the reconfigurable mesh that maintain a point above the line
DDk -1, broadcast an identical message on the bus to all n
ProCessors. '

i) If there are no such points of S, above p;p;_,, then the
binary search continues on the set of points labeled /, / + 1,
+++, k — 1. [i.e., set r = k — 1 and return to Step 3b)].

ii) If there is at least one point of S, above pypi_ 1, then p;
is the left endpoint of the upper tangent line between S; and S,.
Notice that p, has the property that all points of S, lie below
the line py . 1Pk, While at least some points of S, lie above the
line pypy_ ;-

After no more than [log, n,] iterations, an extreme point of
S; will be found that is the left endpoint of the upper tangent
line between S; and S,. Since each of the O(log n) broadcasts
takes O(1) time, this step is complete in ©(log n) time in the
worst case. The algorithm is trivially modified to find each of
the other three common tangent points, so that in ©(log n)
worst case time, the endpoints of the upper and lower tangent
lines between S; and S, will be known.

4. Once the four extreme points corresponding to the
endpoints of the two tangent lines are known, they are
broadcast to all PE’s in ©(1) time. All PE’s containing an
extreme point of S; or S, can now compute in O(1) time
whether or not they remain an extreme point of S, and if so
they may determine their possibly new number and total
number of extreme points of S, as well as their possibly new
preceding and succeeding extreme points. This step takes O(1)
time.

Therefore, the worst case running time for this algorithm to
identify the extreme points of # planar points is given by the
recurrence T(n) = T(n/2) + O(log n), which is O(log? n).

Theorem 6: Given a set S of n planar points ordered by x-
coordinate in the processors of a mesh with reconfigurable bus
of size n, the extreme points of S can be identified by the
above algorithm in O(log? n) time.]

IV. HYPERCUBE ALGORITHMS FOR ORDERED AND UNORDERED
InpUT

This section introduces an optimal ©(log #) time algorithm
for a hypercube of size n to identify the extreme points of a set

1614

of n planar points, distributed one point per processor in an
ordered fashion. This algorithm is then extended to give an
expected O(log n) time hypercube algorithm to solve the
convex hull problem for a set of planar input points that are
initially distributed in an arbitrary fashion, one point per
processor.

Given an input set of size n distributed one element per base
processor on a mesh-of-trees of base size n, [40] shows that
any algorithm that runs in 7'(n) time on the mesh-of-trees of
base size n can be simulated to run in ¢T(n) time, ¢ a constant,
on a hypercube of size n. This follows from the mapping given
in [37] that shows how to embed a mesh-of-trees of base size n
into a hypercube of size n so that adjacent processors of the
mesh-of-trees are mapped to hypercube processors that are at
most two communication links apart, and so that no hypercube
processor is responsible for more than three mesh-of-trees
processors. In this section, we show that by exploiting the
hypercube topology, we are able to solve the convex hull
problem substantially faster on a hypercube than by direct
simulation of a mesh-of-trees algorithm.

The hypercube algorithm presented in this section gives a
solution to the convex hull problem for ordered input that
conceptually differs only slightly from the algorithms given in
Section III for the pyramid, tree, mesh-of-trees, or mesh with
reconfigurable bus. One change is that the hypercube network
allows us to do more than one search at a time. Another
change is that the endpoints of upper and lower common
tangent lines are determined by a comparison of slopes of hull
edges, which replaces the bottleneck-restricted binary search
technique used in Section III. Specifically, suppose p;g;, p; €
81, g; € S, is the upper tangent line between convex sets S,
and S,, as in Fig. 8. The algorithm presented in this section
uses the fact [45] that the slope of p;q; is between

1) the slope of p;p;_, and the slope of p;, p;, and

2) the slope of g;_,q; and the slope of g;q; ;.

That is, in this section we just make comparisons to the
specific points that will answer the query, rather than with all
points. The algorithm also relies heavily on data movement
operations that exploit properties of the hypercube. The
algorithm follows.

1. The set S, which consists of » planar points, is divided
into n'/4 subsets, Sy, 82, * + *, S,,1/4, each of size n34, such that
S=U ;'21/14 S; and the x-coordinates of all points in S; are less
than the x-coordinates of all points in §;, for i < j. Define
region R; to be the processors responsible for set S;. It is
assumed that the set S; is stored in the ith subhypercube of size
n34 and that this ordering holds recursively within each such
region of size n¥4. It should be noted that the idea of
partitioning into regions of size square root in the size of the
input has been used previously in conjunction with PRAM
algorithms (e.g., [6]). However, to the best of our knowledge,
data division techniques such as this have only recently been
explored with respect to the hypercube (c.f., [17], [40]).

2. For each region R;, 1 < i < n'4, recursively identify
the extreme points of hull(S;).

3. In O(log n) time, each region R;, 1 < | < n'?, can
determine p,, and p,., the westernmost and easternmost
extreme points, respectively, of S;. This is accomplished in
O(log n) time by performing a report and broadcast operation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

within R; so that all processors of R; know p,, and p.,. Each
processor of R; that contains an extreme point of S; can now
decide in ©(1) time whether its extreme point lies on, above,
or below p,, p.,.

Steps 4-6 are performed twice, once for those extreme
points in R; that lie on or above p,,p.;, and once for those
points in R; that lie on or below p,.p., 1 < i < n'* The
description that follows in Steps 4-6 will be concerned only
with those extreme points that lie on or above their respective
lines, with the description being similar for the extreme points
that lie on or below their line.

4. The goal of this step is to determine for each region R;,
the upper (and when performed a second time, the lower)
tangent line between its set of points S;, and every other set of
points S;, for i # j. This is similar to the approach used in a
PRAM algorithm given in [6] in which n!/? regions, each
containing O(n'/2) points, are used. However, the number and
sizes of the regions, as well as the specific implementation
given here, are very dependent on the properties and data
movement operations available for the hypercube. The method
for determining the tangent lines also differs from the binary
search technique used in [6]. Furthermore, a direct simulation
of the algorithm given in [6] would not yield an efficient
hypercube algorithm.

a) For each region R;, mark n'’* extreme points that are
equidistantly spaced with respect to their number in the
counterclockwise ordering of the extreme points of S;. For
instance, if region R; has n; extreme points, and / = | n;/n!/*],
then mark points 1, 1 + [, 1 + 2/, --+, 1 + [|[n}* — 1]in
region R;. For each marked extreme point p,, with p,_, and
Pk+1 as its preceding and succeeding extreme points, respec-
tively, with respect to the counterclockwise ordering of
extreme points in R;, create two slope records. One record
consists of the slope of line py Pk, Pi+1, Dk, and the index of
the processor that contains the point, while the other record
consists of the slope of line pxpx_ 1, Pk, Px—1, and the index of
the processor.

b) Define a source region to be a region that sends slope
records to other regions, and a host region to be a region that
receives such records from source regions. During Step 4 of
this algorithm, every region will act as both a source and a host
region.

Every region R; acts as a source region and sends its
O(n'’%) slope records to every other region R;, i # j. Every
region R; acts as a host region and receives the slope records
from every source region R;, i # j. Since each of the n'/*
regions is sending O(n!’#) records to each of the other n'/4 —
1 regions, there are only O(n%'#) records being routed in the
hypercube of size n. Using data movement operations given in
[43], the necessary routing can be accomplished in O(log n)
time. The routing is performed so that within each host region,
all O(n'/?) records arrive ordered together by the slope field.

¢) Each host region creates two slope records for each of its
O(n**) extreme points. Using a bitonic merge within each
host region, in O(log #) time merge the O(n3/4) ordered slope
records of the host with the O(r!/2) ordered slope records sent
by the source regions.

d) Perform a ©(log n) time parallel prefix operation within
each host region so that each source record determines the

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

largest slope of a hull edge of the host region, and its
associated points, that is smaller than its slope. Similarly,
perform a ©(log n) time parallel ‘‘postfix’’ operation (a
backwards prefix operation) so that each source record
determines the smallest slope of a hull edge of the host region,
and its associated points, that is larger than its slope.

In ©(1) time, every processor residing in host region R; that
contains a source record representing an extreme point p from
source region R;, i # j, can determine

i) the tangent line to S; passing through point p, and

ii) whether p is on, to the left of, or to the right of (with
respect to the counterclockwise ordering of extreme points in
S;) the upper common tangent line between S; and S;.

e) Using a O(log n) time routing step, the source records
return to their originating regions ordered by destination
region by slope. Within each source region, by comparing
neighboring elements, it is determined for each destination
region the interval of points, delimited by consecutive marked
extreme points, that contain an endpoint of an upper common
tangent line between the source region and the destination
region.

It is important to note that our algorithm compares marked
extreme points of S; with all extreme points of Sj, for all i # j,
in order to determine the subset of points in S; that contains the
endpoint of the upper common tangent line between S; and ;.
This avoids a possible pitfall [7] that would arise if one tried
determining the subset based on comparing marked extreme
points of S; with only the marked extreme points of S;, i # j.

f) Perform Steps 4a)-4¢) twice more, where the returning
information is used to determine which sets of points are to be
compared between regions. Notice that during each of the two
additional applications of Steps 4a)—4e), a source region will
send a possibly distinct set of O(n'/4) points to each of the
other regions. However, there will still be only O(n3/#) pieces
of data being routed in the hypercube of size n, since each of
the n'/* regions is sending O(n'/#) records to each of the other
n'/4 — 1 regions. Therefore, the routing can still be
accomplished in O(log n) time. After a total of three
applications of Steps 4a)-4e), all processors of region R;, 1 <
i <= n'4, know the extreme points representing the upper
common tangent line (and lower common tangent line after
Step 4 is performed a second time) between S; and all S;, i #
J.

The running time of this step is ©(log n), and is dominated
by the time to perform data movement operations such as
routing, broadcasting, reporting, parallel prefix, and bitonic
merge.

5. In ©(log n) time each of the regions can now decide how
many, and which of its extreme points, are extreme points of
S. In order for region R;, | < i < n'4, to determine the
interval of its extreme points between its westernmost and
easternmost extreme points that are extreme points of S, the
following is performed within R;.

a) Determine the minimum slope of a tangent line between
R;and R;, for j < i (i.e., those regions to the left of R;). Let p;
be the extreme point of R; that is an endpoint of this common
tangent line.

b) Determine the maximum slope of a tangent line between
R;and R;, for j > i (i.e., those regions to the right of R;). Let

1615

p, be the extreme point of R; that is an endpoint of this
common tangent line.

¢) If p, is to the left of p;, or p, = p, and the angle open to
the top, formed by these two line segments, is less than 180°,
then no points of R; are extreme points of S. Otherwise, those
extreme points of R; between p, and p, are extreme points of S.
See Fig. 9.

Broadcasts and reports within regions complete this step in
O(log n) time.

6. Each region creates a record with the total number of
points that remain in the final upper (lower) hull. A O(log n)
time prefix operation will inform each region as to the new set
of labels for its points. The relabeling of points and identifica-
tion of preceding and succeeding points can be completed in
O(log n) time.

For further explanations and implementations of some of the
O(log n) time data movement operations, such as broadcast,
report, parallel prefix, and so on, the reader may wish to refer
to [40]. The worst case running time for this algorithm to
identify the extreme points of n planar points distributed in an
ordered fashion one point per processor on a hypercube of size
n is given by the recurrence T(n) = T(n¥*) + O(log n),
which is ©(log n).

Theorem 7: Given a set S of n planar points ordered by x-
coordinate one point per processor in a hypercube of size n,
the algorithm given above will identify the extreme points of
hull(S) in ©(log n) time. [|

An expected O(log n) time algorithm is given in [50] for
sorting data on a hypercube of size n. This operation may be
used in conjunction with the algorithm given in this section to
derive an expected O(log n) time hypercube algorithm to solve
the convex hull problem for an arbitrarily distributed set of
planar points. Sort the initial data into order by x-coordinate in
expected O(log n) time. This performs the initial preprocess-
ing step, after which the algorithm given in this section can be
performed as stated.

Theorem 8: Given a set S of n planar points distributed in
an arbitrary fashion one point per processor in a hypercube of
size n, the extreme points of hull(S) can be identified in
expected O(log n) time.]

If a ©(log? n) time deterministic sort is used instead of an
expected O(log n) time sort to order the initial set of planar
points by x-coordinate, then the following is obtained.

Corollary 9: Given a set S of n planar points distributed in
an arbitrary fashion one point per processor in a hypercube of
size n, the extreme points of hull(S) can be identified in
O(log? n) time. n

V. IMPROVING THE HIERARCHICAL ALGORITHMS

Ideas used in the hypercube algorithm of Section IV can be
combined with the algorithms given in Section III to produce
slightly faster algorithms for the pyramid, tree, and mesh-of-
trees. Instead of merging two regions at a time, as in Section
I11, one can merge O(log'® n) regions at a time. However, if
each region pipelines ©(log n) probes to each other region,
then the apex would become a bottleneck. This can be
circumvented by having each region send only O(log'? n)
probes at a time to each other region, resulting in 8(log n)
probes passing through the apex at each step. With this

1616

(@)

()]

Fig. 9. Using p; and p, to determine extreme points. (a) p; is to the left of p,
and the angle open to the top is > 180°. Those extreme points of R, that are
between p, and p, are extreme points of S. (b) p, is equal to p, and the angle
open to the top is > 180°. p; (= p,) is an extreme point of S. (c) p; is equal
to p, and the angle open to the top is < 180°. No extreme points of R; are
extreme points of S. (d) p, is to the left of p,. No extreme points of R; are
extreme points of S.

modification, the time of the algorithms obey the recurrence
T(n) = T(n/log'® n) + O(log? n/log log n), which is ©(log>
n/(log log n)?).

Theorem 10: Given a set S of n planar points ordered by
x-coordinate in base of a pyramid, base of a mesh-of-trees, or
leaves of a tree, the extreme points of S can be identified in
O(log? n/(log log n)?) time. |

VI. EREW PRAM ALGORITHM FOR UNORDERED INPUT

The hypercube algorithm for ordered data given in Section
IV can be modified in a straightforward manner to solve the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

convex hull problem for planar point data stored in an
arbitrary fashion on an EREW PRAM in optimal ©(log r)
time using optimal ©(n) processors. Previously, such time and
processor bounds were obtainable for algorithms on the
CREW PRAM {1], [6], but it is not clear that these algorithms
could be modified to run in the same time using a linear
number of processors on an EREW PRAM.

The modifications to the hypercube algorithm of Section IV
consist of sorting the initial data into order by x-coordinate on
the EREW PRAM, and then simply following the spirit of the
algorithm given in Section IV on the EREW PRAM. It should
be noted that deterministic sorting or routing of n elements
distributed one per processor on an n processor EREW PRAM
can be completed in O(log n) time [15], as can parallel prefix
[25].

Theorem 11: Given a set S of n planar points distributed
arbitrarily one per processor on a EREW PRAM with n
processors, in optimal O(log n) time the extreme points of
hull(S) can be identified. Furthermore, this result is both time
and processor optimal.]

VII. A MobirieEb AKS NETWORK ALGORITHM FOR UNORDERED
INrUT

Recall from Section II-B-7 that a modified AKS network (a
bounded degree network) with O(n) processors can sort n
items, distributed no more than one per processor, in worst
case O(log n) time by restricting the interconnections between
processors to those present in the LeiAKS network. Other
operations required in the hypercube algorithm for arbitrary
input, given in Section IV, can be accommodated on the
modified AKS network by exploiting the interconnections
available through the modified cube-connected cycles. There-
fore, a straightforward adaptation of the expected O(log n)
time hypercube algorithm for arbitrary input given in Section
IV will yield an optimal worst case O(log n) time algorithm for
solving the convex hull problem on a modified AKS network,
under the assumption that the set of planar points is initially
distributed in an arbitrary fashion, one element per processor
of the network. This is the first ©(log n) time algorithm given
to solve the convex hull problem for arbitrary planar point
input on a fixed degree network. Recall from Section II-D that
any parallel algorithm to solve the general convex hull
problem for planar point data input must take Q(log n) worst
case time, regardless of how many processors are available.

Theorem 12: Given a set S on n planar points distributed
arbitrarily one per processor on a modified AKS network, in
optimal ©(log n) time the extreme points of hull(S) can be
identified. Furthermore, this result is both time and processor
optimal. |

VIII. CONCLUSION

In this paper, poly-logarithmic time parallel algorithms
were given to determine the convex hull of a set of planar
points using a hypercube, pyramid, tree, mesh-of-trees, mesh
with reconfigurable bus, EREW PRAM, and a modified AKS
network. All algorithms are new and more efficient than any
previously developed algorithms for the same machine and
input set. It was discussed that given a set S of n planar points,

MILLER AND STOUT: PARALLEL CONVEX HULL ALGORITHMS

distributed arbitrarily one per processor on a network with n
processors, optimal worst case solutions to the convex hull
problem on networks of processors such as the pyramid and
mesh-of-trees require Q(n'/2) time, and in fact ©(n'2) time
solutions to this problem were cited. For the case where the n
input points are ordered on a machine with ©(n) processors,
our hypercube algorithm finishes in worst case ©(log #) time,
our pyramid, tree, and mesh-of-trees algorithms finish in
worst case O(log? n/(log log n)?) time, and our mesh with
reconfigurable bus algorithm finishes in worst case O(log? n)
time.

We showed that our ©(log n) time hypercube algorithm can
be modified to give an optimal time and processor worst case
O(log n) time EREW PRAM algorithm for planar point data
given in an arbitrary fashion. This improves upon the CREW
PRAM algorithm of [1] and [6] in that the same optimal worst
case running time is achieved, but on the weakest PRAM
model. By using an expected O(log n) time routing algorithm,
the hypercube algorithm for ordered data can be modified to
give an expected O(log n) time algorithm for arbitrary planar
point data input. Finally, we gave the first optimal worst case
O(log n) time algorithm for solving the convex hull problem
for arbitrary planar input on a fixed degree network.

We should note that the worst case O(log? n) time algorithm
that we presented for the reconfigurable mesh can be modified
using data movement operations developed in [33] to work
even if the model is restricted so that only one message is
allowed to be broadcast onto a maximally connected bus at any
time. Furthermore, we conjecture that ©(log? n) time is
suboptimal for this architecture, and leave the problem of
lower bounds and/or faster algorithms as an open problem.
Similarly, we conjecture that a running time of ©(log> n/(log
log n)?) is not the best possible for the pyramid, tree, and
mesh-of-trees, and leave this as an open problem.

ACKNOWLEDGMENT

The authors would like to express their appreciation to the
anonymous reviewers for their comments.

REFERENCES

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap,
‘‘Parallel computational geometry,”’ in Proc. 1985 Symp. Founda-
tions Comput. Sci., pp. 468-477.

[2] M. Ajtai, J. Komlos, and E. Szemeredi, ‘‘An O(n log n) sorting
network,”’ Combinatorica, vol. 3, pp. 1-19, 1983.

[3] S. Akl, ‘‘Parallel algorithms for convex hulls,”” Dep. Comput. Sci.,
Queens Univ., Kingston, Ont., Canada, 1983. :

{4] H. M. Alnuweiri and V. K. Prasanna Kumar, ‘‘Efficient image
computations on VLSI architectures with reduced hardware,”” in Proc.
IEEE 1987 Workshop Comput. Architecture, Pattern Anal. Mach.
Intell., pp. 192-199.

[5]1 Ametek, Inc., Ametek System 14 User’s Guide, Aug. 1986.

[6] M. J. Atallah and M. T. Goodrich, ‘‘Efficient parallel solutions to
some geometric problems,’’ J. Parallel Distributed Comput., vol. 3,
pp. 492-507, 1986.

[71 ——, *‘Parallel algorithms for some functions of two convex poly-
gons,”” in Proc. 24th Allerton Conf. Commun., Contr., Comput.,
1986, pp. 758-767.

[8] D. Avis, ““On the complexity of finding the convex hull of a set of
points,”” Tech. Rep. FOCS 79.2, School of Comput. Sci., McGill
Univ., 1979. .)

[91 K. E. Batcher, “‘Sorting networks and their applications,”” in Proc.
AFIPS Spring Joint Comput. Conf., vol. 32, 1968, pp. 307-314.

[10] P. J. Burt and G. S. van der Wal, ‘‘Iconic image analysis with the

[11]

[12]
(13]

[14]

[15]

[16]

[17]

[18]

(19

[20]

1211

[22]

[23]

{24]

[25]
[26]

[27]

[28]

[29]

[30]

B1]

132]

[33]

[34]

[35]

[36]
371

[38]

1617

pyramid vision machine (PVM),”’ in Proc. IEEE 1987 Workshop
Pattern Anal. Mach. Intell., pp. 137-144.

V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, ‘‘Papia:
Pyramidal architecture for parallel image analysis,” in Proc. 1985
Comput. Arithmetic Conf.

B. Chazelle, ‘‘Computational geometry on a systolic chip,”’ IEEE
Trans. Comput., vol. C-33, pp. 774-785, 1984.

A. Chow, *‘A parallel algorithm for determining convex hulls of sets of
points in two dimensions,”” in Proc. 19th Allerton Conf. Commun.,
Contr., Comput., 1981, pp. 214-233.

P. Clermont and A. Merigot, ‘‘Real time synchronization in a multi-
SIMD massively parallel machine,”” in Proc. IEEE 1987 Workshop
Pattern Anal. Machine Intell., pp. 131-136.

R. Cole, ‘‘Parallel merge sort,”” in Proc. 27th IEEE Symp.
Foundations Comput. Sci., 1986, pp. 511-517.

S. Cook and C. Dwork, ‘“‘Bounds on time for parallel RAMs to
compute simple functions,” in Proc. 14th ACM Symp. Theory
Comput., pp. 231-233,

R. Cypher, J. L. C. Sanz, and L. Snyder, ‘‘Hypercube and shuffle-
exchange algorithms for image component labeling,” in Proc. IEEE
1987 Workshop Pattern Anal. Mach. Intell., pp. 5-9.

G. Fritsch, W. Kleinoeder, C. U. Linster, and J. Volkert, ‘‘EMSY85—
The Erlanger multiprocessor system for a broad spectrum of applica-
tions,” in Proc. 1983 Int. Conf. Parallel Processing, pp. 325-330.
M. T. Goodrich, ‘‘Finding the convex hull of a sorted point set in
parallel,”” Inform. Processing Lett., vol. 26, 1987/1988, pp. 173-
179.

J. L. Gustafson, S. Hawkinson, and K. Scott, ‘“The architecture of a
homogeneous vector supercomputer,”’ in Proc. 1986 Int. Conf.
Parallel Processing, pp. 649-652.

J. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer, ‘A
microprocessor-based hypercube supercomputer,”” IEEE Micro, vol.
6, pp. 6-17, 1986.

D. Hillis, The Connection Machine.
1985.

Intel Corporation, iPSC System Overview, Jan. 1986.

C. S. Jeong and D. T. Lee, ‘‘Parallel geometric algorithms on a mesh
connected computer,”” Tech. Rep. 87-02-FC-01 (revised), Dep. EECS,
Northwestern Univ.

C. P. Kruskal, L. Rudolf, and M. Snir, ‘“The power of parallel
prefix,”” in Proc. 1985 Int. Conf. Parallel Processing, pp. 180-185.
V. K. P. Kumar and M. M. Eshaghian, ‘‘Parallel geometric algorithms
for digitized pictures on mesh of trees,” in Proc. IEEE 1986 Int.
Conf. Parallel Processing, pp. 270-273.

V. K. P. Kumar and C. S. Raghavendra, ‘‘Array processor with
multiple broadcast,”” in Proc. 1985 Symp. Comput. Architecture.
T. Leighton, ““Tight bounds on the complexity of parallel sorting,”
1EEE Trans. Comput., vol. C-34, pp. 344-354, 1985.

H. Li and M. Maresca, ‘‘Polymorphic-torus network,’’ in Proc. Int.
Conf. Parallel Processing, 1987.

M. Lu and P. Varman, ‘‘Solving geometric proximity problems on
mesh-connected computers,”’ in Proc. 1985 Workshop Comput.
Architecture Pattern Anal. Image Database Management, pp. 248-
255.

R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout,
‘“Meshes with reconfigurable buses,’” in Proc. Fifth MIT Conf. Adv.
Res. VLSI, 1988, pp. 163-178.

——, *‘Image computations on reconfigurable VLSI arrays,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition,
1988, pp. 925-930.

——, ‘‘Data movement operations and applications on reconfigurable
VLSI arrays,”” in Proc. 1988 Int. Conf. Parallel Processing Vol. I:
Architecture, 1988, pp. 205-208.

R. Miller and Q. F. Stout, ‘‘Computational geometry on a mesh-
connected computer,”’ in Proc. 1984 IEEE Int. Conf. Parallel
Processing, pp. 66-73.

‘‘Geometric algorithms for digitized pictures on a mesh-
connected computer,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol.
PAMI-7, pp. 216-228, 1985.

———, ‘‘Varying diameter and problem size in mesh-connected com-
puters,” in Proc. 1985 Int. Conf. Parallel Processing, pp. 697-699.
, “‘Graph and image processing algorithms for the hypercube,’’ in
Proc. 1986 SIAM Conf. Hypercube Multiprocessors, 1987, pp.
418-425.

——, ‘‘Mesh computer algorithms for computational geometry,”
Tech. Rep. 86-18, State Univ. New York, Buffalo, Dep. Comput. Sci.,
July 1986; IEEE Trans. Comput., to be published.

Cambridge, MA: MIT Press,

“nm movement techniques for the pyramid computer,” $L4M
s vol. 16, pp. 38-60, Feb, 1987,
Pa:w‘fe’f Algorithms for Regular Architectures.
’ﬁ:ia MEE“ Press, 1988, to be publishe
, Au;:mmnm Eeighton’s modification to the AKS setwork,’
gan Tech. R@ (‘?,
mi and 8, Sahai,

Cambridge,

“Finding connected ccsmpemms and
SIAM 1

connected ones on a mesh-connected parallel computer,™
C am;wf

vol, 9, pp. 744-787, 1080,
“Parallel permutation and sorting algorithms and a new
zed connection network,” J, ACM, vol, 29, pp, 642-667, July

1982,

D, Math, 5. N. Maheshwari, and P. C. P. Bhan, *‘Parallel algorithms
for the convex hull in two dimensions,” in Proc, Conf. dnal
Problem Classes Programming Paralfel Comput., 1981, pp. 358

Y
372,

B, P Preparaia and 8. J. Hong, “Convex hulls of finite sets of points in
two and three dimensions,”” Commun. ACM, vol. 2, pp. 87-93, 1977,
461 F. P Preparata and B, T, Lee, “'Computational geometry—A survey,””
IEEE Trans, Comput., vol. pp. 10721100, 1984,

{477 F. P. Preparata and M. 1. Shamos, Compuiational Geomeiry,
Berlin, Germany: Springer-Verlag, 1985,

{481 F. P. Preparata and J. Vuillemin, “The cube-connected cycles: A
versatile network for paratlel computation,” Comeatun. ACM, vol, 5,
pp. 300-309, 1981

1491 H. Raynaud, *Sur {"enveloppe convexe des nuages de points aleatoires
dans 8,7 J Appl. Pmbﬂbi!ii_;-’, vol. 7, pp. 35-48, 1970,

[307 5 H. Reifand L. G. Valiant, A logarithmic time sort for linear size
networks,”” S ACM, vol. 34, pp. 60-76, 1987,

{51} D, H, Schaefer ef af., *"The PMMP-A pyramid of MPP processing
elements,” in Proc. 18th Anmu, Hawatian Int. Conf, Syst. Sei., vol.
i, 1985, pp. 178~ 184,

{321 M. L Shames, ““Computational geometry,” Ph.D. dissertation, Yale

Univ., 1978,
1531 L. Snyder, “Inroduction to the configurable,
puter,”” Computer, pp. 47-36, Jan. 1982,
[54] Q. F. Stosst, “Meshes with multiple buses,
Symp. Foundat, Comput. Sci., pp. 264-273

highly paraliel com-

in Proc. 1986 IEEE

[$3] 5. L. Tanimoto, “}h‘tsgranzmjng technigues for hierarchical paraliel
image pro s, m Mufticomputers and Imege Processing 4l-
gorithms and Programs, K. Preston and L. Uhr, Bds, Mew York:
Academic, 1982, pp. 421-429.

{56 (G.F Toussalnt, “"Pamern recognition and geometrical complexity,” in
Proe, Stk T, Conf. Paitern Recognition, 1980, pp. 13241347,

{371 L. Uhr, Algorithm-Structured Computer Arravs and Networks,

New York: Academde, 1984,

IEEE TRANSACTHONS ON COMPUTERS, VOL. 37, NO, 12, DECEMBER 1988

[5$81 1 D. Ullman, Compuraiional Aspects of VLS Rockville, MD:

Computer Science Press, 1984,

{591 €. C. Weems, 8. P. Levitan, A, R. Hanson, E. M. Riseman, }. G.
Mash, and D. B. Shu, ““The image understanding architecture,”
COINS Tech. Rep. 87-76, Univ. Massachusetts, Amberst.

{601 A. Yao, A lower bound fo finding convex hulls,”” Dep. Computer
Sei., Stanford Univ,, 1979

Russ Miller (8782-M"85) was born in Flushing,
NY, on Jansary 8, 1958, He received the B.S.,
M.A., and Ph.DD. degrees in computer science/
mathematics from the Department of Mathematical
Sciences, State University of New York, Bingham-
ton.

Since 1983 he has been an Assistant Professor in
the Department of Computer Science at the State
University of New York, Buffalo. Since 1988 he
has also been Associste Director for the graduate
group in Advanced Scientific Computing at the
[}mwmt;. of Buffalo. His primary research interests are parallel algorithms,
paraliel computing, and parallel architectures. He recently cosuthored (with
Q. F. Swuty the book Pgrallel Algorithms for Regular Architectures
(Cambridge, MA: MIT Press, 1988).

Dr. Miller is 2 member of the IEEE Computer Society, the Association for
Computing Machinery, the Society of Photo-Optical Instrumentation Engi-
neers, and Phi Beta Kappa.

Quentin F, Stont (M'82) recetved the B.A. degree
from Centre College, Danville, KY, and the Ph.D.
degree from Indiana University.

Since 1984 he has been an Associate Professor in
the Department of Electrical Engineering and Com-
puter Science of the University of Michigas, Asn
Arbor. From 1976 to 1984 he was in the faculty of
the Mathematical Sciences Department of the State
University of New York, Binghamton. His primary
research interests are in parallel algorithms, paralle!
computing, and parallel archifectures, He recently
coauthored {with R. Miller) the book Parallel Algorithems for Regular
Archifectures (Cambridge, MA: MIT Press, 1988).

Dr. Stowt is a member of the Association for Computing Machinery, the
American Mathematical Society. and the Mathematical Association of
America, and serves on the editorial board of the Journal of Parallel and
Drsivibuted Computing.

3

