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Mesh Computer Algorithms for Computational
Geometry
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Abstract—We present asymptotically optimal parallel al-
gorithms for using a mesh computer to determine several
fundamental geometric properties of figures. For example, given
multiple figures represented by the Cartesian coordinates of n or
fewer planar vertices, distributed one point per processor on a
two-dimensional mesh computer with n simple processing ele-
ments, we give O(n"/2) time algorithms for identifying the convex
hull and smallest enclosing box of every figure. Given two such
figures, we give a ©(n"?) time algorithm to decide if the two
figures are linearly separable. Given n or fewer planar points, we
give ©(n?) time algorithms to solve the all-nearest neighbor
problem for points and for sets of points. Given n or fewer
circles, convex figures, hyperplanes, simple polygons, orthogonal
polygons, or iso-oriented rectangles, we give O(n'?) time al-
gorithms to solve a variety of area and intersection problems.
Since any serial computer has worst case time of O(n) when
processing 71 points, our algorithms show that the mesh computer
provides significantly better solutions to these problems.

Index Terms—Area, computational geometry, convexity, in-
tersection, mesh computer, parallel algorithms, planar point
data, proximity.

1. INTRODUCTION

HE GROWING field of computational geometry has

provided elegant and efficient serial computer solutions
for a variety of problems. Particular attention has been paid to
determining geometric properties of planar figures, such as
determining the convex hull, and to determining a variety of
distance, intersection, and area properties involving muitiple
figures. Some general references which describe such prob-
lems, show some of their uses, and provide some serial
algorithms solving them, are [34], [35], and [43].

Compared to the number of serial computational geometry
algorithms, the number of parallel algorithms is quite small.
Some parallel algorithms were presented which computed
geometric properites of digitized pictures [16], [28], [39], but
such problems are significantly different from the problems
that arise when the figures are represented as sets of points or
line segments, as is the norm in most of computational
geometry. In the early 1980’s, parallel algorithms for convex
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hull problems using point data began to appear [21, [13], [32].
In 1984, the authors published a preliminary version of this
paper which included parallel algorithms for several problems
involving geometric properties and distances [27], and Cha-
zelle published a paper using a one-dimensional systolic
computer to solve some distance and intersection problems
[12]. Subsequently, additional papers with parallel algorithms
have appeared [1], [3], [14], [21], [24], and it can be expected
that this trend will continue. Parallel computers provide the
possibility of substantial improvements in the running time of
algorithms, allowing larger problems to be solved in a feasible
amount of time.

Elegant serial solutions to many problems are based on
being able to efficiently construct the planar Euclidean
Voronoi diagram of a set of planar points, or use sophisticated
data structures specially designed for geometric problems
[371. However, it is not clear that manipulating data structures
or constructing Voronoi diagrams is as useful in parallel
computers, since operations such as following a pointer may
be very efficient on a serial computer but less so on a parallel
one. Our algorithms are for a local-memory parallel computer
where information must be exchanged as messages between
processors. In such a setting, the distance information must
travel becomes a dominant consideration. While the logical
arrangement of information in data structures plays a major
role in serial algorithms, the physical arrangement provided by
data movement operations such as sorting and compression
plays a major role in our parallel algorithms.

Our algorithms are designed for a (two-dimensional) mesh
computer, defined in Section II. Several large mesh computers
have been constructed [8], [7], [15], predominately for use in
low-level processing of digitized pictures. This paper demon-
strates that meshes are also suitable for geometric problems,
much as [5], [4], [36], and [41] showed that they are suitable
for graph problems. Compared to other parallel architectures,
meshes have the advantage that several already exist, and their
simple near-neighbor wiring allows them to be constructed
more economically than, say, hypercubes. Furthermore, if the
amount of data per processor is sufficiently high, then for a
wide variety of applications the mesh interconnection structure
is as good, in an asymptotic sense, as any interconnection
network [29]. Some supporters of parallel random access
machines (PRAM’s) advocate designing all parallel algorithms
for PRAM’s, and then simulating a PRAM on the actual
machine. However, the algorithms in this paper are signifi-
cantly better than those that could be obtained by simulating
PRAM algorithms.
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This paper presents optimal algorithms to solve problems
that have not previously been discussed for the mesh. The only
problem that has been previously discussed is that of determin-
ing a minimal distance spanning tree of planar points [24]. The
solution we give in Theorem 5.6 is more time and space
efficient than the solution presented in [24].

In Section II, we define the mesh and review fundamental
mesh algorithms and data movement operations that are used
in this paper. For most of the problems in this paper, the input
is n for fewer planar points, or pairs of points representing line
segments or edges, distributed one per processor in a two-
dimensional mesh computer with 7 processors. Convex figures
are represented by the set of their vertices, and simple
polygons are represented by the set of their edges. For
problems involving multiple figures, each point or edge will
have an associated label identifying its figure.

In Section III, an algorithm is given for finding the convex
hull of a set of planar points. This algorithm introduces a
parallel binary search technique for the mesh. In Section 1V,
algorithms are presented for determining smallest enclosing
rectangles of figures. These algorithms introduce a grouping
technique for solving search problems involving multiple
parallel searches. Variations of this technique are used
throughout this paper for a variety of search problems. In
Section V, algorithms are presented to solve the all-nearest
neighbor problem for a collection of points, to find the
minimum distance between two sets of points, to solve the all-
nearest neighbor problem for collections of point sets, and to
generate a minimal distance spanning tree. In Section VI,
algorithms are given for finding nearest neighbors of line
segments and for deciding whether or not line segments
intersect. These algorithms are used to solve several problems
involving simple polygons, including deciding if simple
polygons intersect and solving the all-nearest neighbor prob-
lem for simple polygons if there are no intersections. The
algorithms in this section introduce our implementation of
multidimensional divide-and-conquer [11] for the mesh.

In Section VII, algorithms are given for deciding whether or
not convex hulls intersect and for finding intersections of
convex polygons and hyperplanes. In Section VIII, algorithms
are given for determining area and intersection properties of
iso-oriented rectangles, and the results are extended to circles
and orthogonal polygons. Section IX discusses extensions to
mesh computers of higher dimensions and to input data of
higher dimensions.

Except for the extensions in Section IX and Theorem 5.6,
every algorithm in this paper finishes in ©(n'/?) time, which is
optimal for a two-dimensional mesh with n processing
elements. Section IX points out that straightforward changes
produce optimal algorithms for meshes of higher dimensions
and for some of the problems when the input is extended to
higher dimensions.

II. PRELIMINARIES

We use O to mean ‘‘order exactly,”” O is used to mean
“‘order at most,”” and 2 is used to mean ‘‘order at least.’’ That
is, given nonnegative functions f and g defined on the positive
integers, we write f = O(g) if and only if there are positive
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constants C;, C,, and a positive integer N such that C, * g(n)
< f(n) < C, * g(n), whenever n > N. We write f = O(g)
if and only if there is a positive constant C and an integer N
such that f(n) < C * g(n), forall n > N, and we write f =
Q( g) if and only if there is a positive constant C and an integer
N such that C * g(n) < f(n), foralln > N.

For problems in this paper that involve distances between
figures, the term distance is used to mean Euclidean distance.
It should be noted that in most cases any reasonable metric will
suffice. Let d(x, y) denote the distance between points x and
y, and define the distance between two sets S and T to be
min{d(s,t)|s € S,t € T}.

A. Mesh Computer

The mesh computer (mesh) of size n is a machine with n
simple processing elements (PE’s) arranged in a square
lattice. To simplify exposition, we assume n = 4¢ for some
integer ¢. For all i, j € [0, , n¥? — 1], PE P;;,
representing the PE in row i and column j, is connected via
bidirectional unit-time communication links to its four neigh-
bors, PE’s P, .+, assuming they exist. (See Fig. 1.) Each
PE has a fixed number of registers (words), each of size
Q(log n), and can perform standard arithmetic and Boolean
operations on the contents of these registers in unit time. Each
PE can also send or receive a word of data from each of its
neighbors in unit time. Each PE contains its row and column
indexes, as well as a unique identification register, the
contents of which is initialized to the PE’s row-major index,
shuffled row-major index, snake-like index, or proximity
order index, as shown in Fig. 2. (If necessary, these values can
be generated in ©(rn'/2) time.)

For many of the algorithms presented in this paper, a mesh
of size n will be used to simulate a desired mesh of size Cn,
C = 1 a constant, where the desired mesh of size Cn is
mapped in a natural fashion onto the mesh of size n so that
each processor of the mesh is responsible for C processors of
the desired mesh. For instance, a desired mesh of size 97 is
mapped onto a mesh of size n so that each processor of the
mesh is responsible for the natural 3 X 3 subregion of
processors from the desired mesh. Under this mapping, an
algorithm that runs in time 7(Cn) on a mesh of size Cn,
C = 1 a constant, will run in time d7(Cn) on a mesh of
size n, where the constant d depends only on C. Therefore,
simulating an algorithm for a desired mesh of size Cn,
C = 1 a constant, on a mesh of size n under the described
mapping, will not affect the asymptotic running time of the
algorithm as measured by O, 6, or Q.

B. Initial Conditions

For all problems involving points or sets of points, we
assume that initially there are n or fewer planar points,
distributed no more than one per PE on a mesh of size n.
Points are always represented by Cartesian coordinates. If the
input is sets of points, then each point will also have an
attached label indicating the set it belongs to. For problems
involving convex polygons, the poygons are represented by
the set of their vertices. Circles are always represented by their
radius and the Cartesian cooridinates of their center, and they
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Indexing schemes for the processors of a mesh. (a) Row major. (b)
Shuffled row major. (c) Snake-like. (d) Proximity.

Fig. 2.

are stored no more than one per PE. Simple polygons (i.e.,
polygons that do not intersect themselves) are given as line
segments represented by the Cartesian coordinates of their
endpoints, stored no more than one segment per PE.

For data represented by points, such as point or line
segment data, it is assumed that no two distinct points have the
same x-coordinate or y-coordinate. It is also assumed that no
two endpoints from line segments have the same x-coordinate
or y-coordinate, unless they are from line segments that share
a common endpoint. These are common assumptions in
computational geometry as it simplifies exposition by eliminat-
ing special cases. Furthermore, in ©(n'/2) time, arbitrary
input can be rotated to satisfy these assumptions by using sort
steps (described in Section II-D) to find the minimum
difference in x-coordinates between points with different x-
coordinates, the minimum difference in y-coordinates between
points with different y-coordinates, the maximum difference
in x-coordinates, and the maximum difference in y-coordi-
nates, and then determining a small angle such that rotating by
that much will eliminate duplicate coordinates and not
introduce new ones.

C. Lower Bounds

For all problems considered in this paper, it is easy to create
specific arrangements of data so that the answer cannot be
determined faster than the time it takes to combine information
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starting at opposite corners of the mesh. In a two-dimensional
mesh of size n, information starting at opposite corners cannot
meet in any PE in less than n!/2 — 1 time steps. Therefore, all
problems considered in this paper must take Q(7'/2) time on a
mesh of size n.

D. Fundamental Operations of the Mesh

Several of the data movement operations in this paper use a
proximity ordering of processors (which is based on the
concept of space-filling curves). There is no single natural
ordering of a two-dimensional mesh, so many orderings of
processors have been used. Some of the more useful and
popular orderings are given in Fig. 2. Notice that snake-like
ordering has the useful property that PE’s with consecutive
numbers in the ordering are adjacent in the mesh, while
shuffled row-major ordering has the property that the first
quarter of the PE’s form one quadrant, the next quarter form
another quadrant, etc., with this property holding recursively
within each quadrant. This property of shuffled row-major
ordering is useful in many applications of a divide-and-
conquer approach. Proximity ordering combines the advan-
tages of snake-like and shuffled row-major order. Given row
and column coordinates of a PE P, in O(log n) time a single
processor can compute the proximity order of P by a binary
search technique. Similarly, given a positive integer i, the row
and column coordinates of the PE with / as its proximity
number can be determined in O(log n) time by a single
processor. Given any positive integers / < j, the shuffled row-
major property of recursively dividing indexes among quad-
rants gives the property that the distance from PE number i to
PE number j is O((j — i)"/?), and that a path of length
O((j — )'/?) can be achieved using only PE’s numbered from
i to j. Furthermore, the PE’s numbered from i through j
contain a subsquare with more than (j — i)/8 PE’s. The
proximity ordering has not yet been widely used in mesh
computers (its first appearance being in {40]), but it does seem
to combine useful properties of other mesh orderings.

The remainder of this section is devoted to presenting
fundamental data movement operations that are used in this
paper. Many of these data movement operations will be
performed in parallel on items stored in disjoint consecutively
numbered (with respect to proximity ordering) processors,
which we will refer to as (ordered) intervals. It should be
noted that ordered intervals may be created by sorting data into
proximity order so that related items reside in disjoint
consecutively indexed processors. Details of the data move-
ment operations that follow may be found in [30].

1) Sorting: [42] showed that n elements, distributed one per
PE on a mesh computer of size n, can be sorted in O(n'/?)
time. While they did not show how to sort into proximity
order, one can always sort into proximity order by sorting into
snake-like order as defined in [42], computing an item’s rank
from its current position, computing its destination PE in the
proximity order, computing the rank of this destination PE in
snake-like order, forming a record with this later rank and the
original data, and then sorting these records into snake-like
order using rank as the key. For any ordering studied, this
entire process can be finished in ©(7n!/2) time. An algorithm
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that directly sorts into proximity order can be faster by a
multiplicative factor, and such an algorithm would be useful,
but this does not affect our analysis. |

2) Broadcasting and Rotating Data within Intervals:
Suppose every PE contains a record with data, a label, and a
Boolean flag called ‘‘marked.’”” Furthermore, assume that all
PE’s containing records with the same value in the label field
form an (ordered) interval with respect to the proximity
ordering. Then the data in all records with marked = frue can
be sent to all other PE’s holding records with the same label in

O(max{m(r)+i(r)'/?|r a label})

time, where m(r) is the number of marked records with label
r, and i(r) is the number of records with the label . This is
accomplished by building a breadth-first spaning tree, level by
level, within every ordered interval, and then using this
spanning tree to perform the desired data movement operation.
We first show how to construct the breadth-first spanning tree
within every ordered interval and then show how to use it to
perform the desired data movement operations.

At time 0, the processor corresponding to the roof of every
tree is identified, with the root of a tree being defined to be at
level 0. This is accomplished in ©(1) time by having every
processor P; examine the label of processor P;_;, where the
indexes are with respect to the proximity order of the
processors, and having processor P; identify itself as the root
of the tree for its ordered interval of labels if the label of
processor P;_, is different from the label of processor P;. At
time 1, the root of every tree sends a message to all its
neighbors with the same label informing them that it is their
parent. The root records the identity of these processors as its
children, and these neighbors record the identity of the root as
their parent, as well as the fact that they are at level 1 of the
tree. At time ¢, processors at level # — 1 send a message to all
neighbors with the same label that have not yet recorded a
level. Every processor receiving one or more such messages at
time ¢ records the fact that it is at level 7 in the breadth-first
spanning tree of its label. Every processor receiving one or
more such messages also picks one of the senders as its parent,
records the identity of this chosen parent processor, and sends
a message back to the chosen parent processor so that
processors at level t — 1 in the breadth-first spanning tree can
record the identity of their children in this tree. Notice that the
height of a breadth-first spanning tree for PE’s with label r is
O(i(r)'?). Therefore, the breadth-first spanning tree for the
PE’s labeled r is constructed in ©(i(r)!/?) time, since each
step of the level-by-level construction takes ©(1) time.

Once the spanning tree is constructed, the marked data are
passed up the tree, and when it reaches the root it is passed
down, every parent passing it to all its children. Using simple
pipelining, the first item reaches all PE’s in its interval in
O(i(r)"?) time, and each subsequent item follows in ©(1)
time.

For the situation where one piece of data is circulated within
every ordered interval, this operation is referred to as broad-
casting within (ordered) intervals. For the situation where
multiple pieces of data are circulated within ordered intervals,
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this operation is referred to as rotating data within (ordered)
intervals. |

3) Reporting and Semigroup Computation within Inter-
vals: Suppose every PE has a record with data and a label, and
all records with the same label form an ordered interval.
Furthermore, suppose a unit-time semigroup operation (such
as minimum or summing) is to be applied to all data items with
the same label, with all PE’s receiving the answer for its data
label. Then this can be accomplished in O(max{i(r)!?|r a
label}) time, where i(r) is the number of records with label r.
This is performed by forming a breadth-first spanning tree
within every ordered interval, followed by having the leaves
start passing their values up, where once a PE receives values
from all of its children it applies the semigroup operation to
these values and its own, and passes up the result. Once the
root processor of the spanning tree has computed the answer,
the spanning tree is used to broadcast it to all PE’s in the
interval.

The first phase of the semigroup operation that combines
data to the root of the spanning tree within every interval is
referred to as reporting within (ordered) intervals. There-
fore, a semigroup operation within intervals is simply a
report followed by a broadcast within intervals. |

4) Concurrent Read and Concurrent Write: Two other
common data movement operations for the mesh are concur-
rent read and concurrent write, also known as random
access read and random access write, respectively. These
operations are used to allow the mesh to simulate the
concurrent read and concurrent write capabilities of a Concur-
rent Read, Concurrent Write Parallel Random Access
Machine (CRCW PRAM), where multiple processors are
permitted to simultaneously read a value associated with a
given key (concurrent read), and multiple processors are
permitted to simultaneously attempt to update the value
associated with a given key (concurrent write). In the case of
multiple writes, only one processor succeeds according to
some tie-breaking scheme such as minimum data value.

Algorithms for restricted versions of concurrent read and
concurrent write were presented in [31]. In this section, we
give significantly different algorithms for more general
versions of these operations. The concurrent read and concur-
rent write operations involve two sets of PE’s, the sources and
the destinations. Source PE’s send a fixed number of records,
each consisting of a key and one or more data parts. (A record
may also be null.) Destination PE’s receive a fixed number of
records sent by the source PE’s. We allow the possibility that a
PE is both a source and a destination.

In a concurrent read, every source PE creates no more than
some fixed number of source records, where each source
record consists of a key, the data value associated with the
key, and some bookkeeping information. It is assumed that no
two source records have the same key. The purpose of source
records in the concurrent read is to make available the data
value associated with every key (assuming that keys are
maintained in unique locations throughout the mesh) to any
processor that might want to read it. Every destination PE
creates no more than some fixed number of destination
(request) records, each of which specifies the key associated
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with a data value it wishes to receive. Several destination
records can request a data value associated with the same key.
A destination PE may create a destination record for which
there is no source record, in which case it receives a null
message. An algorithm for the concurrent read is given below.

Concurrent Read:

a) All PE’S create the same fixed number, call it D, of
destination (request) records with the desired key and the ID
(proximity order index) of the PE that created the record.
Some or all destination records created by each PE may be
‘“‘dummy’’ records, so as to balance the number of items per
processor in subsequent sort steps.

b) All PE’s create the same fixed number, call it S, of
source records corresponding to those keys for which the PE is
responsible. Each record contains the key, the associated data
value, and ID of the PE creating the record. Some or all of the
source records created by a PE may be ‘‘dummy’’ records, so
as to balance the number of items per processor in subsequent
sort steps. Furthermore, a key value may be represented by at
most one source record somewhere in the mesh.

¢) Sort all (D + S) * n source and destination records
together into proximity order by key, where ties are broken in
favor of source records, and ties between requests are broken
arbitrarily.

d) By performing a broadcast operation within ordered
intervals with respect to keys, every source record will inform
all destination records that requested the value associated with
its key as to that value.

e) Sort the (D + S) * n source and destination records by
the proximity order index of the PE that originally created
them so that they are returned to the PE that originated the
request. Notice that the source records are not conceptually
needed for the sort step, but are used so as to balance the
number of items in each PE during this step. The source
records are discarded after the sort is complete.

The concurrent read is accomplished through a fixed
number of sort and interval operations, and for fixed constants
D and S is completed in ©(n'/2) time on a mesh of size n.
(Notice that throughout most of the algorithm, the mesh of size
n simulates a desired mesh of size (D + S) * n.)

In a concurrent write, every destination PE creates no more
than some fixed number of destination records, consisting of a
key and some bookkeeping information, for each of the keys
that it maintains and is willing to receive an updated value for.
It is assumed that no two destination records contain the same
key. At the end of the concurrent write, a destination PE will
receive a record corresponding to each of the destination
records it created, indicating the new value to be associated
with that key. Each key is received by exactly one destination
PE, since it is again assumed that data associated with each key
is maintained in a unique location in the machine. Every source
PE creates no more than some fixed number of source records,
each consisting of a key, a data value, and some bookkeeping
information. If two or more source PE’s send records in an
attempt to update the data value associated with the same key,
then a destination PE will receive a record containing the
minimum such value. (In other circumstances, one could
replace minimum with some other tie-breaking mechanism.)
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Concurrent Write:

a) All PE’s create the same fixed number, call it D, of
destination records, corresponding to those keys for which the
PE is willing to receive data values. Each record contains a
key and the ID (proximity order index) of the PE that created
the record. Some or all of the destination records created by a
PE may be ‘‘dummy’’ records, so as to balance the number of
items per processor in subsequent sort steps. Furthermore, a
key value may be represented by at most one destination
record somewhere in the mesh.

b) All PE’s create the same fixed number, call it S, of
source records. Each record contains a key, an associated data
value, and the ID of the PE creating the record. Some or all
source records created by a PE may be ‘‘dummy’’ records, so
as to balance the number of items per processor in subsequent
sort steps.

¢) Sort all S * n source records by key into proximity order,
breaking ties of the same key arbitrarily.

d) Apply the concurrent write tie-breaking mechanism
within the ordered intervals. This should be a mechanism
computable in O(n'?) time, such as one that can be computed
by performing a semigroup operation within ordered intervals.
While the only tie-breaker needed in this paper is the
minimum, other possibilities are average, product, median,
mode, or choosing any value. In every ordered interval,
replace the first data value with this new value. This becomes
the representative for the key.

e) Sort all (S + D) * n source and destination records
together by key, where ties are broken in favor of destination
records, and ties between source records are broken in favor
of the representative record.

f) Using broadcasting within ordered intervals, all destina-
tion records obtain their updated value from their representa-
tive source record which is stored (if it exists) in the
succeeding PE (in proximity order).

g) Sort all (S + D) * n records by the proximity order
index of the PE that originally created them so that the
destination records take the required data back to the PE
responsible for them. Notice that the source records are not
conceptually needed for the sort step, but are used so as to
balance the number of items in each PE during this step. The
source records are discarded after the sort is complete. Like
the concurrent read, the concurrent write is accomplished
through a fixed number of sort and interval operations, and is
completed in ©(n'/?) time on a mesh of size 7. [ ]

5) Compression. Suppose that in a mesh of size n, m pieces
of data are randomly distributed one element per PE.
Furthermore, suppose that it is desirable to minimize the
interprocessor communication time of the PE’s that contain
these m pieces of data. Then in ©(n'/?) time this information
can be moved to a subsquare of size ©(m), where the
communication diameter is O(m!/2).

Each PE containing one of the m data items creates a record
with key 0 and the data item as data, while all other PE’s
create a record with key 1. These records are then sorted.
Each PE receiving an item with key O examines the next PE (in
proximity order) to see if it too has a 0 key. If not, then this PE
computes its proximity rank, which must be m. This value is



326

>
\&J
5

Fig. 3.

broadcast to all PE’s, which then compute S = 4 [og2471 The
PE’s with a proximity index no greater than S are the desired
square, and already have the data. |

III. MarkING THE CoNVEX HULL

The convex hull is a geometric structure of primary
importance that has been well studied for the serial model of
computation [35], [37], [43], [6], [44]. It has applications to
normalizing patterns in image processing, obtaining triangula-
tions of sets of points, topological feature extraction, shape
decomposition in pattern recognition, and testing for linear
separability, to name a few.

In this section, a ©(n'?) time algorithm is given for
identifying the extreme points that represent the convex hull of
a set of n or fewer planar points, initially distributed one point
per PE. The convex hull of a set S of points, denoted hull(S),
is defined to be the minimum convex set containing S. A point
P € S is an extreme point of S if P & hull(S — P). For
several of the algorithms presented in this paper, it will be
useful to impose an ordering on the extreme points of S. The
ordering will be in a counterclockwise fashion, starting with
the easternmost point. (Remember from Section II-B, that
since the number of points is finite and no two points have the
same x-coordinate, there must be a unique easternmost point.)
See Fig. 3.

In general, if S is finite, then Aull(S) is a convex polygon,
and the extreme points of S are the corners of this polygon.
The edges of this polygon will be referred to as the edges of
the hull(S). (See Fig. 3.) We say that the extreme points of
S have been identified, and hence hull(S) has been identi-
fied, if for each PE P; containing a point of S, P; has a Boolean
variable ‘‘extreme,”’ and extreme is true if and only if the
point contained in P; is an extreme point of S. Furthermore,
each PE P; containing an extreme point of S will contain the
position of its point in the counterclockwise ordering, the total
number of extreme points, and its adjacent extreme points in
the counterclockwise ordering.

Theorem 3.1: Given a set S of n or fewer planar points,
distributed no more than one per processor on a mesh
computer of size #, the extreme points of S can be identified in
O(n'’?) time.
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@ Pointsof S
7 @ Enumerated Extreme Points of hull(S)

—— Edges of hull(S)

Convex hull of S.

Proof: An algorithm to determine the extreme points of
hull(S) follows. Initially, ‘‘extreme’” will be set to true for all
points. As it is determined that a point is not an extreme point,
this flag will be set to false.

1) Sort the points into proximity order using the x-
coordinate as the key. Every PEP;, 1 <i < n — 1, holding a
point examines the point in PE P;_ (in proximity order) and if
the point in P;_ is the same as the point in P;, then the point in
P; is viewed as a duplicate and will not be used in steps 2-5.

2) Recursively solve the problems for the points in
quadrants 4,, A, A;, and A,. (See Fig. 4.)

3) From hull(A)) and hull(A,), idenfity hull(A, U A,).
Call this set of extreme points B).

4) From hull(As) and hull(A,), identify hull(A; U A,).
Call this set of extreme points B,.

5) From hull(B)) and hull(B,), identify hull(B, U By).
This set of extreme points is hull(S).

Notice that in steps 3, 4, and 5, the convex hulls of the two
sets of points, say A and B, are used to identify hull(A U B).
In each of these steps, A and B can be picked so that Aull(A)
lies to the left of hull(B), and huli(A) does not intersect
hull(B). This is due to the partitioning of points from step 1.
An explanation of how to identify Aull(A U B) from hull(A)
and hull(B) follows (see Figs. 4 and 5).

Without loss of generality, assume that the points of A are
in quadrant A4,, the points of B are in quadrant A,, and Aull(A)
lies to the left of hull(B). The most crucial phase of the
algorithm is the identification of points p, ¢ € hull(A) and
p’, q' € hull(B), such that pp’ and qq’ represent the top
and bottom tangent lines, respectively, between hull(A) and
hull(B). Let t, u € hull(A) be the westernmost and
easternmost extreme points of Aull(A), respectively. p must
lie on or above the line fu, otherwise pp’ would intersect
hull(A). Let x, y € hull(A) be the extreme points immedi-
ately succeeding and preceding (in the counterclockwise
ordering of extreme points) p on the hull(A), respectively. All
points in Auli(B) must lie below xp and some points in
hull(B) must lie above py. (Similar remarks can be made
about the points p’, g, and g’.) A method of identifying the
extreme points p and p’ by using a binary search technique is
now described. (A similar technique is used to identify g and
q’)
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Fig. 4. Mapping points into the proper quadrants.

Fig. 5. Stitching convex hulls together.

All PE’s of A, can identify t and u, simultaneously, in
O(n'/?) time, where identifying ¢ and ¥ means that every PE of
A; will know the Cartesian coordinates of ¢ and u, as well as the
positions of ¢ and u in the counterclockwise ordering of the
extreme points of A. This is accomplished by performing two
semigroup operations in A;, where every PE in A, containing
an extreme point a of hull(A) initially creates a record with
the x-coordinate of a as key, and the y-coordinate of a and
counterclockwise order of @ in Aull(A) as data. The semi-
group operations over these records will identify and broadcast
the easternmost and westernmost points of A (stored in A4,), as
well as their position in the counterclockwise ordering of the
extreme points of A, to all PE’s of 4,. Without loss of
generality, assume that point # is numbered #,, and point ¢ is
numbered #,, in the counterclockwise ordering of extreme
points of A.

Next, every PE in A, that contains an extreme point of
hull(A) decides if its point is above the line 7u. Notice that all
such points above the line tu have counterclockwise numbers in

the set {no + 1,y + 2, *-+, my — 2, n; — 1}. The PE in 4,
containing the point above tu and half way between 7 and u
(i.e., the point numbered [(n; + n9)/27), identifies this point
as p. A ©(n'?) time semigroup operation is used to broadcast p
to all PE’s of A,. The PE’s containing the succeeding and
preceding neighbors of p (in the counterclockwise ordering)
create the equations of lines xp and py, respectively. Similar
computations in A, identify p’, p’x’, and y’p’ for B.

All PE’s in A, containing a point that is above f’u’
simultaneously perform a concurrent read to obtain xp and
Dy. Next, these PE’s decide if the point that they contain is
below xp and also if it is above py. By performing a
concurrent write, this information can be sent to the PE in A4,
that contains the point p. This PE can now determine if xp is
above all of the extreme points in B, and if py is below some of
the extreme points of B. If both conditions are satisfied, then
D, x, and y have been identified. If these conditions are not
satisfied, then if xp is not above all of the extreme points of B,
then assign to  the point x, recompute p as the point half way
between ¢ and the new u, compress the data, and iterate the
algorithm. If xp is above all of the extreme points of B, then
assign to ¢ the point y, recompute p, compress the data, and
iterate the algorithm. (The corresponding computations for
pP’, q, and g’ are similar.)

After O(log n) iterations, p, p’, g, and g’ will be identified
since each iteration of the binary search for p and p’
eliminates half the points in Au/l(A) and half the points in
hull(B) from further inspection. Each iteration of the binary
search operating on data in processors at communication
diameter O(k) is dominated by the time required to complete a
fixed number of ©(k) time data movement operations.
Therefore, by compressing the remaining data from Aull(A)
and hull(B) jointly into the smallest square set of processors
that will hold these data after every iteration of the algorithm,
the ith iteration of the algorithm will operate on ©(n/2%) pieces
of data at communication diameter O((n/2)!/?) and finish
in ©((n/29)"?) time. Notice that if the remaining data from
hull(A) was compressed to the smallest square set of processors in
the upper-left corner of A, and the remaining data from hu//(B)
was compressed to the smallest square set of processors in the
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upper-left corner of A,, for example, then the during the ith
iteration of the algorithm the remaining O(n/2") pieces of data
would be at communication diameter ©(n'/2), and hence every
iteration of the binary search would take ©(n'/2) time. With the
joint compression of data after each iteration of the algorithm,
the time for the binary search to identify the desired points p,
P’, q, and g’ is given by $0E" O((n/2912), which is
6( n 1/ 2) .

Finally, the positions of the extreme points of hull(A U B)
must be computed. This can be done by all PE’s performing a
concurrent read for the number of points in Aull(A), the
number of points in Aull(B), and the original positions of p,
p, p’, q, and q’. Every PE can now compute the correct
position of its extreme points in Aull(A U B), if indeed its point
is an extreme point of Aull(A U B). Using a concurrent read
every PE can determine the total number of extreme points and
the extreme points that are adjacent to the extreme point that it
contains. Therefore, the time to identify hull(A U B) from the
extreme points of A and B, given so that Aull(A) lies to the left
of hull(B), hull(A) does not intersect Aull(B), and the extreme

- points are-given in a mesh of size #; is-dominated by the 8(n/2)
time for the binary search plus the ©(#!/2) time used for the data
movement operations to compute the final position information,
which is 6(n!"?) time.

From the merge step just described, we know that steps 1,
3, 4, and 5 of the algorithm (refer to the beginning of the
proof) each take ©(n!/?) time. (Notice that steps 3 and 4 can
be performed simultaneously.) Since step 2 is a recursive call,
the running time of the entire algorithm is given by the
recurrence T(n) = T(n/4) + O©(n'?), which is ©(n'?).

The algorithms of Theorem 4.1, Lemma 5.4, and Theorem
6.1 that appear later in this paper will introduce grouping
techniques that allow for efficient solutions to search prob-
lems. As an alternative to the binary search in the algorithm of
Theorem 3.1, these may also be used to identify p, p’, g, and
g’ in O(n'?) time.

Suppose that instead of being given a single set S comprised
of n or fewer points, the input to the convex hull problem is
given as n or fewer labeled points representing multiple sets.
If there are only a fixed number of labels, say L, then the
previous algorithm could be performed L times, once for each
labeled set, and still identify the extreme points of every set
simultaneously in ©(n'/?) time. However. the following
corollary shows that this restriction is not necessary.

Corollary 3.2: Given n or fewer labeled planar points,
distributed no more than one per processor on a mesh
computer of size 7, in ©(n!/?) time the extreme points of every
labeled set can be identified.

Proof: The previous algorithm needs to be modified only
slightly. Modify the first sentence of step 1 to read, ‘‘Sort the
n points into proximity order using the label as primary key and
the x-coordinate as secondary key.”” As was noted in Section II-
D, if a given label has m points, then those points are now in an
interval of processors which contains a square of size greater
than m/8. The preceding algorithm is then executed inside each
such square, where the PE’s in such a square simulate 16 PE’s
of the original algorithm. (This last point ensures that each
simulated PE has at most one point.) ]
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Once the extreme points of the hull have been identified,
several properties of the hull can be quickly determined. The
following result is straightforward and the proof will only be
sketched.

Corollary 3.3: Given n or fewer labeled points, distributed
no more than one per processor on a mesh computer of size n,
in ©(n'"2) time the area, perimeter, and centroid of the hull of
every labeled set can be determined.

Sketch of Proof: The area of the hull of every set of
labeled extreme points is computed as follows. Use the
algorithm associated with Corollary 3.2 to determine the
extreme points of every labeled set of points. Use sorting to
gather together all points with the same label, where sorting is
performed so that within each labeled set, all extreme points
will be stored in counterclockwise fashion before all points
interior to the hull. For every set of extreme points, broadcast
within ordered intervals the easternmost extreme point of the
labeled set, call it p,, to all PE’s in the interval. Every PE in an
interval containing extreme point p;, computes the area of the
triangle p;p.p;.,. See Fig. 6. A semigroup operation within
ordered intervals aliows every PE to know the total area of the
hull of the points with its label, and a concurrent write sends all
points back to the PE where they initially resided, along with the
total area of the labeled set that the point is a member of.

The perimeter of the hull of each labeled set of points is
computed simply by determining the extreme points of every
labeled set of points, gathering labeled sets of extreme points
together, and then using a semigroup operation within ordered
intervals to sum the lengths of the line segments p;p;, , for all
extreme points / in the labeled set.

The x-coordinate of the centroid of a figure is the total x-
moment divided by the area, and the y-coordinate is the total
y-moment divided by the area. To determine the centroid of
every hull, form the triangles as in Fig. 6, determine their
moments and areas, and then add them to determine the
moments and areas of the entire hull. n

IV. SMALLEST ENCLOSING Box

Problems involving smallest enclosing figures have been
studied extensively [43], [17], [19]. For certain packing and
layout problems it is useful to find a minimum-area rectangle
(smallest enclosing box) that encloses a set S of planar points.
(Notice that while the area of this rectangle is unique, the
rectangle itself need not be.) Any enclosing rectangle must
clearly enclose Au/l(S), and [17] has shown that a smallest
enclosing box of S must have one side collinear with an edge
of the Aull(S), and that each of the other three sides must pass
through an extreme point of S.

Theorem 4.1: Given a set S of n or fewer planar points,
distributed no more than one per processor on a mesh
computer of size 7, in ©(7'/2) time a smallest enclosing box of
S can be identified.

Proof: An algorithm for finding a smallest enclosing box
of S follows.

1) Find hull(S). Let I represent the number of edges in
hull(S).

2) For each edge e; € hull(S), 1 = i =< [, determine the
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Fig. 6. Computing the area of a convex hull.

minimum-area enclosing box of S that contains a side collinear
with e;. Denote this box as B;.

3) A smallest enclosing box of S is By, where area(B;) =
min{area(B))|1 < i < I}.

The extreme points of S can be identified in ©(n'/?) time
from the algorithm associated with Theorem 3.1. When the
algorithm of Theorem 3.1 terminates, every PE containing an
extreme point x of S also contains the preceding extreme point
w and the succeeding extreme point y, with respect to the
counterclockwise ordering of extreme points of S. Each such
PE now creates the hull edge xy of S. In order to determine the
minimum-area rectangle for every edge Xy of hull(S), each PE
containing an edge Xy needs to know three additional extreme
points of S. These points are N, the last extreme point of S
encountered as a line parallel to xy, starting collinear to xy,
passes through the hull(S), W, the last extreme point of S
encountered as a line perpendicular to Xy passes through all of
the points of Aull(S) from right to left [viewing xy as the
southernmost edge of hull(S)], and E, the last extreme point of
S encountered as this perpendicular line passes through Aull(S)
from left to right. (See Fig. 7.)

Every PE containing an edge xy of the hull(S) can find the
necessary points, N, W, and E simuitaneously in ©(n'/?)
time. Using a semigroup operation, in ©(r'/2) time determine
the easternmost and westernmost extreme points of S, denoted
a and b, respectively. The following is a description of how to
find the point N for every edge xy of the hull(S) that is below
ab by a grouping operation. Each PE P; that is responsible
for an edge xy of the hull(S) that is below ab creates a slope
record with the slope of Xy as key, and i (the proximity order
index of the PE) as data. Room is left in this record for a
description of the point N that is to be determined. Every
processor P; that is responsible for an extreme point p in
hull(S), and contains the preceding extreme point # and the
succeeding extreme point v, with respect to the counterclock-
wise ordering of extreme points of S, determines the slope of
pu. Each such PE P; for which pu is above ab creates an
interval record with the slope of pu as key, and p, u, v, and j
as data. See Fig. 8.

Sort the slope and interval records together by the key field,
with ties broken in favor of interval records. After sorting,
every PE P; that contains an interval record (slope(pu), p, u, v,
J) creates a destination record with v as the key, and a source
record with u as the key and the proximity order index i of the
PE as data. Perform a concurrent read so that every PE
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Fig. 7. Determining a smallest enclosing box.
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Fig. 8. Creating the slope and interval records.

containing an interval record determines the proximity order
index of the next interval record. Notice that every consecutive
pair of interval records shares a common extreme point and
represents an interval of slopes. Given two consecutive interval
records stored in P; and P;, with i < j, those processors P; « -
P;_, form a group, and P; is called the leader of the group.
Perform a broadcast within every group to notify all slope
records as to their desired point N, which is the extreme point
common to the pair of interval records that the slope record is
between, with respect to the proximity ordering of the
processors. This broadcast operation is almost identical to
broadcasting within proximity ordered intervals, except that
after the leader of a group initializes the creation of the breadth-
first spanning tree within its group, data are only passed to those
PE’s that are in the group. This can be done since the leader
knows the index of the first PE (itself) of the group and the last
PE of the group (found during the concurrent read).

A concurrent read completes the operation so that PE P;
knows N that corresponds to Xxy. Perform the grouping
operation a second time with the roles of the slope and interval
records reversed so as to find the point NV for all hull edges
above ab. By rotating slopes by + /2, the E and W points
can be found in a similar fashion for every edge of hull(S).

In O(1) time, every PE can compute the area of the rectangle
formed by its edge xy and the three corresponding points, N,
W, and E. Once these minimum area rectangles have been
determined for every hull edge, a smallest enclosing box of S
can be determined by taking a minimum over the area of these
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rectangles in ©(n'/?) time. Hence, the entire algorithm
requires O(n'/?) time. [ ]

Simple modifications to the algorithm from Theorem 4.1, as
in Corollary 3.2, allow labeled figures to be accounted for in
solving the smallest enclosing box problem for multiple
figures.

Corollary 4.2: Given n or fewer labeled planar points,
distributed one point per processor on a mesh computer of size
n, in ©(n'"?) time a smallest enclosing box can be identified
for every labeled set. [ |

V. NEAREST POINT PROBLEMS

In this section, mesh algorithms are given for problems
involving nearest neighbors of planar points. These algorithms
include a solution to the minimum spanning tree problem for
planar points.

Several standard nearest neighbor problems have been
explored for the serial computer (c.f. [37], [43], [22], [9]).
One of these problems is the nearest neighbor query. The
nearest neighbor query requires that a nearest neighbor of a
single query point be identified. Given n or fewer points,
distributed one point per PE on a mesh of size n, the nearest
neighbor query can be solved in ©(n!/2) time by broadcasting
a copy of the query point to all PE’s, having every PE compute
the distance from its point to the query point. and then taking
the minimum over these results.

A more interesting problem is the all-nearest neighbor
problem for points. That is, given a set of points, find a
nearest neighbor from the set for each point of the set. In this
section, an optimal ©(n'?) time algorithm is presented to
solve the all-nearest neighbor problem for points given n or
fewer planar points, distributed one point per PE on a mesh of
size n. This solution easily yields an optimal mesh solution to
the closest-pair problem for points, which requires that a
closest pair of points from a given set be identified. This can be
done on a mesh of size n in ©(n'/?) time by simply taking the
minimum over the all-nearest neighbor distances for every
point.

Before solving the all-nearest neighbor problem for points,
a lemma is presented which is useful to the algorithms
presented later in this section. The nearest-neighbor al-
gorithms described in this section work by finding nearest
neighbors in vertical ‘‘strips,”” and then in horizontal
**strips.”” The lemma shows that after these operations, for
any rectangular region which is determined by the intersection
of a vertical and horizontal strip, there are only a few objects
in the region that have not yet found their nearest neighbor.
The reader should refer to Fig. 9 during the statement and
proof of the following lemma.

Lemma 5.1: Given an arbitrary set S of points in two-
dimensional space, and arbitrary real numbers x; < X, and
N <ypletR = {(x,¥)|x = x < xandy, <y <y}, let
D(p) = min{d(p,q)|q # p,q € S}, andlet D'(p) = min
{d(p, @)|q # p, x; = x-coordinate of ¢ < x, or y; < y-
coordinate of ¢ < y,;, ¢ € S}. Then the following hold.

a) If p is any element of R N S such that D(p) < D’(p),
then there is a corner c of the rectangle R, such that d(p, ¢) <
D’(p).
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b) There are at most eight elements p € R N S such that
there is a corner ¢ where d(p, ¢) < D'(p).

Proof: To prove a), notice that if p € R N S is such that
D(p) < D'(p), then there is an (x, y) € S such that D(p)
= d(p, (x, y)), x is not in the interval [x,, x,], and y is not in
the interval [y;, y,]. Assume x > x, and y > y,, with all other
cases being identical. In this case, if ¢ is the corner (xz, y),
thend(p, c) < d(p, (x,y)) = D(p) < D’(p), as was to be
shown.

To show b), let ¢ be any corner, and suppose p, g €E R N S
are such that d(p, ¢) < D’(p)and d(q, ¢) < D’(q). It must
be that the angle from p to ¢ to g is at least 7/3 radians, for
otherwise the further of p and g would be closer to the other
than to ¢. Therefore, there are at most two points of R N §
which are closer to ¢ than to any other point in R’s vertical or
horizontal slab. Since there are only four corners, b) is
proven. |

Theorem 5.2: Given n or fewer planar points, distributed
no more than one per processor on a mesh computer of size n,
the all-nearest neighbor problem for points can be solved in
6(n'"?) time.

Proof: The algorithm is recursive in nature. Initially,
every PE P; containing a planar point p; creates a record with
the x-coordinate of p; as key, and the y-coordinate of p; and the
distance and identity to a nearest point found up to the
current iteration of the algorithm as data. The distance is
initialized to oo. Sort the points into proximity order by their
Xx-coordinate. (Recall from Section II-B that no two unique
points have the same x-coordinate.) After sorting, let x;, x,,
X3, and x, be the x-coordinates of the points in processors P, s,
Py, Py,s, and Py,/s (in proximity ordering), respectively.
These values divide the planar points into five vertical s/abs,
namely,

1) {p| the x-coordinate of p < x;},

2) {p|x < x-coordinate of p < x,},

3) {p|x, < x-coordinate of p < x3},

4) {p|x; < x-coordinate of p < x,}, and

5) {p|x-coordinate of p > x,}.

Recursively solve the all-nearest neighbor problems so that
each point finds its nearest neighbor (and associated distance)
in its slab. Now repeat the same process for y-coordinates,
finding y,, '--, y4 and solving the all-nearest neighbor
problems for points within each of the five horizontal slabs.
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The planar points can now be thought of as being in at most
25 rectangular regions, determined by x,, -+ -, xsand y;, * -,
y,. Sort the points by region to create ordered intervals of
points corresponding to regions. Within every ordered interval,
perform a semigroup operation to determine the, at most, two
points (by Lemma 5.1) that are closer to each corner of the
region than to their nearest neighbor found so far. All 2 * 4 *
25 (or fewer) such points are circulated to all n PE’s by
performing a rotation within the mesh, as described in Section
II-D, after which every PE P; knows the identity and distance
from its planar point p; to a nearest neighbor. (It should be
noted that the number of points that actually needs to be
circulated can be reduced to 128. Notice that the nine interior
squares each have four corners, nine of the exterior squares
each have two corners of concern, and the four outer squares
each have one corner of concern. This is a total of 64 critical
corners, each of which might have two points that need to be
involved in the circulating step.)

Sorting and semigroup operation within the ordered inter-
vals corresponding to regions requires ©(n!/?) time, as does
circulating (rotating) a fixed number of points through the
mesh. Therefore, the time of the algorithm obeys the
recurrence T(n) = 6(n"?) + 2T(n/5), which is 6(n'?).1

Corollary 5.3: Given n or fewer planar points, distributed
no more than one per processor on a mesh computer of size n,
in ©(n'/?) time a closest pair of points can be identified. W

The next problem considered is the all-nearest neighbor
problem for point sets. That is, for each set of planar points,
find the label and distance to a nearest distinct set of points.
When the algorithm terminates, every PE that is responsible for
a labeled point will know the nearest neighbor for the set that
its point is a member of. It should be noted that a solution to
the all-nearest neighbor problem for point sets will not, in
general, provide a solution to the problem of detecting for each
labeled point a nearest distinctly labeled point. To solve the
all-nearest neighbor problem for point sets, the following
lemma will be used.

Lemma 5.4: Given n or fewer planar points each labeled
either A or B, distributed no more than one per processor on a
mesh computer of size »n, and given the equation of a line L
that separates A and B (i.e, A lies on one side of L and B lies
on the other), in ©(n!/?) time every processor can determine
the distance from A to B.

Proof: In ©(n'?) time a semigroup operation can
determine if either A or B is empty, in which case the answer
is infinity. Otherwise, the equation of L, along with a choice
of orientation and origin for L, is broadcast to all PE’s in
O(n'/2) time. Suppose @ € A and b € B are such that d(a, b)
equals the distance from A4 to B. Since A and B are separated
by L, the line L must intersect line segment ab at some point
p. Since d(a, b) is the minimum distance between points in A
and points in B, it must be that a is a closest point in 4 to p,
and b is a closest point in B to p. This fact is used in the
following solution (see Fig. 10).

1) Partition L into a set of maximal intervals such that for
each interval there is a single element of A which is a closest
point of A to each point of the interval.

2) Partition L into a set of maximal intervals such that for
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Fig. 10. Partitioning L into maximal intervals. The labeled points corres-
pond to the intervals.

each interval there is a single element of B which is a closest
point of B to each point of the interval.

3) Perform an intersection operation on these sets of
intervals to determine a closest pair (a;, b;), a; € A, b; € B,
for each interval I;.

4) Determine min {d(a;, b;)|(a;, b;) is a closest pair of I;}.

Details of the algorithm follow. First sort the points into sets
A and B, on which the partitioning of L proceeds indepen-
dently and indentically. The partitioning is explained for set
A. Intervals will be represented by interval records of the
form (endpointl, endpoint2, data), where endpointl is the
key, and data are the Cartesian coordinates of the point that
determines the interval. Every interval of L will be repre-
sented twice, once by its left endpoint and once by its right
endpoint, where the intervals in the partition overlap only at
their endpoints. If A consists of a single point x, then there is
only one interval, which is represented by the creation of
interval records (— o, o, x) and (o, — o, x). If A has more
than one point stored in processors numbered 1 through £ (in
proximity order), then simultaneously and recursively, find
the intervals given by the set of points H; in processors
numbered 1 through | k/2 |, and those given by the set of points
H, in processors numbered | k/2| + 1 through k.

Notice that an interval from H, or H, can only shrink or
disappear in the final set of intervals for 4. Since an interval
from H; (H,) may overlap many intervals from H, (H,), the
intervals from H, (H,) will be used to determine how much an
interval from H, (H,) shrinks. To shrink the intervals, shrink
those that came from H, first, and then those that came from
H,, as follows.

First, generate interval records that also include a 1 ora2to
indicate for each record whether it came from H; or H,,
respectively. Sort these interval records by their key (which
represents an endpoint). In case of ties, a left endpoint of H;
precedes any endpoint of H,, and a right endpoint of H,
follows any endpoint of H,. For every interval from H,, the
PE’s between the representatives of its left and right endpoints
form an interval of PE’s that is called a group. Every PE
holding an interval record of H, can determine which group
the endpoint of the interval is in as follows. All left endpoints
of H, intervals perform a concurrent read to determine the
proximity order index of the processor responsible for the
right endpoint of its interval. Viewing each group as an
ordered interval, every processor containing a left endpoint of
an interval of H (the leader of the group) creates a spanning
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tree in its group, as described in Section [I-D and in the
algorithm of Theorem 4.1. While the spanning tree is created
within every group, all processors representing an interval of
H, are informed of the point of A that defines the H, interval
of the group that it is a member of. In a fixed amount of time,
every PE containing an interval of H, decides whether or not
the point corresponding to its interval is closer to any of its
interval than to the point of H| representing the group that it is
in. If the answer is affirmative, then the processor can
determine which part of the intersection of its interval and the
group’s interval is closest to its point. By finding a minimum
and maximum within intervals of PE’s (by computing a
semigroup operation within intervals), every group can then
determine the final interval (if any) corresponding to the
group’s point. Finally, repeat the process, interchanging the
roles of H, and H, to determine the final intervals.

Once the partitions corresponding to A and B have been
determined, the process of finding a nearest pair between them
is similar. First, groups corresponding to intervals of A find
the nearest point of any interval of B not properly containing
the A interval, and then groups corresponding to intervals of B
find the nearest point of any interval of A not properly
containing the B interval. Finding the global minimum gives
the answer. The running time of the algorithm is given by the
recurrence T(n) = T(n/2) + O(n'/?), which is 6(n"?). 1

Theorem 5.5: Given n or fewer labeled points representing
sets of points, distributed no more than one per processor on a
mesh computer of size n, in ©(n'/?) time the all-nearest
neighbor problem for point sets can be solved.

Proof: Every point will try to find the nearest point of a
different label, quitting only when it determines that it cannot
find a nearer neighbor than some other point can find for its
set. The algorithm in Theorem 5.2 is used, resulting in the
same conclusion that for each corner of each rectangular region
(determined by the intersection of a vertical and horizontal
slab) there are points from at most two sets which may be able
to find closer points in the direction of the corner. The slight
difference is that in each of these regions there may be O(n)
points from the same set trying to look in the same direction.
For a given rectangular region R, assume that a set 4 of
labeled points is one of the, at most, two closest sets of labeled
points to a corner ¢ of the region. A tilted line L through ¢
and tangent to R is a separating line from A N R and the
points in S — A on the other side of L in the target direction,
where S represents the entire set of 7 labeled points. (See Fig.
11, where the direction is northeast.) Therefore, at most 128
applications of the algorithm associated with Lemma 5.4 are
needed. A final concurrent write and concurrent read are used
to complete the solution. ]

Given a collection of planar points S, a spanning tree can be
constructed by using the points as vertices and straight lines
between them as edges. A minimal distance spanning tree is
a spanning tree of S which minimizes the sum of the Euclidean
lengths of the tree edges. A standard approach to building
minimal spanning trees is to start off with each point as being
its own component with its own label. Then each connected
component (as a point set) merges with a nearest neighbor (in
case of ties, the one of minimal label is chosen), and an edge
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O  Points of §-A in northwest direction from R.
Fig. 11. Solution to the all-nearest neighbor probiem for point sets.
corresponding to this minimal distance is added to the edge set
of the minimal distance spanning tree. This occurs simultane-
ously for all components. Every iteration reduces the number
of components by at least a factor of two, so at most log, n
iterations are needed. Using Theorem 5.2 to find nearest
neighbors, and the graph labeling algorithm of [36] to label
components, the following is obtained.

Theorem 5.6: Given n or fewer planar points, distributed
no more than one per processor on a mesh computer of size n,
in ©(n'2 log n) time a minimal distance spanning tree can be
constructed. |

It should be pointed out that this algorithm is not optimal.
However, it is superior to the algorithm appearing in [24]. For
the same input data, they used a mesh of size n*3, instead of
n, and needed ©(n?? log n) time, instead of ©(n'/?log n). An
optimal ©(n'/?) time mesh algorithm can be derived by using
the Voronoi diagram algorithm of [21] coupled with the
minimum-weight spanning tree algorithm for graphs appear-
ing in [36].

V1. LINE SEGMENTS AND SIMPLE POLYGONS

In this section, problems involving line segments and simple
polygons are examined. The first problem considered is to
determine whether or not there is an intersection among sets of
planar line segments. This is a fundamental problem in
computational geometry [37], [10], [35]. In fact, [35] conjec-
tures that in order to efficiently solve hidden-line problems,
one must first be able to solve basic intersection problems.

The solution to this problem introduces our use of a
paradigm known as multidimensional divide-and-conquer
[11]. In this approach, k-dimensional problems are solved by
subdividing them into smaller k-dimensional pieces, plus
similar (k — 1)-dimensional problems. These pieces are solved
recursively and are then glued together. When this paradigm is
used on parallel computers, the smaller pieces can be solved
simultaneously. However, this raises the possibility that an
initial object is subdivided into several smaller objects and if
the recursion causes this to happen repeatedly there can be an
explosion in the amount of data. The algorithms of this section
prevent this by ensuring that any initial line segment never has
more than two pieces representing it at the start of any level of
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recursion, no matter how many levels of recursion have
occurred.

Theorem 6.1: Given n or fewer labeled line segments,
distributed no more than one per processor on a mesh
computer of size n, if no two line segments with the same label
intersect other than at endpoints, then in ©(#/2) time it can be
determined whether or not there are any intersections of line
segments with different labels.

Proof: Every PE with a labeled line segment ab creates
two line segment records representing the line segment. One
record has the x-coordinate of a as key, with the y-coordinate
of a, coordinates of b, and label of ab as data, while the other
record has the x-coordinate of b as key, with the y-coordinate
of b, coordinates of a, and label of @b as data. With two keyed
line segment records per PE, in ©(r!/2) time all 2n records are
sorted into proximity order by the key field.

After sorting, the keys (x-coordinates) of the first record in
PE’s P,,4, P,n, and Pj,,, (with respect to proximity order
index) are used to partition the plane into four vertical slabs. A
concurrent read or broadcast provides all PE’s with these three
values in ©(n!/?) time. For every record representing the left
endpoint @ of a line segment ab, the PE holding the record
determines if there are any slabs which the line segment
crosses completely. For each such line segment and slab pair,
the PE containing the line segment record generates a
spanning line record equivalent to the line segment record
except that the key is the left x-coordinate of the slab. The
spanning line records will be used temporarily and then
destroyed, which prevents the overaccumulation of data
records. Sort the spanning line records by slab, breaking ties
arbitrarily, and perform a semigroup operation within every
ordered interval corresponding to a slab to enumerate the
spanning line segments of the slabs. Finally, using these
numbers, a concurrent write is used to send the spanning line
records to their slab. This is accomplished in ©(n'/?) time.

Each slab is now stored in a quadrant of the mesh. Within
every quadrant of processors, in O(n'/?) time it can be
detected if there is an intersection among the line segments that
span the slab that is stored in the quadrant. This can be
accomplished as follows. Sort the spanning line segments by
y-intercept with the left boundary of the slab. This determines
for every spanning line segment its position relative to the
other spanning line segments with respect to the left boundary
of the slab. Repeat the process to find the relative position of
every spanning line segment to the other spanning line
segments with respect to the right boundary of the slab. If any
spanning line segment has different order positions for the left
and right boundary, or if there were any ties involving line
segments with different labels, then there is an intersection
within the slab stored in the quadrant, and the problem is
finished.

Otherwise, in every slab the spanning line segments divide
the slab into nonoverlapping regions. (It should be noted that
the property that line segments of the same label can only
intersect at their endpoints is used here to guarantee that these
regions are nonoverlapping. If arbitrary intersections were
allowed among line segments with the same label, then
spanning line segments of the same label could cross each
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Fig. 12. Spanning line segments, leaders, regions, and major regions.

other in the interior of the slab.) Any line segment not
spanning this slab will intersect spanning line segments if and
only if its endpoints lie in different regions or on one of the
spanning line segments. (If the line segment does not span, but
does extend outside the slab, then one of its endpoints is
temporarily treated as being the appropriate y-intercept.)

The following grouping operation may be used to deter-
mine whether or not spanning line segments are intersected in
a given slab. Sort all spanning line segments by the y-intercept
of the left boundary. The spanning line segments in every
disjoint interval of n'/2 PE’s form a group, and the first
spanning line segment of each group is the leader of the group.
See Fig. 12. In ©(n'?) time, rotate the leaders through the
PE’s of the slab (stored in a quadrant of the mesh), where the
number of processors is i(r) = ©(n) and the number of
records being rotated is m(r) = O(n'/?), in the rotation
algorithm of Section II-D. During the rotation, all nonspan-
ning line segment records in the slab determine which major
region their line segment is in, where a major region is a
region of the slab with respect to the leaders’ spanning line
segments. With respect to the left boundary of the slab, use the
J-intercept of the spanning line segments and the y-intercept of
the top boundary of the major region for every nonspanning
line segment as keys, and sort the spanning line segment and
nonspanning line segment records together, with ties broken in
favor of spanning line segments. A concurrent read is
performed so that the leader of every major region determines
the proximity order index of the next leader of a major region,
forming a group. Within every group, in ©(n!2) time the
O(n'”?) spanning line segments are rotated to enable each
nonspanning line segment record to obtain the identity of the
region of the slab that its endpoint is in, as determined by a
consecutive pair of spanning line segments. A concurrent read
brings the region labels of each endpoint back to the PE
responsible for the nonspanning line segments in the quadrant
of the mesh maintaining the slab. Every nonspanning line
segment now determines if it intersects a spanning line
segment, and a semigroup operation determines if any of the
spanning lines segments in the slab were intersected.

If there is such an intersection, then the algorithm is done,
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while otherwise the spanning line segments are discarded, and
in every slab the problem is recursively solved to see if there
are any intersections among line segments of different labels
with endpoints in the slab.

The running time of a single step of the algorithm is
dominated by a fixed number of data movement operations
such as sorting, concurrent read, concurrent write, and
interval (grouping) operations. Therefore, step i of the
algorithm operates on a subsquare of size k = n/4' and
finishes in ©(k!/2) time. Hence, the running time of the entire
algorithm obeys the recurrence T(n) = T(n/4) + ©(n'/?),
which is 8(n'?). [ |

With minor changes, the above algorithm can be modified
to ignore intersections of line segments at common endpoints,
or to ignore intersections involving the endpoint of one line
segment but the middle of another.

The next problem examined is the all-nearest neighbor
problem for sets of line segments. That is, for every set of
line segments, find the label and distance tc a nearest distinct
set of line segments. When the algorithm terminates, every PE
that is responsible for a labeled line segment will know the
nearest neighbor for the set that its line segement is a member
of.

Theorem 6.2: Given n or fewer labeled line segments,
distributed no more than one per processor on a mesh
computer of size n, where line segments intersect at most at
their endpoints, in ©(n'/?) time the all-nearest neighbor
problem for sets of line segments can be solved.

Proof: The algorithm combines the ideas of the algorithm
in the preceding theorem with that of Theorem 5.5. The plane
is divided into five vertical slabs and five horizontal slabs, and
nearest neighbors within each are found. To find nearest
neighbors in the slabs, first every line segment with an
endpoint in the slab finds a nearest spanning line segment, and
every spanning line segment finds a nearest neighbor among
the spanning line segments and line segments with an endpoint
in the slab. The spanning line segments use a concurrent write
to report this back to the endpoint that generated them, and are
then discarded.

As in Theorem 5.5, after nearest neighbors in slabs have
been found, in every rectangular region (determined by the
intersection of a vertical and horizontal slab) there are at most
eight labels with endpoints of line segments in the region
which may not yet have found their nearest neighbor. Lemma
5.4 can be straightforwardly extended to line segments, with
the slight difference that & nonoverlapping (except at end-
points) line segments may partition the separating line L into
as many 2k — 1 regions. |

A simplified algorithm derived from the one in Theorem
6.2, where each line segment finds a nearest neighbor with a
different label directly above it will be occasionally useful.
Horizontal slabs are not needed, nor is there a final stage
involving line segments close to corners of rectangular
regions. Since the final stage is eliminated, every line segment
can find a nearest neighbor in an upward direction, rather than
just finding a nearest neighbor for every label.

A polygon is simple if it has the property that every two
consecutive edges share only a common endpoint, and no two
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nonconsecutive edges intersect. While vertices can be used to
uniquely represent a convex figure, a more general simple
polygon cannot be represented by vertices unless they are
given in an enumerated fashion. The input to the problems in
this section will be slightly less restrictive than that of
enumerated vertices. Simple polygons will be described by
line segments that represent their edges.

Some of the algorithms that follow will make use of an
efficient solution to the connected component labeling
problem for line segments, where two line segments are
connected if and only if they share a common endpoint.
Proposition 6.3 is due to Reif and Stout [36].

Proposition 6.3: Given n or fewer line segments (edges),
distributed no more than one per processor on a mesh
computer of size n, in 6(n'/2) time every PE containing a line
segment can know the label of the connected component that
its segment is a member of. ]

The first problem of this section involving simple polygons
is to determine for every labeled set of line segments whether
or not it forms a simple polygon.

Theorem 6.4: Given n or fewer nondegenerate labeled line
segments, distributed one per processor on a mesh computer
of size n, in ©(n'/?) time it can be determined for every set
whether or not the line segments form a simple polygon.

Proof: Sort the line segments by sets into proximity
order in ©(n'?) time. Using the algorithm associated with
Proposition 6.3, for every set of line segments simultaneously
label all connected components in ©(n!/2) time. Using a report
and broadcast within every set of line segments, in ©(n'/2)
time discard those sets for which not all line segments received
the same component label. Next, using a concurrent read
within every set, in ©(n!/?) time mark every line segment that
does not satisfy the condition that each of its endpoints
intersects exactly one endpoint from a distinct line segment of
its component (set). Those components that contain marked
line segments do not form simple polygons and are also
discarded. For the remaining sets of line segments, apply
the intersection algorithm in Theorem 6.1, treating each line
segment as having a unique label, and ignoring intersections at
common endpoints. Those components that contain intersec-
tions are not simple polygons, while the remaining nondis-
carded polygons are simple. A final ©(n!/2) time concurrent
read returns the line segments to their original PE’s with the
solution to the query. |

For some problems, it is useful to determine if there is an
intersection among a set of simple polygons. Before presenting
a solution to this problem, a useful result that distinguishes the
inside from the outside of each polygon will be given.

Lemma 6.5: Given multiple simple polygons, represented
by n or fewer labeled line segments, distributed no more than
one per processor on a mesh computer of size #, in ©(n'/?)
time every processor containing a line segment can determine
which side of its line segment is towards the interior of its
polygon.

Proof: Every PE that contains a line segment creates a
line segment record with the polygon label as major key and
the x-coordinate of the leftmost of the two endpoints as minor
key. Sort the line segment records by polygon labels (key),
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with ties broken in favor of minimum x-coordinate. After
sorting, the first two line segments of every label intersect at the
leftmost point of that polygon. Therefore, their interior angle
must be towards the interior of the polygon. For every labeled
polygon, select the topmost of these two line segments and
conceptually eliminate its link with the line segment at its other
endpoint, viewing the line segments as edges between the
endpoint vertices. In the remaining graph, select the leftmost
point as root, and orient the edges to form an upward directed
graph. (Algorithms appearing in [41], [5] do this in the
required time.) This graph is a clockwise traversal around the
polygon, so for each edge the inside is the right-hand side
when going upward (in the tree). A final concurrent read
allows every PE to know the orientation of the line segment
that it initially contained, with respect to its simple polygon. Il

Theorem 6.6: Given multiple simple polygons, represented
by n or fewer labeled line segments, distributed no more than
one per processor on a mesh computer of size n, in 8(n'/?)
time it can be decided whether or not there is an intersection
among the polygons.

Proof: From Theorem 6.1, in ©(n'/%) time it can be
determined whether or not there is an intersection between
labeled line segments. It only remains to detect if one simple
polygon contains another. If there is a containment relationship
among some polygons, then there is at least one line segment /
for which the closest line segment to /, among the line segments
directly above it, is a line segment k of a polygon that contains /.
That is, / is on the inside of k, and hence the polygon that / is a
member of is contained in the polygon that & is a member of.
Furthermore, if no polygons are inside of others, then for every
line segment /, the closest line segment & directly above it either
belongs to the same polygon as /, or else / is on the outside of X,
and hence the polygon that / belongs to is not contained in the
polygon that k belongs to.

In ©(n'/?) time, temporarily give each line segment its own
label and use the modified version of the algorithm in Theorem
6.2 to find, for every line segment, the nearest neighbor
directly above it (if any). Using Lemma 6.5 to determine
orientations, it can then be decided in O(n"?) time if any
polygon is contained in another. The algorithm from Theorem
6.1, the modification of the algorithm from Theorem 6.2, and
the algorithm from Lemma 6.5 all finish in ©(n'/?) time.
Therefore, the algorithm finishes in the time claimed. |

The following result is an immediate corollary of Theorem
6.2.

Corollary 6.7: Given multiple nonintersecting simple poly-
gons, represented by n or fewer labeled line segments
distributed no more than one per processor on a mesh
computer of size 7, in ©(n'/2) time the all-nearest neighbor
problem for simple polygons can be solved. ]

The final result of this section solves the problem of
determining for a set of query points and a set of nonintersect-
ing simple polygons, the label of the polygon that each points
is in, or the fact that the point is not contained in any polygon.

Corollary 6.8: Given multiple nonintersecting simple poly-
gons, represented by labeled line segments, and given a
collection of points, such that there are no more than n
segments and points, stored no more than one per processor on
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a mesh computer of size n, in ©(n'/?) time every point can
determine the label of a polygon it is in, if any.

Proof: Assign to all points a label that is different from
all of the polygons. Then use the modified version of the
algorithm in Theorem 6.2 to find the nearest line segment
above each point. If the point is on the inside side of this
segment the point is in the polygon, while otherwise it is
outside of it. |

VII. INTERSECTION OF CONVEX SETS

This section presents efficient mesh algorithms to determine
intersection properties of convex figures. Considerable work
for the serial model has been performed on such problems
(c.f., [33], [35], [38)), since many of these problems solve
classic pattern recognition queries, such as deciding if there is
an intersection among the convex hulls of arbitrary sets of
planar points. In addition to presenting solutions to intersec-
tion problems, this section also presents a solution to the two-
variable linear programming problem.

The algorithms in this section make extensive use of the
notion of the angle of a half-plane, which is in the range [0,
27). To define the angle of a half-plane H, translate the origin
so that it lies on the edge of H. The angle of H is the angle
such that H contains all rays from the origin at angles o +
for B8 in (0, 7). For example, when considering a half-plane
determined by the x-axis, the angle of the upper half-plane is
0, while the angle for the lower half-plane is .

For an extreme point p in a set S, the angles of support of
p is the interval of angles of half-planes with edges through p
which contain S. For example, if S is an iso-oriented
rectangle, then the angles of support of the northwest corner
are [, 37/2], the angles of support of the southwest corner are
[3#/2, 27) U 0, the angles of support of the southeast corner
are [0, 7/2], and the angles of support of the northeast corner
are [#/2, 7). For an edge e of the hull of a set S, the angle of
support of e is the angle of the half-plane containing S with
edge containing e.

The first result of this section shows that a mesh computer
can be used to efficiently determine whether or not the convex
hulls of two arbitrary sets of planar points intersect. A classic
related problem is to determine whether or not two sets of
planar points S; and S, are linearly separable [43). Sets S; and
S, are linearly separable if and only if there exists a line in the
plane such that all of S; lies on one side of the line, and all of
S, lies on the other side of the line. It is not hard to show that
sets of planar points are linearly separable if and only if their
convex hulls are disjoint.

Theorem 7.1: Given n or fewer labeled planar points,
representing sets S; and S,, distributed no more than one per
processor on a mesh computer of size 7, it can be determined
whether or not hull(S;) and hull(S,) intersect and if they do
not intersect then a separating line can be determined, all in
e(n'?) time.

Proof: If S; and S, are separated by a line L, then there
are extreme points p in S; and ¢ in S, such that each of p and ¢
has an angle of support parallel to L, and these lines of support
differ by 7 from each other (see Fig. 13). Furthermore, given
extreme points p in S, and ¢ in S,, along with the angles of
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Fig. 13. A separating line L between p and q.

support, in constant time and it can be determined if there is
such a separating line, and if there is such a separating line
then S| and S; are linearly separable. To locate a separating
line, if one exists, representatives of the angles of support of
the extreme points of S; and S, will use the grouping technique
to locate extreme points of the other set with an angle of
support differing by .

Every extreme point p in S; creates two records containing
p’s coordinates and its range of supporting angles, along with
an indicator that p is in S;. One of these records has as its key
p’s smallest supporting angle, and the other has as its key p’s
largest supporting angle. Every extreme point of S, creates
two similar records, adding = (mod 2#) to each angle.
Furthermore, to convert the circular ordering of angles of
support into a linear ordering, an extreme point of S; having 0
as an angle of support, and an extreme point of S, having = as
an angle of support, creates two additional records having 0
and 27 as keys. All records are then sorted by key, using
smallest supporting angles as a secondary key.

Notice that if extreme points p in S; and ¢ in S, have a
separating line, then either an endpoint of g's range of angles
of support (plus 7) is within the range of p’s angles of support,
or vice versa, or both. For the first and third cases, if the
records are viewed as grouped by intervals of angles of
support determined by exteme points in S,, then by circulating
the information about every extreme point in S; throughout its
interval, every PE holding a record corresponding to an
extreme point in S, can determine if there is a line separating
them. Similarly, viewing the records as grouped by intervals
determined by extreme points in S, can be used for the third
case. ||

The previous theorem demonstrates how to determine if the
convex hulls of two sets of planar points intersect. The
following theorem shows that the convex hull intersection
problem can be solved in the same asymptotically optimal time
for multiple sets of planar points.

Theorem 7.2: Given n or fewer labeled planar points,
distributed no more than one per processor on a mesh
computer of size #, in O(n!/2) time it can be determined if any
two labeled sets have convex hulls which intersect.

Proof: Corollary 3.2 gives a ©(n'/?) time algorithm to
enumerate the extreme points of every labeled set. A 6(n'/?)
time concurrent read is used to generate the edges of the
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convex hulls. Finally, the algorithm of Theorem 6.6 is applied
to give the desired result. |

The next problem examined is that of constructing the
intersection of multiple half-planes. Serial solutions to this
problem appear in [35].

Theorem 7.3: Given the description of n or fewer half-
planes, distributed no more than one per processor on a mesh
computer of size n, in ©(n'/?) time their intersection can be
determined.

Proof: Sort the half-planes into proximity order by their
angles. Half-planes with the same angle can be intersected into
a single half-plane using simple prefix calculations. Then use
a simple bottom-up merge technique, where stage i merges
2/ half-planes into their intersection in ©(22) time. At each
stage the result is a perhaps infinite convex figure, and when
two figures are being merged the initial sorting guarantees that
at most one is noninfinite and either one is contained in the
other, they have no intersection, their boundaries intersect in
exactly one point, or their boundaries intersect in exactly two
points. These cases can easily be determined and solved using,
say, the algorithm in Theorem 6.1 to locate the intersections
and the algorithm of Theorem 6.6 to determine if there is
containment. u

It was noted in [18] that linear programming can be viewed
as an intersection problem, determining the intersection of
half-planes and evaluating the objective function at each
extreme point. Corollary 7.4 follows directly from Theorem
7.3.

Corollary 7.4: Given n or fewer two-variable linear
inequalities, distributed one per processor on a mesh computer
of size n, and a unit-time computable objective function to be
maximized (minimized), then in ©(n!?) time the linear
programming problem can be solved. |

Since a convex polygon is the intersection of the sup-
porting half-planes corresponding to its edges, the problem
of constructing the intersection of multiple convex polygons
is a simple application of the intersection of multiple half-
planes. We note that the following corollary can also be
obtained by using a bottom-up merging approach which
intersects pairs of convex polygons together.

Corollary 7.5: Given multiple labeled convex polygons,
represented by n or fewer labeled planar points, distributed no
more than one per processor on a mesh computer of size #, in
O(n!?) time the common intersection of the polygons can be
constructed. |

VIII. Iso-ORIENTED RECTANGLES AND POLYGONS

Problems involving rectangles have been well studied for
the serial model of computation [26], [35], [25], since they are
important to many packing and layout problems. An important
class of rectangles are the iso-oriented ones, where an iso-
oriented (planar) rectangle is a planar rectangle with the
property that one set of opposite sides is parallel to the x-axis
and the other set is parallel to the y-axis. In this section, n or
fewer iso-oriented planar rectangles are given, distributed no
more than one rectangle per PE on a mesh of size n. It is
assumed that each iso-oriented rectangle is described by the
Cartesian coordinates of its four planar vertices. To distin-
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guish the rectangles during the course of the algorithms, each
rectangle can use as its label the index of the PE that contains
it. Multidimensional divide-and-conquer, as introduced in
Section VI, will be used extensively.

Recall from Section VI that for general simple polygons, it
was only possible to detect if an intersection exists. The first
theorem of this section shows that when the polygons are
restricted to iso-oriented rectangles, then in ©(n!/?) time,
simultaneously for all rectangles, each rectangle can determine
whether or not it is intersected by another rectangle.

Theorem 8.1: Given n or fewer iso-oriented planar
rectangles, distributed one rectangle per processor on a mesh
computer of size n, in ©(n'/?) time every rectangle can
determine whether or not it is intersected by another rectangle.

Proof: Each rectangle will have a ‘‘left’” and ‘‘right”’
representative, corresponding to its two vertical (parallel to the
y-axis) edges. Every PE initially holding a rectangle creates
the two representatives, one with the x-coordinate of the left
side as key, with the rest of the rectangle’s description,
proximity index of the PE (label of the rectangle), and a flag
set to “‘left’” as data, and the other with the x-coordinate of the
right side as key, with the description, proximity index of the
processor, and ‘‘right’’ as data. After this initialization step
there are at most 2n representatives. Every PE keeps track of
the left and right /imits of the region under consideration as the
algorithm progresses, similar to other slab partitioning al-
gorithms that have been presented in this paper. Initially,
every PE sets the left and right limits to —o and + oo,
respectively.

Sort the representatives by their keys (x-coordinates). The
x-coordinates of the second representative in PE’s P4, P/,
and Ps,,,4 (in proximity order) are broadcast to all PE’s. This
serves to partition the region into four vertical slabs. Every
PE holding a representative of a rectangle that spans one or
more slabs generates a special record describing the rectangle
for each slab the rectangle completely crosses. Initially a
rectangle can cross at most two vertical slabs, but in latter
stages of recursion a rectangle may cross three slabs. The
special records are then sent to the quadrant of the mesh
holding the spanned slab. This is accomplished by sorting the
special records with respect to slabs, performing a semigroup
operation within ordered intervals corresponding to slabs to
enumerate the special records of each slab, followed by
performing a concurrent write to send special records to their
appropriate slabs.

In each slab these special records represent spanning
rectangles. Notice that a spanning rectangle is intersected by
another iso-oriented rectangle in the slab, if and only if their y-
coordinates overlap. Therefore, spanning rectangle intersec-
tions have been reduced to a one-dimensional intersection
problem. First, perform a sort step to eliminate duplicate
entries that might have been created by a left and right
representative of the same rectangle. Every spanning and
nonspanning rectangle creates two records, one corresponding
to the y-coordinate of its top edge, and one corresponding to
the y-coordinate of its bottom edge. Sort all of these records
together. A grouping operation allows every rectangle (span-
ning or nonspanning) in the slab to determine whether or not it
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is intersected by a spanning rectangle. The rectangles then
report back to the representative that created them, and the
spanning rectangles are then discarded.

Next, every PE updates the left and right limits of its slab
and the algorithm proceeds recursively. Since the spanning
rectangles are discarded before the recursive call, no rectangle
can ever have more than two representatives (and up to six
spanning rectangle representatives) at any one time. The time
of the algorithm satisfies the recurrence T(n) < ©(n'?) +
T(n/4). Therefore, the algorithm finishes in the time
claimed. ]

By applying a similar technique, this result can be extended
to circles, assuming that every circle is represented by a record
consisting of its center and radius.

Corollary 8.2: Given the descriptions for n or fewer
circles, distributed one per processor on a mesh computer of
size n, in ©(n'/?) time every circle can determine whether or
not it is intersected by another circle. |

The next result proves that the area covered by iso-oriented
planar rectangles can be computed in asymptotically optimal
time. Notice that if the set of rectangles were nonintersecting,
then this would be trivial. No such restrictions are posed on
the rectangles.

Theorem 8.3: Given n or fewer iso-oriented planar
rectangles, distributed no more than one per processor on a
mesh computer of size n, in ©(n'/?) time all processors can
know the total area covered by the rectangies.

Proof: This algorithm is quite similar to that of Theorem
8.1. At every stage, when the spanning rectangles are sent to
each slab, they first determine the measure of the part of the y-
axis they cover. The total area covered by the spanning
rectangles is this measure times the width of the slab. Every
representative of a nonspanning rectangle in the slab now
‘“‘eliminates’” the portion of itself that overlaps spanning
rectangles. That is, for a given nonspanning rectangle R with
top y-coordinate y; and bottom y-coordinate y,, determine the
total measure M, of the y-axis covered by spanning rectangles
below y, and the total measure M, of the y-axis covered by
spanning rectangles below y;. The PE responsible for R
subtracts M, from y, and M, from y,. Fig. 14 illustrates this. It
has the effect of ‘‘cutting out’’ the spanning rectangles and
moving everything else down. The algorithms to determine
these measures can be complete in ©(7n!/?) time and are left to
the reader. A final semigroup operation will determine the
total area covered by the rectangles. |

Theorem 8.4: Given n or fewer iso-oriented planar
rectangles, distributed no more than one per processor on a
mesh computer of size n, in ©(n'/2) time every processor can
know the area which its rectangle covers and which is covered
by no other rectangle.

Proof: The algorithm is quite similar to that of Theorem
8.3. Notice that in the algorithm of Theorem 8.3, within every
slab each nonspanning rectangle will have its overlap with
spanning rectangles eliminated, and hence the area it uniquely
covers in that slab will be found by the recursive call.
Therefore, it only remains to determine for each spanning
rectangle, how much of the slab it uniquely covers. First, each
spanning rectangle can ‘‘cut out’’ the part which overlaps with
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Fig. 14. **Cutting out” the spanning rectangles from a slab.

other spanning rectangles, and each nonspanning rectangle in
the slab can similarly “‘cut out’’ the part of itself covered by
two or more spanning rectangles.

To finish, each nonspanning rectangle creates a temporary
representative of itself with the space between the spanning
rectangles (i.e., the space not covered by any spanning
rectangle) cut out. In each slab, the situation is now that
everything is covered by nonoverlapping horizontal bands,
and each such band needs to determine the portion of its area
covered by nonspanning rectangles. To solve this subproblem
within every slab, perform a modification of the algorithm in
Theorem 8.3 within the slabs, where the roles of vertical and
horizontal are interchanged in the implementation of the
algorithm of Theorem 8.3, as follows. First, partition into
horizontal slabs the nonspanning rectangles and horizontal
bands. In each horizontal slab, the area of a horizontal band
that is covered by vertically spanning rectangles is determined
by multiplying the total horizontal measure covered by
vertically spanning rectangles by the height of the horizontal
band (or, for the bands on the upper and lower edges of the
horizontal slab, by the height of the band in the slab). Next,
the vertically spanning rectangles are eliminated after all
remaining rectangles ‘‘cut out’” the area of themselves that
overlap these vertically spanning rectangles. Finally, the
problem of determining the remaining area of the horizontal
bands covered by those rectangles that have yet to be
considered, is solved recursively within the horizontal
slabs. u

By combining the basic technique of multidimensional
divide-and-conquer with the use of spanning rectangles, and
using the fact that the spanning rectangles have particularly
simple properties, the following two results are obtained.

Theorem 8.5: Given n or fewer iso-oriented planar
rectangles, distributed no more than one per processor on a
mesh computer of size n, in ©(n!/2) time every processor can
know a nearest neighboring rectangle to the one that it
contains. |

Theorem 8.6: Given a total of n or fewer iso-oriented
planar rectangles and planar points, distributed no more than
one per processor on a mesh computer of size n, in ©(n'?)
time every processor containing a point can determine the
number of rectangles containing the point, and every proces-
sor containing a rectangle can determine the number of points
contained in the rectangle. ]

A minor modification to Theorem 8.5 will yield an optimal
mesh solution to the all-nearest neighbor problem for
circles.
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Corollary 8.7: Given n or fewer nonintersecting circles,
distributed no more than one per processor on a mesh
computer of size n, in ©(n'/?) time every processor can know
a nearest neighboring circle to the one that it contains.

Problems in VLSI layout often involve more than iso-
oriented rectangles. Frequently the objects that need to be
considered are simple polygons with iso-oriented sides, often
called orthogonal polygons. It is quite straightforward to add
horizontal line segments which decompose each orthogonal
polygon into a collection of rectangles overlapping only along
their edges, where the number of rectangles is less than the
number of initial edges, and where the process takes only
O(n'7?) time. (See Fig. 15.) Having done this, each of the
results in Theorems 8.3, 8.5, and 8.6 can be extended to
orthogonal polygons, still requiring only ©(n'?) time. The
only difference is that Theorem 8.5 must be extended to handle
labeled rectangles, finding the nearest neighbor of a different
label. This is straightforward and will be omitted.

Theorem 8.8: a) Given multiple simple polygons with iso-
oriented sides, represented by n or fewer labeled line
segments, distributed no more than one per processor on a
mesh computer of size n, in ©(n'/2) time the total area covered
by the polygons can be determined, a nearest neighbor of each
polygon can be determined, and the area uniquely covered by
each polygon can be determined.

b) Given a total of n or fewer labeled line segments
(representing iso-oriented simple polygons) and planar points,
distributed no more than one per processor on a mesh
computer of size n, in ©(#!/2) time every processor containing
a point can determine the number of polygons containing the
point, and every processor containing a line segment of a
polygon can determine the number of points contained in its
polygon. |

IX. FURTHER REMARKS

Given n or fewer planar points, distributed one point per
processor on a mesh computer of size 7, algorithms have been
presented to determine a number of formal geometric struc-
tures in ©(n'/2) time. Since it takes Q(n'/2) time for data to
travel across a mesh computer of size 7, all of the algorithms,
except the one associated with Theorem 5.6, have optimal
worst case times and are significantly faster than the (#n) time
required for a serial computer to process O(n) pieces of data.
(In fact, many of these problems require (7 log n) time on a
serial computer.) Other than a preliminary announcement of
some of these results by the authors [27], the algorithms in this
paper represent the first solutions to these problems for the
two-dimensional mesh. The one exception is the minimal
distance spanning tree problem for point data, which has been
previously discussed in [24]. However, the solution that we
present in Theorem 5.6 is more space and time efficient than
that appearing in [24], and we have described how to solve the
minimum spanning tree problem in optimal time and space on
a mesh computer.

The algorithms presented in this paper employ different
approaches to solving geometric problems than those that have
been explored for these problems on a serial computer. A
variety of techniques have been introduced for the mesh
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computer, including multidimensional divide-and-conquer,
parallel binary search, and a variety of interesting grouping
techniques that seem amenable to most situations where
multiple parallel searches are needed. These approaches
appear to be well suited to other architecturally related models
(e.g., easily providing poly-logarithmic solutions to these
problems on a hypercube), and we believe that our algorithms
will produce similarly good results for these models. Further-
more, the various grouping techniques can be extended to
arbitrary parallel computers through the use of sorting and
prefix operations, providing a systematic efficient solution to
parallel search problems.

There may be situations in which our algorithms can be
slightly modified to produce even faster solutions to these
probilems on a mesh computer. For instance, when multiple
figures exist, each stored in a subsquare of size no more than
D, then solutions to many of the problems addressed in this
paper may be extended so that the necessary result can be
determined simultaneously for all of the figures in ©(D'?)
time.

In this paper, the concentration has been on two-dimen-
sional meshes since they are the ones most commonly built. A
J-dimensional mesh of size n (where # is the jth power of some
integer) has n PE’s arranged in a j-dimensional cubic lattice.
PE Psl‘...‘sj and PE P,],...,,j are connected if and only if
3J,_,1si = t;| = 1.In the O-notational analyses of algorithms
for j-dimensional meshes it makes sense to consider j as fixed.
That is, there is no differentiation between a step needing a
constant amount of time and one needing 2/ units. The reason
for this is that a PE in a j-dimensional mesh is fundamentally
different from one in a k-dimensional mesh when j + k. A
proximity ordering can be defined for a j-dimensional mesh,
and all of the data movement operations described in Section
II-D can be extended to run in ©(n'%”) time, which again is
optimal. Therefore, all of the optimal two-dimensional mesh
algorithms written solely in terms of these data movement
operations yield optimal ©(n!”) time j-dimensional mesh
algorithms. (The algorithm in Theorem 5.6 yields a j-
dimensional mesh algorithm requiring ©(n'%” log n) time.) For
a few algorithms, values of constants were chosen to make the
recurrence yield the desired result. For j-dimensional mesh
algorithms, these constants need to be chosen as a function of
J. For example, in Theorem 5.2, for two-dimensional meshes
five slabs were used in each direction, while for j-dimensional
meshes one needs at least 1 + 2/.

Bentley [11] has described an algorithm paradigm, called
multidimensional divide-and-conquer, that has applications
to many problems including those in computational geometry.
In Section VI, possible pitfalls that exist when one tries to use
multidimensional divide-and-conquer naively on a parallel
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machine were discussed. Furthermore, the algorithms that
were presented have avoided these pitfalls when dealing with
polygonal figures. For problems involving points, multidi-
mensional divide-and-conquer can be applied more simply on
mesh computers than it can be for problems involving
polygonal figures. A point p is said to dominate a point q if
and only if the x and y coordinates of p are greater than the
respective x and y coordinates of g. (This definition can be
naturally extended to higher dimensional data.) By applying a
straightforward multidimensional divide-and-conquer tech-
nique, for any fixed j, for n or fewer points on a j-dimensional
mesh of size 7, dominance problems can be solved in optimal
©(n'/) time. These problems include determining for every
point how many other points it dominates, and finding for every
point whether or not it is a maxima (i.e., not dominated by any
point). Serial algorithms for these problems appear in [11] and
optimal two-dimensional mesh algorithms appear in [14].

Other problems that are solved by using multidimensional
divide-and-conquer to reduce the problem to the same problem
in lower dimensions, such as deciding which iso-oriented
boxes are intersected by others, can similarly be solved in the
same time. Some algorithms naturally yield optimal al-
gorithms for higher dimensional data even though they do not
use multidimensional divide-and-conquer. For example, for
any fixed dimension j, the all-nearest neighbor problem for
points can be solved in ©(#!%) time on a j-dimensional mesh
by using a straightforward extension of the algorithm in
Theorem 5.2. For a few problems, such as finding the convex
hull, it should be possible to extend to three-dimensional data
in the same time bounds. However, many of the remaining
problems seem to either require too much data movement, or
the generation of too much data, when the dimension of the
input increases. For example, it is known that the convex hull
of n points in d-dimensional space may have O(n L9/2) faces,
so for d = 4 any algorithm which generates and keeps all the
faces will need Q(n??) PE’s to store them, or else the memory
available in each PE must be increased.

[29] have shown that the mesh computer is an asymptoti-
cally optimal interconnection for a wide variety of problems
that consider problems of size n on a mesh with s processing
elements, s < n, where each PE has Q(n/s) memory. We are
currently studying problems in computational geometry, such
as those described in this paper, to see how they would relate
to mesh computers of various sizes.
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