678

IEEE TRANSACTIONS ON COMPUTERS. VOL. 42, NO. 6, JUNE 1993

Parallel Computations on Reconfigurable Meshes

Russ Miller, Member, IEEE, V. K. Prasanna-Kumar, Senior Member, IEEE,
Dionisios I. Reisis, and Quentin F. Stout, Senior Member, IEEE

Abstract—This paper introduces the mesh with reconfigurable
bus (reconfigurable mesh) as a model of computation. The recon-
figurable mesh captures salient features from a variety of sources,
including the CAAPP, CHiP, polymorphic-torus network, and bus
automaton. It consists of an array of processors interconnected by
a reconfigurable bus system, which can be used to dynamically
obtain various interconnection patterns between the processors.
In this paper, we introduce a variety of fundamental data-
movement operations for the reconfigurable mesh. Based on these
operations, we also introduce new algorithms that are efficient
for solving a variety of problems involving graphs and digitized
images. The algorithms we present are asymptotically superior to
those previously obtained for the aforementioned reconfigurable
architectures, as well as to those previously obtained for the mesh,
the mesh with multiple broadcasting, the mesh with multiple
buses, the mesh-of-trees, and the pyramid computer, to name
a few. Highlights include a logarithmic time algorithm to label
the connected components of a graph given its adjacency matrix,
as well as polylogarithmic time algorithms to solve problems
involving convexity and connectivity of figures in images. We also
show the power of reconfigurability by solving some problems,
such as exclusive OR, more efficiently on the reconfigurable mesh
than is possible on the PRAM.

Index Terms— Graph algorithms, image algorithms, mesh,
mesh-of-trees, parallel algorithms, PRAM, pyramid computer,
reconfigurable mesh, VLSI.

I. INTRODUCTION

VLSI technology offers an environment for constructing
parallel-processing systems that consist of thousands of
processors. A very attractive interconnection scheme is the
two-dimensional mesh-connected computer (mesh) because of
its simplicity, regularity, and the fact that the interconnect
wires occupy only a fixed fraction of the area no matter how
large the mesh. However, since a mesh of size N is configured
as an N1/2 x N2 grid of processors, the communication
diameter (maximum of the minimum distance between any

Manuscript received May 31, 1988; revised June 7, 1991 and April 8,
1992.. The work of R. Miller was supported in part by the National Science
Foundation (NSF) under Grant Nos. DCR-8 608 640 and IRI-8800514. The
work of V. K. Prasanna-Kumar was supported in part by the NSF under Grant
No. IRI-8710863. The work of D. I. Reisis was supported in part by DARPA
under Contract No. F 33 615-84-K-1404 monitored by the Air Force Wright
Aeronautical Laboratory. The work of Q. F. Stout was supported in part by
the NSF under Grant No. DCR-8 507 851 and by an Incentives for Excellence
award from Digital Equipment Corporation.

R. Miller is with the Department of Computer Science, State University of
New York at Buffalo, Buffalo, New York 14260.

V. K. Prasanna-Kumar is with the Department of Electrical Engineering-
Systems, EEB244, University of Southern California, Los Angeles, CA 90089-
2562.

D. Reisis is with the Communication Laboratory, Division of Computer
Science, Department of Computer Engineering, National Technical University
of Athens, 15 773 Zographou, Athens, Greece.

Q. F. Stout is with the Department of Electrical Engineering and Computer
Science. University of Michigan, Ann Arbor, Michigan 48109-2122.

two processors in the network) is O(N1/2), Therefore, a lower
bound on the time to solve nontrivial problems that involve
combining data residing in processors far apart in a mesh of
size N is QU(N'/2). In order to achieve faster solutions to
problems, researchers have studied related organizations that
augment the mesh with additional communication links, while
trying to keep the wire area small. Such organizations include
the pyramid computer [1]-[3], the mesh-of-trees [4], [5], and
meshes with broadcast buses [6]-[10].

For many algorithms, though, it is desirable that more than
one interconnection scheme be present during their execution.
In this paper, we introduce a model of computation that cap-
tures fundamental properties of CHiP [11], mesh computers
augmented with broadcast buses [6]-[8], [12], the bus automa-
ton [13], the polymorphic-torus network [14], and the corterie
network in the latest version of the content addressable array
parallel processor (CAAPP). We use the term mesh with re-
configurable bus or reconfigurable mesh to describe this model
[46], [48]. The obvious advantage of working with a machine-
independent abstract model is that it allows researchers to
develop algorithms without worrying about certain techno-
logically dependent parameters. In this paper, we introduce
a number of fundamental data-movement operations that we
then incorporate into algorithms to solve problems involving
graphs and images. The algorithms we develop are asymptot-
ically superior to previous algorithms for the aforementioned
reconfigurable architectures. They also show that the reconfig-
urable mesh can provide more efficient solutions to problems
than can other mesh-based architectures. In fact, we are able to
give solutions to certain problems that are more efficient than
those possible for the programmable random access memory
(PRAM).

In Section II, we define the reconfigurable mesh. Section
I1I illustrates the power of the reconfiguration scheme in basic
operations on data as well as in sparse data movement by giv-
ing efficient implementations for fundamental data-movement
operations such as random-access read/write, data reduction,
and parallel prefix. These global operations form the founda-
tion of algorithms appearing later in the paper and rely on the
ability to reconfigure the bus in a variety of ways. Section IV
presents embeddings of other parallel machines onto the re-
configurable mesh. It also presents algorithms that exploit the
fundamental data-movement operations introduced in Section
III to develop efficient solutions to several graph and image
problems. Section V serves as the conclusion.

IIl. MESH WITH RECONFIGURABLE BUS

The mesh with reconfigurable bus (reconfigurable mesh) of
size N consists of an N1/2 x N/2 array of processors con-

0018-9340/93$03.00 © 1993 IEEE

MILLER er al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

a3
g
2
g

Switch

Dbl

T
Casiaiias)
N

Fig. 1. Reconfigurable mesh.

nected to a grid-shaped reconfigurable broadcast bus, where
each processor has four locally controllable bus switches, as
shown in Fig. 1. The switches allow the broadcast bus to be di-
vided into subbuses, providing smaller reconfigurable meshes.
For a given set of switch settings, a subbus is a maximal
connected subset of the processors. Other than the buses and
switches the reconfigurable mesh is similar to the standard
mesh in that it has ©(N) area in the word model of VLSI
[15], under the assumption that processors, switches, and a
link between adjacent switches occupy unit area.

We consider two models of bus arbitration in this paper.
The exclusive write model, which mimics the exclusive write
capability of the exclusive write PRAM (EW PRAM), al-
lows only one processor to broadcast at any given time to
a subbus shared by multiple processors. We assume that the
value broadcast consists of O(log N)! bits. The common write
model, which mimics the common write version of the concur-
rent write PRAM (CW PRAM), allows multiple processors to
simultaneously broadcast to the same subbus so long as they
all broadcast the same value and it is only a single bit. The
focus of this paper is on the exclusive write reconfigurable
mesh. In fact, all algorithms presented in this paper are for the
exclusive write model except for the component labeling al-
gorithm associated with Theorem 1, which uses the common
write model.

Two computational models will be discussed in this paper
with respect to the delay that a broadcast requires. The unit-
time delay model will assume that all broadcasts take ©(1)
time, as is the assumption in [6]-[9], [16] for models that as-
sume various broadcasting strategies. We will also consider the
log-time delay model in which it is assumed that each broad-
cast takes ©(log s) time to reach all the processors connected
to its subbus, where s is the maximum number of switches in

L All logarithms in this paper are to base 2, unless specified otherwise.

679

a minimum switch path between two processors connected on
the bus. Obviously, any algorithm taking 7' time steps on the
unit-time delay model can be completed in O(T log N) time
steps on the log-time delay model. In some circumstances we
are able to develop algorithms for the log-time delay model
that are less than a factor of log N slower than the algorithms
for the unit-time delay model. An example of this occurs in
Proposition 4.

Many of the algorithms introduced in this paper will con-
tinually reconfigure the system by setting the switches to give
the desired substructures. A number of algorithms have pre-
viously been derived that exploit row and column broadcasts
[6], [8], [9], [16]. Many of these algorithms use row (col-
umn) broadcasts simultaneously within every row (column).
This technique can be exploited on the reconfigurable mesh
by having each processor set its switches to disconnect its col-
umn (row) links, creating N''/2 separate row (column) buses.
See Fig. 2. That is, processor P;; has access to the broad-
cast buses of row 7 and column j, though complete row and
column buses cannot be used simultaneously. Notice that by
setting the switches properly, sub-row (column) buses can be
created within each row (column), sub-reconfigurable meshes
can be created, a global broadcast bus can be created, a bus
can be created within sets of contiguously labeled processors,
and so forth.

For some of the algorithms presented in this paper, a row-
major ordering of the processors will be used, where processor
P;,0<4,5< N2 _1 has row-major index iN1/2 + 3. For
other algorithms, it is useful to view the mesh as a linear array
of processors, by using, for example, a snake-like indexing
of the processors (Fig. 3). Define the predecessor of each
processor to be the processor with next lowest index, and
the successor of each processor to be the processor with next
highest index.

III. DATA MOVEMENT USING RECONFIGURABLE BUSES

Data-movement operations form the foundation of numer-
ous parallel algorithms for machines constructed as an inter-
connection of processors. In fact, algorithms designed in terms
of fundamental abstract data-movement operations provide the
possibility of portability to architecturally related machines.
This notion can be viewed as the parallel analog to designing
serial algorithms in terms of abstract data types. Therefore, the
algorithms given in this paper will be described in terms of
such operations. In this section, a variety of these fundamental
operations are given for the reconfigurable mesh.

We first introduce a technique called bus splitting, which
shows how the processors can exploit the ability to locally
control the effective size of subbuses. Suppose we want to
compute the logical OR of N/2 bits of data stored one bit per
processor in the ith row of the reconfigurable mesh, storing
the result in processor P; g, for all 0 < 5 < N1/2 — 1. This
can be accomplished as follows.

Set the switches so that each row is connected by a disjoint
subbus. Next, each processor P; ; that has a “1” as its data
value splits its bus by setting its eastern switch to disconnect
its row bus. Then, each processor P;; that has a “1” as

680

-
™

(P) P P

) QPP
RS S ONOXOXOXO

o000 GPOP

_~
=

Fig. 2. Switches set for row and column broadcasts. (a) Switch settings to
create an independent broadcast bus within every row. (b) Switch settings to
create an independent broadcast bus within every column.

[==]
—

213

71 6| 5|4

8 9| 10|11

15| 14] 13 |12

Fig. 3. Snake-like indexing of a mesh.

its data value broadcasts the “1” on its subbus. Processor
Pig, forall 0 < i < NY2 _ 1, will receive on its row
subbus the westernmost “1” in its row, if such a value exists.
Notice that if it is desired to find the logical OR of the data
stored in all processors, then first the OR of each row can
be determined followed by the OR of these values in the
first column. Alternatively, the logical OR of the data in all
processors can be determined by setting the switches so that
all processors are connected by a single linear bus (following
the snake-like indexing), and then using a single bus-splitting
step, where each processor that contains a “1” splits the bus
by disconnecting the switch between itself and its successor.
A broadcast then informs processor Py g as to the logical OR
of the values.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

Proposition 1: Given a reconfigurable mesh of size N, in
which each processor stores a bit of data, the logical OR of
the data in each row (column), or in the entire reconfigurable
mesh, can be determined in ©(1) time using the unit-time
delay model, and in ©(log N) time using the log-time delay
model. O

The reconfigurable-bus scheme can be superior to other
parallel models for some computations. Consider, for example,
computing the exclusive OR (EXOR) of N 1/2 values stored in
a row of the mesh. It should be noted that in [17] it has been
shown that the EXOR cannot be computed in O(1) time on a
PRAM using a polynomial number of processors. The ability
to reconfigure the bus of the reconfigurable mesh, however,
allows us to compute EXOR function in ©(1) time using the
unit-time delay model and in ©(log N) time using the log-
time delay model.

Proposition 2: Given a reconfigurable mesh of size N, the
EXOR of N'1/2 bits of data, initially stored one bit per processor
in a row (column), can be computed in ©(1) time using the
unit-time delay model, and in ©(log N) time using the log-
time delay model.

Proof: Without loss of generality, assume that the N 1/2
values are stored one per processor in row 0. Let d; denote the
bit in processor Pp ;. The computation of the EXOR proceeds
by first computing the EXOR of the values stored in even-
numbered processors, then computing the EXOR of the data
in odd-numbered processors and finally combining these two
results.

Consider the EXOR-computation of the data stored in Py ok,
0<k< (NI/E/‘Z) — 1. Two steps are involved in this task,
namely configuring the bus and then computing the EXOR as
a combination of broadcast and arithmetic operations. The
processors in the (2k)th and (2k + 1)th columns configure
the bus based on the data in P ax, 0 < k < (NY/2/2) -1,
as follows:

1) Configure the bus so that processors in column 2k and
processors in column 2k + 1, 0 < k < (N2/9) —
1, share a subbus. Every processor FPpap, 0 < k<
(N1/2/2) — 1, broadcasts its data value on its subbus,
after which every PE P, ; knows the value stored in PE
Po2lj/2)-

2) If the value in Py o is a 0, then all the even-numbered
processors in columns 2k and 2k + 1 split the bus
above and below them: P op, 0 < i < (N1/2/2) —
1, sets to OFF the switch between itself and Po;y1 2k
(i # (N/2/2) — 1) and also the switch between itself
and Po;_q 21 (i # 0). Also, Pa; o1 sets to OFF the
switches between itself and the processors Po; iy ok 41
(i # (NY?/2) — 1) and Pa;_1 2541 (i # 0) (Fig. 4).

3) If the value in Ppop is a “17 then Py op splits the
bus between itself and Po;opy1. Poiy1,2k Splits the
bus between itself and Paq)2r (i # (NY/2/2) = 1).
P11 2141 splits the bus between itself and Po; 11 o(k+1)
(k £ (NY/?/2) — 1). Also, the switch between Pa; ok +1
and Paiy1oxp1 (i k # (NY2/2) — 1) is set to OFF
(Fig. 4).

First the mesh is configured as in step 1 above. Then, one

MILLER et al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

X

P(2i.2k) P(2i2k+1) P(2i,2k)

‘\

PQ2i,2k+1)

DATA[P(0.2k)|=0 DATA[P(0,2k)]=1

Bus link active

Bus link with a switch sct 1o OFF

Fig. 4. Switch setting for the EXOR computation.

of steps 2 or 3 is followed in each pair of columns. Notice
that in case of a “0” in P, »;, the broadcast data on the bus
reaching Po; o will also reach Pa; 5541). In case of a “1” in
Py 2k, a data-item broadcast on the bus follows the route from
Paiop 10 Pogip1)2(k+1)

Assume now that the bus is configured as above. A “1” is
generated and broadcast from processor Py o. Due to the above
configuration of the bus, the broadcast “1” will be read by (and
pass through) exactly one processor Py o; in each column 2j,
where [= Y770 dag, 1 < j < (N/?/2). Thus, if processor
Pa; n1/2—; is the processor in column N1/2 — 1 that reads a
“1” from the bus, then the sum of the 1’s in even-numbered
processors of row 0 is ¢. This processor can broadcast i to all
the processors in the mesh. The EXOR computation of data in
even-numbered processors on a 14 x 14 reconfigurable mesh
is shown in Fig. 5. Notice that in this example the number of
“1”s is 3 and 2/ is 6. In a similar fashion, the sum of the 1’s
in the odd-numbered processors (in row 0) may be computed.
Finally, from these two values, the EXOR of N1/2 bits of data,
initially stored in the same row (column), may be computed
in unit time. Therefore, the running time is as claimed. O

Note that in each column, the row index of the PE receiving
a 1 is a measure of the number of 1’s up to that column in
row 0. Thus, the previous result can be extended in a natural
fashion to the following.

Corollary 1: Suppose on a reconfigurable mesh of size N,
each processor in row (column) j stores a bit of data d;,
0 < j < NY2— 1. The prefix computation of F;, where
F; =3 J_,d; is to be stored in row j, 0 < j < N2 -1,
can be performed in ©(1) time using the unit-time delay model
and in ©(log V) time using the log-time delay model. O

Many algorithms are designed to reduce data at intermediate
stages of the algorithm. It is, therefore, often useful to be
able to efficiently perform fundamental operations on reduced
sets of data. The maximum of N1/? values xq, -, Zpn1/2_;
initially stored in a row of a reconfigurable mesh of size N can
be determined as follows. First, column broadcasts can be used
so that every processor P ; contains entry r;. Next, within

681

/ 0 i 0 0 1 1 0

P(0,0)

Bus with Processors
at intersection points

Propagation of a 1
generated at PE(0,0)

Fig. 5. EXOR computation of data in even-numbered processors on a 14 x 14

reconfigurable mesh.

every row i, processor P;; uses a row broadcast to inform
all processors P; ; of the value of 2;, 0 < i,j < N2 1.
At this point, every processor P;; contains data values z;
and ;. Next, every processor computes the Boolean result of
“r; < x;.” In every column j, the logical OR of these results
(using the algorithm associated with Proposition 1 to store the
result in Py ;) can be used to decide whether or not z; is a
maximum. Notice that a result of “0” in P, ; indicates that z;
is a maximum, while a “1” indicates that it is not. Since there
may be more than one processor in row 0 storing the maximum
value, bus splitting on row 0 is used to inform F; o as to the
maximum value, which can then be broadcast to all processors.
Notice that the minimum can be computed similarly.
Proposition 3: Given a reconfigurable mesh of size N, in
which no more than one processor in each column stores a
data value, the maximum (minimum) of these O(N'/?) data
items can be determined in ©(1) time using the unit-time delay
model, and in ©(log V) time using the log-time delay model.
|
By a somewhat more complicated sequence, Valiant’s
PRAM algorithm for finding the maximum [18] can be simu-
lated on a reconfigurable mesh to find the maximum of N
values, assuming they are stored one value per processor.
Assume that the mesh is divided into N''/2 disjoint blocks
of size N/ x N'/4 Suppose the maximum of the data
in each block has been determined. Then, we need to de-
termine the maximum of N'/? values using N processors
in the array. After moving the data to appropriate locations,
this can be done in O(1) time using Proposition 3 in the
unit-time delay model. Recursively applying this idea leads
to an algorithm with running time that obeys the recurrence
T(N) = T(N/?) 4+ ©(1) in the unit-time delay model and
T(N)=T(NY?)4+0(log N'/?) in the log-time delay model.

682

Proposition 4: Given a set of data items S of size N
stored one per processor on a reconfigurable mesh of size
N, the maximum (minimum) value of S can be determined
in ©(loglog N) time using the unit-time delay model and in
O(log N) time using the log-time delay model. a

Combining the above approach with Proposition 2 leads to:

Corollary 2: Given a set of bits S of size IV stored one per
processor on a reconfigurable mesh of size N, the EXOR of all
items in S can be computed in O(loglog N) time using the
unit-time delay model and in ©(log) time using the log-time
delay model. O

Parallel prefix is an important operation that can be used
to sum values, broadcast data, solve problems in image pro-
cessing, solve graph problems, and so forth [19]. Assume
processor F;, 0 < ¢ < N — 1, initially contains data ele-
ment a;. The parallel prefix problem requires every proces-
sor P;, 0 < ¢ < N — 1, to determine the sth initial prefix
ay®a; ® - ® a;, where ® is a binary associative operator.

An efficient mesh-based algorithm is straightforward. As-
sume that the indexing of the processors is row-major. First,
perform parallel prefix within each row so that each processor
knows the initial prefix of those values restricted to its row.
Next, in the last column perform parallel prefix to determine
row-wise prefix solutions. Finally, within each row, broadcast
the prefix of the previous rows so that all processors can up-
date their entry appropriately.

Notice that parallel prefix can be simultaneously computed
in every row (or column) of the reconfigurable mesh in
log N/2 iterations by appropriately setting switches, broad-
casting, and updating values at each iteration. During the sth it-
eration of the row version, switches are set so that every row is
grouped into disjoint linear strings consisting of 2¢ processors,
1 < i < log N'/2. After configuring the switches, within each
string processor Py:—1_; (i.e., the easternmost processor of the
low-order substring of size 2:~!) broadcasts its prefix value to
all processors in its string. All processors Poi—1 -+ Pyi_; up-
date their prefix value by applying ® to the broadcast value
and their current value.

Finally, it should be noted that if the snake-like indexing
scheme is used, then the problem only requires a single log N
iteration prefix operation to be performed within the string of
size N.

Lemma 1: Given a set S = {a;} of N values, distributed
one per processor on a reconfigurable mesh of size N so that
processor P; contains a;, 0 < ¢ < N — 1, and a unit-time
binary associative operation ®, in ©(log V) time using the
unit-time delay model and in ©(log? N) time using the log-
time delay model, the paralle]l prefix problem can be solved
so that each processor P; knows ag ® a1 ® -+ - ® a;. a

It is often desirable to model PRAM algorithms on other
machines. The CRCW PRAM consists of a set of processors
and a shared memory in which concurrent reads from the same
memory location are allowed as are concurrent writes to the
same location. In the case of concurrent writes, a predefined
scheme is used to decide which value succeeds. In order to
efficiently simulate the CRCW PRAM, one must be able to
efficiently simulate the concurrent read and concurrent write
properties. Define random access read (RAR) to be a data-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

movement operation that models a concurrent read, in which
each processor knows the index of another processor from
which it wants to read data [20]. Similarly, a random access
write (RAW) will model a concurrent write in that each pro-
cessor knows the index of a processor that it wishes to write
to [20]. In case of multiple writes to the same processor, a
tie-breaking scheme is used, such as minimum or maximum
data value, or arbitrarily letting one value succeed. Such data-
movement operations on SIMD computers using N processors
can be performed in the same time as it takes to sort N num-
bers. However, on the reconfigurable mesh, we give algorithms
whose running times depend on the number of data items to
be moved.

The algorithms we give in this section are actually con-
cerned with more general versions of these operations. The
operations that we consider have PE’s attempting to read or
write information based on keys, where the key may or may
not be the index of a processor. In order to maintain consis-
tency during concurrent read and concurrent write operations,
it will be assumed that there is at most one master record,
stored in some processor, associated with each unique key. In
a concurrent read, each PE generates a fixed number of re-
quest records, where each request record specifies a key that
the PE wishes to receive information about. In a concurrent
write, each PE generates a fixed number of update records,
where each update record specifies the key and data field cor-
responding to the key that the PE wishes to update. It should
be noted that for many applications, a PE will maintain master
records and also generate request or update records.

Lemma 2: Given a reconfigurable mesh of size N, in
O(k'?) time using the unit-time delay model, and in
O(k'/?log N) time using the log-time delay model, k data
items may be moved in a RAR or RAW, where k < N.

Proof: The algorithm given in this proof can be applied
once to perform a RAW and twice to perform a RAR. The
basic data movement is accomplished by moving the data
(update or request records) into the northwest block of size
©(k), making multiple copies of this block throughout the
mesh, and then using mesh-computer RAR’s/RAW’s within
each block to either update or obtain information regarding
the appropriate master records. The details of moving the &
data items into the northwest submesh of size ©(k) follow.

1) Each processor that has a data item (update record in the
case of RAW, request record in the case of RAR) to be
moved marks itself active.

2) Using row subbuses, each row determines the western-
most active data item (if any) in the row. Call each such
item live.

3) Using Corollary 1, where rows with live items use a data
value of “1” and other rows use “0,” each row with a
live item determines the item’s rank with respect to the
live items, i.e., the number of live items in preceding
rows. Let L; denote the total number of live items.

4) Forj = 1to [Ly/[k/?]], using the row buses, the items
with rank (j — 1)[£'/2] through j[k'/2] — 1 are moved
to the columns 0 through [kl/ 2] —1, respectively. Then,
using column buses, they are moved to row 7 — 1. When
this loop is completed, the live items have been moved to

MILLER er al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

the northwest corner, occupying positions 0 - - - [k1/2] -
1of rows 0--- | L1/[k*/?]] -1, and positions 0 - - Ly —
[kY/27| Ly /TkY2]) = 1 of row [Ly/[k'/?]] — 1. These
live items are now marked inactive.

5) Repeat steps 2 and 3 using columns instead of rows, and
northernmost instead of westernmost, where Lo is used
to denote the number of live items. Then, using a process
similar to step 4, move these live items to the northwest
corner, starting in row [L;/[k'/%]] and ending at row
[/ TKY21) + [La/TRV2]] - 1.

6) Steps 2 through 5 are repeated, alternating between using
rows and using columns to select live items, where the
live items of each iteration are placed in the northwest
corner in rows following the previous iteration, until all
k items have been moved to the northwest corner. One
can show that live items need to be selected, at most,
2[k/2] — 1 times, and that the total number of rows
used in the corner is at most 3[k'/?] — 1. Now, using
standard mesh operations, the items can be compressed
into k/[k/2] rows of width [k1/2].

In the unit-delay model, steps 2 and 3 take constant time,
step 4 takes O(L/[k'/?]) time per iteration, and step 6 takes
O([k1/2]) time. Therefore, the total time is O(k'/?) time in
the unit-time delay model and in O(k'/?1log N) time in the
log-time delay model.

Note that if & is not known in advance, then one could
perform the above algorithm, omitting step 4 and the final
compression, to determine Ak in O(k'/?) time in the unit-
time delay model, and in O(k'/2log N) time in the log-time
delay model. By different techniques & can be determined in
O(log k) time in the unit-time delay model and ©(log & log N)
time in the log-time delay model, but this faster determination
would not improve the total time to perform the RAR or RAW.

The second phase of the algorithm consists of moving the
records in the northwest submesh of size @(k) to their final
destinations. Perform ©(k'/?) row broadcasts, followed by
O(k'/2) column broadcasts to create @(N/k) disjoint copies
of the northwest submesh of size ©(k). Now, within each
submesh, perform sort-based mesh operations to complete the
operation.

The total time for the second phase is ©(k'/?) in the unit-
time delay model and ©(k!/2 log N) time in the log-time delay
model. Hence, the running time of the RAR and RAW is as
claimed. d

For the restricted RAR and RAW operations (in which
reads/writes are via predetermined processor locations), more
efficient algorithms can be used if the distribution of source
processors, l1.e., those processors sending data, as well as
destination processors, i.e., those processors receiving data,
is uniform over the mesh.

Proposition 5: 1f the maximum number of source and des-
tination processors within any block of size k2 is k, 1 < k <
N1/2 then RAR and RAW can be performed in ©(log N)
time under the unit-time delay model and in ©(log? N) time
under the log-time delay model.

Proof: Assume that the number of records to be moved
is m,., which can be at most N1/2. The general idea is to first
move this data to the diagonal processors of the reconfigurable

683

mesh and then distribute them to their destination.

To move the records to the diagonal processors of the mesh,
we use an iterative procedure that merges four blocks of size
k2 to obtain a block of size 4k2, where 2 < k < N'/2/2.
Suppose there are r; records in each block of size k% r <k,
1 < i < 4, where r; represents the number of records
in the northwest block, 7o represents the number of records
in the northeast block, r3 represents the number of records
in the southwest block, and ry represents the number of
records in the southeast block. Assume that these records
are stored in diagonal processors FPoo through Pr,_1.r,—1,
where the indices are defined locally within blocks of size
k2. Using a fixed number of row and column broadcasts, all
processors in the block of size 4k? know the values of 7,
1 < i < 4. Another pair of row and column broadcasts for the
northeast, southwest, and southeast blocks will move the n2
records from the northeast block to diagonal processors Pp, n,
through P, 40ny—1,n,4n, -1, the N3 records from the south-
west block move to diagonal processors Pp, 4ny,n, 4, through
Py, tmytms—1.ng+ms+ns—1, and the ng records from the south-
west block move to diagonal processors P, tn, +ng,n1 +n2+ns
through Pr, 4nytns4ma—1,n, 412 +ns+ns—1, With respect to the
block of size 4k?.

After the four blocks of size N/4 are merged into a single
block of size N, all n, active records will be stored in diagonal
processors Py through P, _in 1. These data are sorted
using standard techniques based on rank computation.

Now, using a top-down recursive solution strategy, move
the contiguous set of diagonal elements from the diagonal of
the reconfigurable mesh of size N to the diagonal of the proper
reconfigurable mesh of size N/4. This is accomplished by a
fixed number of row and column broadcasts. Continue in this
fashion until all records have reached their destination.

Row and column broadcasts take ©(1) time in the unit-time
delay model and ©(log N) time in the log-time delay model.
Sorting data that initially resides one element per diagonal
processor takes ©(log N) time in the unit-time delay model
and O(log? N) time in the log-time delay model. Notice,
however, that sorting is only done once in the algorithm, after
the bottom-up stage is complete and the data are along the
main diagonal, and before the top-down distribution stage is
initiated. The running time for the top-down and bottom-up
stages of the algorithm under the unit-time delay model is
given by T(N) = T(N/4) + ©(1), which is ©(log N), while
the running time for these two stages of the algorithm under
the log-time delay model is given by T(N) = T(N/4) +
O(log N), which is ©(log? N). Therefore, a single sort step
does not affect the asymptotic running time of the algorithm,
and the running times are as claimed.]

The next operation we consider is data reduction. Assume
that each processor has at most one record having a key field
and a data field. Data reduction will perform an associative
binary operation on the data of records having the same key.
At the end of the data-reduction operation, each processor with
key k will have the result of the operation performed over all
data items with key k.

Proposition 6: Given an associative binary operator ®,
data reduction can be performed on k distinct keys in Ok +

684

log N) time on a reconfigurable mesh of size N under the unit-
time delay model and in ©(k'/2log N + log® N) time under
the log-time delay model. At the end of the operation each
processor knows the result of applying ® over all data items
with its key.

Proof: Tt will be shown later that the number of distinct
keys can be computed in O(k'/2+log N) time under the unit-
time delay model and in O(k'/2log N + log® N) under the
log-time delay model. Further, once £ is known, the keys can
be mapped to values 0, - - -,k — 1 in the same time. Therefore,
assume that the number of keys, &, is known, and that the keys
are labeled 0,1, - -,k — 1. The basic idea of the algorithm is
similar to the merge step of the algorithm presented in Propo-
sition 5. Initially, data reduction is performed in O(k!/?) time
using a sort-based mesh computer algorithm within blocks of
size k. Once this is complete, blocks are merged iteratively
while continuing to reduce data, until the data are reduced
over the entire mesh.

Details of the algorithm follow.

1) Partition the reconfigurable mesh of size N into disjoint
blocks of size k. In each such block sort the records
according to their key and perform ® over the set of
data associated with each key. Next, create one entry to
represent each key, including keys that do not appear in
the block. For a key that appears in the block, this entry
will contain the result of applying ® over all data values
within the block associated with the key. For a key that
does not appear in the block, the data value of the entry
will be nil. Mesh algorithms will complete this task in
O(k1/?) time.

2) Within each block of size k, move the record with key
i to processor F;, where the indexing scheme of the
processors is column-major order.

3) Merge four blocks of size b? into a block of size 4b?
as follows. The k records are stored in the first [k/b]
columns of each block of size b?. There is exactly one
record in each block of size b? corresponding to each of
the k keys. Since records are sorted by keys, records
with the same key are located in the corresponding
processors of each block of size b2. Using row and
column broadcasts, combine the corresponding entries so
that @ is performed over the four corresponding values,
with the results being stored in the corresponding PE’s
of the northwest block of size b2. Since there are ©(k/b)
columns, this operation requires ©(k/b) time.

4) Distribute the records such that they are in column-major
order in columns 0 to ([k/2b] — 1) of the block of size
4b?. This can be done, as in the previous step, in O(k/b)
time by exploiting the diagonal processors.

5) Starting with b = k!/2, repeat steps 3 and 4 until
b= N2,

6) Using the algorithm associated with Proposition 2, move
all k records into the northwest submesh of size k.

7) Copy the data in this northwest submesh to each sub-
mesh of size k£ using row and column broadcasts.

8) Within each submesh of size k, the data corresponding
to each key can be moved to the processors with that key
in O(k'/?) time by using mesh computer algorithms.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

The initial setup takes O(k'/2) time, the ith merging op-
eration uses O(k!/2/2° + 1) broadcasts, and the final routing
step can be completed in O(k*/2) time. Therefore, the running
time of the algorithm is as claimed. a

As previously mentioned, the number of distinct keys can
also be computed in O(k'/2 +log N) time under the unit-time
delay model and in O(k'/?log N + log? N) time under the
log-time delay model. This can be accomplished as follows.
Assume that there exists log? N or fewer distinct keys. Use
the key-reduction algorithm (trivially modified) followed by a
logical OR to deade whether or not every key was represented
among the log N finalists. If every key was not represented,
then assume the number of keys is a multiplicative factor of 2
greater than the previous assumption. Continue this approach
until all keys are represented in the final set. The algorithm
is similar to the previous one, motivated from a key counting
algorithm in [3] and is therefore omitted.

Corollary 3: Given one keyed item per processor on a
reconfigurable mesh of size N, the number of distinct keys
can be determined in ©(k'/? 4 log N) time under the unit-
time delay model and in ©(k!/?log N + log® N') time under
the log-time delay model. O

IV. APPLICATIONS

In this section, we illustrate the power of the reconfigurable
mesh by giving efficient parallel algorithms to solve graph and
image problems. Many of the solutions rely on the fundamen-
tal data-movement operations given in the previous section.
We also show that the reconfigurable mesh can exploit its nu-
merous communication patterns to efficiently simulate other
low wire-area organizations. Section IV-A shows that the re-
configurable mesh can efficiently simulate the mesh-of-trees
and pyramid, two architectures for which numerous efficient
algorithms already exist. In Section IV-B, efficient algorithms
are given for solving a variety of graph problems, while in
Section IV-C efficient algorithms are given for solving prob-
lems in image analysis. It should be noted that the algorithms
given in Sections IV-B and IV-C are more efficient than those
that can be obtained by a direct simulation of mesh-of-trees
or pyramid algorithms.

A. Simulations

Let G be a family of undirected graphs G* = (V", E™),
with |V™| = n, where the vertices represent processors and
the edges represent communication links between the pro-
cessors of a parallel computer. A (p(n), c(n))-embedding of
G into reconfigurable meshes consists of the following. For
every n there is a map p™ of V™" into the processors of a
reconfigurable mesh M™ of size n, a partition of E™ into

and a collection of switch settings
such that the following hold.

1) No PE of M™ has more than p(n) vertices mapped onto
it via p".

2) E} consists of those edges (u,v) € E™ such that the
endpoints are mapped to the same processor of M™,
i.e., such that p™(u) = p™(v).

subsets E0))
for Aj

c(n

MILLER et al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

3) For each ¢, 1 <4 < ¢(n), the subbuses generated by 7
are in 1-1 correspondence with the edges of ET*, where
if (u,v) is an edge of E, then ! has created a subbus
that is a path with one endpoint at p™(u) and the other
endpoint at p"(v).

4) In O(p(n)) time, each processor of M™ can determine
the vertices of V™ mapped onto it.

5) For every i, 1 <i < ¢(n), in ©(1) time each processor
of M™ can determine its switch settings given by 77
and, if it is an endpoint of a subbus, it can determine
which simulated processor corresponds to that end.

Notice that, by the definition, a vertex may appear as an
endpoint of at most one edge in any given partition of E™.
One significant point of this definition is that a (p(n), c(n))-
embedding does not correspond to a standard layout in which
¢(n) communication layers are used. There are two primary
differences between such a layout and our embedding. The first
is that in a layout there may be vias connecting the layers, so
that a single communication edge may be on multiple layers,
while the (p(n), ¢(n))-embedding does not allow this. The
second is that a layout allows the edges to form an arbitrary
planar grid-graph, while in the (p(n), ¢c(n))-embedding each
processor (vertex) can be connected to at most one subbus (and
hence at most one edge) at a time. For example, a planar grid
of size N in which each processor is connected to its four
nearest neighbors is normally viewed as a one-level layout,
but a reconfigurable mesh needs four sets of switch settings
to simulate all the edges of the grid.

We assume that a single time step of an algorithm for G
consists of a fixed amount of local calculation, followed by
a communication step in which each processor is involved
with sending or receiving at most one message, consisting of
a single word.

Given a (p(n). c(n))-embedding of G, we say that an algo-
rithm for G is normalized if there is a constant k, such that for
each n and each communication step of the algorithm there
is a set {i1.42,---,4} such that k communication steps are
involved on the reconfigurable mesh, one each restricted to
edges in B, . Ey,,---, F;,, and {41,142, --,4x} can be deter-
mined in ©(1) time.

Proposition 7: Given a family of graphs G representing a
parallel architecture, given a (p(n), ¢(n))-embedding of G into
reconfigurable meshes, and given an algorithm .4 for G taking
T(N) time on G%, then on the reconfigurable mesh of size N

1) A can be simulated in O((p(N) + ¢(N))T(N)) time
on the unit-time delay model and in O((p(N) +
¢(N))T(N)log N) time on the log-time delay model
and

2) if A is normalized, then it can be simulated in
O(p(N)T(N)) time on the unit-time delay model and in
O(p(N)T'(N)log N) time on the log-time delay model.

Proof: The simulation is quite staightforward. In each
simulation step, each reconfigurable mesh processor first per-
forms all the local calculations of the p(NN) or fewer pro-
cessors mapped onto it and then simulates all communication
where both ends are processors it is simulating (i.e., it simu-
lates those communication links in E{¥ with endpoints in it).

685

If the algorithm is not normalized, then at most ¢(V) interpro-
cessor communication operations are now performed. In the
ith operation, 1 < ¢ < ¢(N), each processor sets its switches
according to ¥, determines if it is an endpoint of a subbus,
and if it is an endpoint then sends a message or receives it
(or neither, if the communication link is not used in this time
step) for the simulated processor corresponding to its end of
the communication link. If the algorithm is normalized, then
only a fixed number of interprocessor communication opera-
tions are performed. In the unit-time delay model the initial
local calculations take O(p(N)) time, and each interproces-
sor communication operation takes ©(1) time, giving the time
claimed. O

We will apply this theorem to two specific architectures of
particular interest, namely the mesh-of-trees and the pyramid.

A mesh-of-trees of base size N, where N is an integral
power of 4, has a total of 3N — 2N1/2 processors. N of these
are base processors arranged as a mesh of size V. Above each
row and above each column of the mesh is a perfect binary
tree of processors. Each row (column) tree has as its leaves
an entire row (column) of base processors. All row trees are
disjoint, as are all column trees. Every row tree has exactly
one leaf processor in common with each column tree. Each
base processor is connected to six other processors (assuming
they exist): four neighbors in the base, a parent in its row
tree, and a parent in its column tree. Each processor in a row
or column tree that is neither a leaf nor a root is connected
to exactly three other processors in its tree: a parent and two
children. Each root in a row or column tree is connected to its
two children. Notice that in the mesh-of-trees the processors in
each row and in each column can be looked upon as placed at
levels 0,1,---,log N/2, where a level [, 0 < I < log N/2,
has 2! processors.

There is a natural (3,4(1 + log N'/?))-embedding of the
mesh-of-trees of base size N onto the reconfigurable mesh of
size N. First, map the base mesh of the mesh-of-trees directly
onto the reconfigurable mesh. Next, associate each tree node
above a row or column with a base node of that row or column,
using a mapping such that the ith processor on the /th level of
the tree is mapped to the processor %208 N'/? =14 9(log N'/)—1
of the row (or the column) [21], [22]. Notice that every
processor in the reconfigurable mesh is responsible for at most
three nodes of the mesh-of-trees, namely, a base node, a node
from that base node’s row tree, and a node from that base
node’s column tree. To simulate the communication links of
the mesh-of-trees, four sets of subbuses are needed to simulate
the base connections. Within each row and column there are
log N/2 levels of parent-child links. These are simulated
level by level, using two sets of subbuses per level (for
example, in rows, one set simulates connecting westernmost
children to their parent and the other set simulates connecting
easternmost children). The row and column switch settings
are done separately, giving a total of 4(1 + log N''/2) sets of
settings.

Notice that this embedding is such that if a mesh-of-trees
algorithm has the property that each communication step in-
volves only communication within the base or only commu-
nication between processors at levels 7 and ¢ + 1 for a given

686

i, then the algorithm can be converted into an normalized al-
gorithm with a running time on the reconfigurable mesh that
is at most a constant multiple slower than the original mesh-
of-trees algorithm.

Corollary 4: Given a mesh-of-trees algorithm A taking
T(N) time steps on a mesh-of-trees of base size N on the
reconfigurable mesh of size N:

1) A can be simulated in O(T(N)log N) time on the unit-
time delay model and in O(T(N)log® N) time on the
log-time delay model and

2) if A is normalized it can be simulated in O(T'(N)) time
on the unit-time delay model and in O(T(N)logN)
time on the log-delay model.

0

A pyramid computer (pyramid) of size N is a machine that
can be viewed as a full, rooted, 4-ary tree of height logy IV,
with additional horizontal links so that each horizontal level
is a mesh. It is often convenient to view the pyramid as a
tapering array of meshes. A pyramid of size N has at its base
a mesh of size N and a total of 3N — 3 processors. The levels
are numbered so that the base is level 0 and the apex is level
log, N. A processor at level ¢ is connected via bidirectional
unit-time communication links to its nine neighbors (assuming
they exist): four siblings at level ¢, four children at level — 1,
and a parent at level 7 + 1.

A (2,16)-embedding of the pyramid of base size N onto
a reconfigurable mesh of size N can be generated by using
the standard H-tree embedding of the layers above the pyra-
mid’s base onto its base [23] and using the natural map of
the pyramid’s base onto the reconfigurable mesh. Using this,
one can partition the pyramid communication links into four
sets, namely the mesh edges of the base, the mesh edges of
all levels above the base, the parent-child edges connecting
each even layer with the layer above, and the parent-child
edges connecting each even layer with the layer below. For
each of these sets there is a natural planar layout resulting in
each node having degree 4 or less. Each set can in turn be
naturally mapped into four collections of subbuses, giving a
total of 16 collections of subbuses to simulate all the pyramid
connections. Since the number of interprocessor communica-
tion operations is a constant no matter how large the pyramid,
to within a multiplicative constant there is no advantage in
simulating normalized pyramid algorithms as opposed to un-
normalized ones.

Corollary 5: Given a pyramid algorithm A taking T(N)
time on a pyramid of base size N, on a reconfigurable mesh
of size¢ N A can be simulated in O(T(N)) time on the unit-
time delay model and in O(T(N)log N) time on the log-time
delay model. g

B. Graph Algorithms

The first problem considered in this section is that of com-
puting the connected components of an undirected graph with
N2 vertices. The graph is given as an adjacency matrix,
where the (¢, j)th entry is initially stored in processor P; ; of
the reconfigurable mesh. Upon termination of the algorithm,
every processor P; ; will know the component label of ver-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

tex i and vertex j. The algorithm that we use is based on the
O(log N) time CRCW PRAM algorithm presented in [24],
which assumes a less restrictive unordered-edge input. We as-
sume the reader is familiar with the algorithm in [24] and ex-
plain how to convert its PRAM steps into steps for the recon-
figurable mesh. Components are labeled by vertex numbers,
where initially each vertex is labeled with its own number.
During each of the O(log N) iterations, the PRAM algorithm
exploits two fundamental operations to update component la-
bels. These operations, along with reconfigurable mesh imple-
mentations, are now briefly described.
1) The first operation is called shortcutting, which consists
of every vertex “connecting” itself to its grandparent.
This operation can be implemented on the reconfigurable
mesh by the following steps.
a) At the start of each iteration of the algorithm, all
PE’s P; ; will know the current parent (i.e., label) of
vertex i, denoted by either parent(¢) or label(i).
b) Use column broadcasts from every diagonal proces-
sor P; ; so that every processor P ,,, knows the cur-
rent parent of vertex m.
¢) The value parent(parent(i)) is broadcast in row i
from processor P; ,qrent(i) SO that all processors P; j,
simultaneously for all rows i, know the grandparent
of vertex 1.

2) The second operation is called hooking, which consists
of every vertex i that points to a root j (i.e., parent(i) =
j is a root) trying to hook the root j to a non-leaf node
p such that label(p) < j. This can be performed similar
to step 1.
Notice that the implementation of both operations requires a
fixed number of reconfigurable bus operations. Therefore, after
a ©(1) time initialization step to determine the initial parent
(label) of every vertex, shortcutting, hooking, and other simple
©(1) time operations can be used at each of the O(log N)
iterations to obtain the following.

Theorem 1: Given the adjacency matrix of an undirected
graph with N''/2 vertices, distributed so that the (7. j)th ele-
ment of the matrix is stored in processor F; ; of a reconfig-
urable mesh of size N, the connected components of the graph
can be determined in O(log N) time under the unit-time de-
lay model and in O(log? N) time under the log-time delay
model.]

The reconfigurable mesh can also be used to provide effi-
cient solutions to some graph problems that assume unordered
edges as input. As an illustration, consider labeling the con-
nected components of a V' vertex graph on a reconfigurable
mesh of size N. The general component-labeling algorithm
that we follow has been used for a variety of parallel architec-
tures (c.f., [25]). Initially, each processor P, , stores an arbi-
trary edge (7, 7). At the end of the algorithm, processor P, ,
stores the label of the component to which vertices ¢ and 7 be-
long. Component labels again correspond to vertex numbers.
Initially, each vertex is its own component. During each of the
O(log N) iterations, components are systematically merged so
that the number of active components is reduced by at least a
factor of 2. Therefore, the algorithm requires O(log N) iter-

MILLER et al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

ations to merge all vertices into their connected components,
where each iteration consists of the following two operations.

1) In the first operation, every component chooses as its
new label the minimum label of any component it is
connected to.

a) On the reconfigurable mesh, this is implemented by
the key reduction operation as in Proposition 6, using
the component labels as keys and minimum as the
binary associative operator.

2) The second operation compresses the equivalence classes
(supercomponents) that were just set up so that all ver-
tices in the same class receive the same label. (e.g., if
in the previous step component C' chooses B as its new
label, component B chooses A as its new label, and
component A chooses itself as its new label, then this
step (re)labels all three of these components to A.)

a) On the reconfigurable mesh, collect the [active labels
to the northwest block of size [. This can be done
using the algorithm associated with Lemma 2. In
this northwest block, a mesh computer algorithm
finishing in O(I'/2) time will assign every active
label the minimum label in its class.

b) The vertices are then relabeled according to the up-
dated labels by creating N/I copies of the labels de-
termined in the northwest block, as discussed pre-
viously (c.f., the algorithm of Lemma 2 and then
performing mesh-computer RAR’s within each local
size [1/2 x [Y/2 copy of the updated labels.

Initially each component consists of a single vertex. Since
the steps of the algorithm are implemented by the operations in
Proposition 6 and Lemma 2, the first iteration can be completed
in O(V'/2 {-log N) time under the unit-time delay model and
O(V'/%og N +log? N) time under the log-time delay model.
During each iteration the number of components is reduced
by at least half. Therefore, the number of components during
the ith iteration, 1 <4 < log V, is no more than V/2¢. Hence,
the algorithm can be completed in O(V!/2 + log NlogV)
time under the unit-time delay model and in O(V/2log N +
log? N log V) time under the log-time delay model.

The strong similarities between component-labeling algo-
rithms and minimal spanning-forest algorithms for parallel
models of computation are well known. In particular, others
have noted that small changes to a component-labeling al-
gorithm for a parallel computer can give a minimal spanning-
forest algorithm for the same computer [26], [27]. The changes
mainly consist of choosing edges of minimal weight at each
stage of the algorithm, rather than edges incident on vertices
of minimal label.

Several graph properties can be deduced once a spanning
tree of the graph is determined [28]. Therefore, the following
results hold.

Theorem 2: Given N or fewer edges of a graph G with V
vertices distributed with no more than one edge per processor
on a reconfigurable mesh of size NV, in ©(V/2 4-log N log V)
time under the unit-time delay model and in ©(V/2log N +
log? N log V') time under the log-time delay model, one can

1) label the components of G,

687

2) compute a minimal spanning forest of G,
3) check if G is bipartite,

4) compute the cyclic index of G, and

5) compute the articulation points of G.

C. Image Algorithms

Many problems involving digitized images have been solved
on mesh-connected computers [47]. These problems can be
solved efficiently on the reconfigurable mesh. The input for
these problems is an N1/2 x N'1/2 digitized image distributed
one pixel per processor on a reconfigurable mesh of size N
so that processor P; ; stores pixel (z, 7). The pixels are either
black or white where the interpretation is a black image on a
white background.

The problems that we examine focus on labeling figures
(connected components) and determining properties of the
figures. The reconfigurable bus plays an important role in
image algorithms, since it can be used to create a subbus
within every figure so that information can be extracted about
all figures concurrently. Indeed, a multilevel system for image
understanding is being built, with a configurable bus system for
low-level image processing [29], [30]. The first result of this
section provides an algorithm to efficiently label the figures
of an image.

Theorem 3: Given an N1/2 x N1/2 digitized image mapped
one pixel per processor onto the processors of a reconfigurable
mesh of size N, in ©(log N) time under the unit-time delay
model and in ©(log? N) time under the log-time delay model,
the figures (connected components) can be labeled.

Proof: 1In parallel, every processor examines the pixel in
each of its four neighbors and sets its four switches so that
a connection is maintained only between neighboring black
pixels. This ©(1) time operation creates a subbus over each
figure. Given a linked list of processors overlayed by a re-
configurable subbus, the minimum (maximum) of the values
stored in these processors can be computed in O(log N) it-
erations. Each iteration computes the local minima (maxima)
and discards the other elements. Each iteration uses a con-
stant number of broadcast steps and comparison operations,
and therefore the times are as claimed. O

An alternative technique can be used if the concurrent write
model for the bus can be used. Using subbuses in parallel a
unique label can now be assigned to every figure by a standard
bit-polling algorithm, as follows. Initially, all processors with a
black pixel are active. At the ith iteration, all active processors
with a 1 in the ¢th bit of their unique processor index, send
a “1” to the bus.

If no processor sends a “1” to the bus, then the algorithm
proceeds to the next iteration, while if at least one processor
sends a “1” to the bus, then only those processors that sent
a “1” remain active. During the ith iteration, every processor
with a black pixel records the ith bit of its final component
label, which is a 1 if a “1” is read from the bus, and is a 0
otherwise.

The next result is concerned with determining for each
figure a nearest figure. The distance between figures F and

688

G is min{d(f,g)|f € F,g € G}, where d is the Euclidean
distance. For all results concerning distance or convexity, each
pixel is treated as being an integer lattice point, rather than a
small square.

Theorem 4: Given an N/2x N'/2 digitized image mapped
one pixel per processor onto the processors of a reconfigurable
mesh of size N, in O(log N) time under the unit-time delay
model and in O(log? N) time under the log-time delay model,
a nearest figure to each figure can be determined.

Proof: In the following algorithm we denote a processor
marked if it has a “1” and at least one of its neighboring
processors has a “0.” The nearest neighbor algorithm operates
in two phases. In the first phase, each marked processor of each
figure locates a nearest processor to itself having a different
label. In the second phase, a unique nearest figure to each
figure is computed by a bottom-up merge.

In the first phase each marked processor can gather the
information regarding its nearest “1” with a different label
as follows: the row buses are configured into subbuses such
that each subbus has processors with a “1” at its endpoints
and processors storing “0”’s as intermediate nodes. Using
broadcast, each processor with a “0” receives the indices of
the endpoints of the row subbus to which it is connected.
Repeating this along the columns, each processor with a “0”
has four indices at this time. Each processor with a “0”
computes the minimum of these values. All processors within
a row (column) subbus can compute the minimum value stored
in that subbus in O(log N) iterations by computing the local
minima and discarding other elements. During each iteration,
each processor of the subbus compares its value to that of
its bus neighbor and refrains itself from broadcast in the
succeding iterations if its value is greater than those stored
in its bus neighbors.

In the second phase a bottom-up approach is used to com-
pute the nearest figure to each label. The marked processors
of a figure that belong to two adjacent blocks will compute
the nearest figure to their label to yield a unique nearest fig-
ure to each label within the new block. This block merge can
be performed by modifying the technique used in Lemma 4.
On a k x k reconfigurable array, given k records in a column
with each record having a label L;, 1 < i < k, and a value,
the minimum (maximum) value within each label L; can be
computed in O(1) time in the unit-time delay model for all
labels in parallel.

Both phases can be performed in O(log V) steps, and there-
fore the times are as claimed. a

As we have shown, the reconfigurable mesh is particularly
useful when the amount of essential data remaining can be
rapidly reduced. For images, one common form of data reduc-
tion is to represent a figure by its extreme points, that is, by the
corners of the smallest convex polygon containing the figure.
It is particularly useful to enumerate the extreme points. A
standard enumeration scheme is to start with the easternmost
northernmost extreme point and number the extreme points in
counterclockwise order. Enumerated extreme points store not
only their number, but also the numbers and locations of the
preceding and following extreme points.

Theorem 5: Given an N/2 x N1/2 digitized image mapped

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

Fe

Fy

Fig. 6. Tangent lines for combining convex hulls.

one pixel per processor onto the processors of a reconfigurable
mesh of size N, in O(log? N) time under the unit-time delay
model and in O(log® N) time under the log-time delay model,
the extreme points of the convex hull can be enumerated for
every figure.

Proof: We use a bottom-up divide-and-conquer approach.
Assume that the image has been partitioned down the center
and that in each half the extreme points of each figure re-
stricted to that half have been enumerated. We show how to
use this to find the extreme points of the entire figure. Note
that this is only needed for figures crossing the center, for the
others are finished.

For each figure F crossing the center, let F, denote the
portion of F on the western half, and let F. denote the
portion of F on the eastern half. We will locate the top and
bottom tangent lines, shown in Fig. 6, and their four points
of intersection with F. Extreme points of F,, and F. are
extreme points of F if and only if they do not lie within this
quadrilateral. The process of locating these two tangent lines is
similar, so we will only explain finding the northernmost one,
denoted L. Let p denote the westernmost point of intersection
of F and L, respectively. We will show how to locate p, with
a similar procedure used to locate the easternmost point of
intersection of F and L.

Let e be an edge of the convex hull of F,, and [, a line
collinear with e. If all points of F, lie on the same side of
l. as F,, does, then p precedes the second endpoint of e in
the counterclockwise ordering, while if some points of F, lie
on the opposite side of l., as F,, does, then p follows the
first endpoint of e. This fact can be used to generate a binary-
search procedure to find p. Each iteration of the binary search
consists of broadcasting an oriented edge of the convex hull of
F,, and then determining if any points of F, lie on the opposite
side. (An oriented edge gives the equation of the line and a
normal vector toward the halfplane containing F,,) Notice that
each iteration of the binary search reduces the candidate edges
remaining by half. The broadcasting from F), is done by the
first extreme point of the edge. For the response from F,, we
have to insure that only one processor responds. Suppose a
processor P, contains the extreme point of F, such that a line
parallel to [. passing through the extreme point in P, will
have all the rest of F,. on the side determined by the given

MILLER et al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

normal to e. Then P, is responsible for responding, since all
of F, lies on the proper side of e if and only if the extreme
point stored in P, does. (It is possible that there is an edge of
F, parallel to [, and having F. on the proper side, in which
case the processor storing the first endpoint of the edge in the
enumeration is responsible for responding.)

The binary search to locate p, and each of the other three
points of intersection of the tangent lines with F, takes
O(log N) iterations, each of which takes ©(1) time on the
unit-delay model. Once the four extreme points are known, in
©(1) time the extreme points in the quadrilateral formed by
these points can be eliminated, and the extreme points can be
renumbered. Therefore, in the unit-delay model the time obeys
the recurrence T(N) = T(N/2) 4+ O(log N), giving the times
claimed. a

We now turn our attention to problems related to a single
set of black pixels. We first show how two disjoint convex
hulls can be merged on a reconfigurable mesh, and then recur-
sively use this in our main result that gives efficient algorithms
to enumerate the extreme points, determine the diameter, de-
termine a smallest enclosing box, and determine the smallest
enclosing circle of a set of pixels.

Lemma 3: Suppose S; and Sy are sets of extreme points
representing two disjoint convex hulls, | S |=| S2 |= k.
Given S; and S, each stored one point per processor in a row
of a k x k reconfigurable mesh, the extreme points of S; U Sy
can be determined in O(1) time under the unit-time delay
model and in O(log k) time under the log-time delay model.

Proof: Let the extreme points be stored in processors
Py --- P, (using snake-like indexing of the processors) such
that the ith processor stores the ith extreme point of S; and
the ith extreme point of Sy. The algorithm relies on being
able to find the two tangent lines from a point A outside of
S1 to the convex hull defined by S; in O(1) time using the
unit-time delay model and in O(log k) time using the log-time
delay model. Suppose that each processor P --- P, knows
the point A. Then, each such processor P; computes the angle
formed by the z-axis and the line through the sth point of S;
and A. Let w be the index of the processor having the west-
ernmost southernmost extreme point. The angles in processors
Py --- P, form a bitonic sequence. Also, a bitonic sequence
is formed by the angles in processors P, - - - Pr. Thus, a pro-
cessor P, having the maximum (minimum) angle can easily
identify itself by examining the contents of processors P4 1.
Notice that the minimum and the maximum angles correspond
to the tangent lines from A to the convex hull defined by S;.

Using the above idea, the two convex hulls defined by S;
and Sz can be merged as follows. Initially, the points in S
are stored one per processor in Fy;, 0 < 7 < k-1, as are
the points of Ss.

1) Copy S; and S5 to each row of the mesh. This is done
for each set by a column broadcast.

2) Broadcast the ith point of S; to all processors in the ith
row of the mesh.

3) Processor P; ; computes the angle formed between the
ith point of Sy and the jth point of S; with respect
to the z-axis. The maximum and the minimum angles
in each row are then detected by comparing angles in

689

neighboring processors. Let @min, and amax, denote the

the minimum and the maximum angles computed in the

ith row. Using a broadcast in each row, these values can

be stored in Pig, 0 < i< k-1

4) The common tangents to the two sets of extreme points
are max(amin;) and min(a@max,), which are computed
using Proposition 3.

Since each step of the algorithm requires a fixed number
of computations and bus operations, the running time is as
claimed. O

The following theorem shows how to enumerate the extreme
points of a single arbitrary set S of pixels and then uses
the extreme points to determine additional properties of S.
The diameter of S is max{d(p,q)|p.q € S}, where d is the
Euclidean distance. A smallest enclosing box of S is a (not
necessarily unique) rectangle of minimal area that contains S,
and the smallest enclosing circle of S is the circle of minimal
area that contains S.

Theorem 6: Given an N/2x N*/2 digitized image mapped
one pixel per processor onto the processors of a reconfigurable
mesh of size N, in ©(1) time under the unit-time delay model
and in ©(log N) time under the log-time delay model, several
geometric properties of a (not necessarily connected) set S of
pixels can be determined. These properties include marking
and enumerating the extreme points of the convex hull of the
points, determining the diameter of the points, determining the
smallest enclosing box, and determining the smallest enclosing
circle of the points.

Proof: These algorithms are based on being able to
quickly reduce the N pieces of data to O(N'/?) pertinent
pieces of data from which the solution can be obtained. First
we mark and enumerate the extreme points, and then use these
points to solve the remaining problems.

The algorithm for finding and enumerating the extreme
points of a given set S of pixels (distributed over a N1/2 x
N'/2 mesh) is as follows.

1) Let w; and e; denote the westernmost and easternmost
points in S in the ¢th row, 0 <7 < N1/2 — 1. Each of
these can be identified by a bus-splitting operation.

2) Divide the mesh into disjoint row blocks, each of size
N/4x N1/2_ Each such row block has a subset of points
identified in step 1, which consists of no more than
2N1/4 points. Let L; and R; denote the sets of west-
ernmost and easternmost points, respectively, located in
the ith row block. Compute the convex hull of L; and
R; using the N3/* processors of the ith row block as
follows.

a) Divide each row block into disjoint subblocks of size
N1/% % N4, Using a row broadcast, each subblock
of the ¢th row block can store L; and R;.

b) Use the jth subblock to decide whether or not w; is
an extreme point of L;. Consider w; as the origin
and determine for both the upper and lower half-
planes the points of L; located at the minimum
and maximum angles relative to w;. Then w; is
an extreme point of L; if and only if it is not
contained in the convex hull of these four points.

690

These minimums and maximums can be determined
by using Proposition 3. The extreme points of L;
can be enumerated using Corollary 1. The extreme
points of R; are computed similarly.

3) Using row and column broadcasts, the resulting sets L
and R} of extreme points in the :th row block are moved
to each subblock of the ith row block and to the ith
subblock of each row block. Using Lemma 3, in block
(¢,7) the common tangent lines between L;, Lj, R;,
and R; can be computed.

4) The previous step results in O(N1/4) pairs of tangent
lines in each row block. Compute the slope of these
lines with the z-axis and compute the minimum and the
maximum such angle using Proposition 3. From this,
the extreme points of L and R}, which are the extreme
points of S, can be determined. These points can be
enumerated using Corollary 1.

The algorithm uses a constant number of broadcast and bus-

splitting operations and thus the time is as claimed.

The diameter of the set of black pixels is easily determined
once the extreme points have been marked. To do this, for each
extreme point the maximum distance to any other extreme
point is computed, and the maximum of these distances is the
diameter. Note that the number of extreme points of a set of
pixels in a grid of size N'/2 x N1/2 is O(N'/3). To compute
the farthest pixel to each extreme point, the mesh is partitioned
into N''/3 disjoint blocks of size N1/® x N1/2 each. Using
broadcast operations, the ith extreme point can be moved to the
¢th block and distributed to all processors in the block. Using
broadcast operations, the extreme points of S are moved to
each row of the mesh, residing in the first N/3 columns.
Within the ith block, divide the portion in the first N1/3
columns into N'/6 subsquares of size N1/¢ x N1/6_ Within
each subsquare there are N1/ extreme points. Use Proposition
3 to find the maximum distance from any of these to the
ith extreme point. Now within the ith block there are N'/6
distances, one per square. Move these to the leftmost square,
and again determine the maximum. This is the maximum
distance from the ¢th extreme point to any other extreme
point. The maximum of the resulting O(N'/3) distances is
the diameter and it can be computed using Proposition 3. Each
stage takes constant time in the unit-delay model, or O(log N)
time in the log-delay model, giving the time as claimed.

To compute a smallest enclosing box, use the fact that a
smallest enclosing box has one of the edges of the convex
hull collinear with one of its sides [31]. The other sides of the
box can be determined by computing the extreme point tangent
to each side of the box. Use row and column broadcasts so
that every processor P; ; contains hull edge e; ;. Then, each
column ¢ will be used to compute a smallest box that contains
an edge collinear with e; by determining points tangent to the
other three sides of the box. This can be done by bus-splitting
operations since the distances of the extreme points from the
line collinear with the hull edge form a bitonic sequence along
the column responsible for the edge. Finally, the minimum of
these O(N1/3) values is computed.

A smallest enclosing circle, its center, and its radius, can be

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

efficiently computed by the algorithm described below.

1) Divide the mesh into blocks of size N'/2 x N1/¢.

2) The image is divided into N'*/3 disjoint squares of size
N1/3 x N1/3. Each square is represented by the coor-
dinates of its center. For each square the maximum of
the distance between center of the square to an extreme
point is computed. Denote this as d,,. The square in
which the center of the smallest enclosing circle lies is
either the one having minimum d,, or one of its eight
adjacent squares. The computations regarding the dis-
tances of the extreme points to the center of a square
are done in the same manner as was done above for
determining the diameter.

3) The nine squares determined in the above step are di-
vided into 9N1/3 disjoint subsquares of size N1/ x
N1/8_ and the process in step 1 is repeated for these
subsquares, finding the one with the minimal maximal
distance to any extreme point, and using it and its eight
neighbors for the next state.

4) Following the same reasoning, among the 9N 1/3 pixels
of the squares chosen in step 2, the center of the smallest
enclosing circle is the pixel having minimum d,,. The
radius of the circle is the d,,, of the center.

The computation of each step takes constant time in the

unit-delay model and O(log N) time in the log-delay model,
so the total time is as claimed. O

V. CONCLUSION

This paper has introduced the reconfigurable mesh as a
model of computation that captures salient features common to
a number of reconfigurable architectures. We have presented
efficient fundamental data-movement operations, as well as
efficient solutions to fundamental problems. In fact, we have
shown that the reconfigurable mesh is more powerful than the
PRAM for certain problems, including EXOR computation. We
have shown how to embed other parallel architectures onto
the reconfigurable mesh and have presented efficient solutions
to graph and image problems that rely on the fundamental
data-movement operations.

Several of the algorithms presented here can be shown to
be optimal. For example, any problem solved in ©(1) time
on the unit-time delay model or in ©(log) time on the log-
time delay model is optimal. For the unit-time delay model
this is obvious, and for the log-time delay model it comes
from noting that each problem may require combining data
originating arbitrarily far apart and that this takes Q(log N)
time on the log-time delay model. Further, the unit-time delay
algorithm in Proposition 4 is optimal by the results in [18],
under the assumption that the only allowable operation on
the data items is to compare them. However, for many of the
problems considered in this paper, the optimality of our results
remains an open problem. For some of the problems we are
aware of slightly faster, though more complicated, algorithms.
This is particularly true of results for the log-time delay model.

If one considers simulating the reconfigurable mesh on other
architectures, then it can be shown that for an algorithm that

MILLER er al.: PARALLEL COMPUTATIONS ON RECONFIGURABLE MESHES

runs in 7(N) time on a reconfigurable mesh of size N under
the unit-delay model,

* the mesh of size N can simulate the algorithm in
O(T(N)N/2) time,

* the pyramid of base size NV can simulate the algorithm in
O(T(N)N/#) time,

* the mesh-of-trees of base size N can simulate the algo-
rithm in

T(N)log® N

loglog N)

time,

* the hypercube of N processors can simulate the algorithm

in O(T(N)log® N time, and

* the CRCW PRAM of N processors can simulate the

algorithm in O(T(N)log N) time.

These simulations are based on reducing the simulation prob-
lem to that of labeling the connected components of connected
sets of base processors at every step of the step-by-step sim-
ulation. (Component labeling algorithms found in [3], [32],
[33] provide the solution.) In fact, if the reconfigurable mesh
algorithm only sets the switches once at the beginning of the
algorithm, then after an initial component labeling phase, the
stepwise simulation time of the mesh-of-trees, hypercube, and
PRAM simulations can be reduced by a logarithmic factor
since the message passing is now reduced to broadcasting a
value throughout a labeled component, instead of labeling the
components at every step of the simulation. Some of the sim-
ulations can be shown to be optimal using information trans-
fer arguments (for definition of information transfer and tech-
niques to estimate it, see [34], [35]).

We gave a rather general simulation result, showing that,
given an architecture with an embedding that is somewhat
similar to a multilevel layout, the reconfigurable mesh can
do an efficient stepwise simulation. As examples, we used
this to show that the reconfigurable mesh could efficiently
simulate the pyramid and mesh-of-trees. It is easily seen that
any architecture that can be laid out in an N'/2 x N1/? grid
(assuming wires have unit width) using only a single wire
layer, can be simulated on the unit-time delay reconfigurable
mesh in constant time per unit time of the target architecture.

A number of researchers have been interested in the
reconfigurable-mesh model after we presented the ideas in
this paper in conferences. Additional results can be found in
[36]-[44], [49]. Finally, this paper was motivated by a number
of parallel systems being built that provide reconfigurable con-
nections between processors. New advances in holography and
other optical techniques offer certain advantages compared to
traditional electronic systems that can be exploited to provide
reconfigurable interconnections [45].

REFERENCES

[1] C. R. Dyer, “A VLSI pyramid machine for hierarchical parallel image
processing,” in Proc. IEEE Conf. Pattern Recognition Image Processing,
1981.

[2] S. L. Tanimoto, “A pyramidal approach to parallel processing,” in Proc.
Int. Symp. Comput. Architecture, June 1983, pp .

{3] R. Miller and Q. F. Stout, “Data movement techniques for the pyramid
computer,” SIAM J. Comput., vol. 16, no. 1, Feb. 1987.

(1
[10]

(1]
(12]

[13]

[14]
(15]

[16]

(17

(18]
[19]
[20]

[21]

[22]

[24)

[25]

[26]

27
[28]

[29]

[30]

[31)

[32]

(33]

[34]

691

F. T. Leighton, “Parallel computations using mesh of trees,” MIT,
Cambridge, MA, Tech. Rep., 1982.

D. Nath, F. N. Maheshwari, and P. C. P. Bhatt, “Efficient VLSI networks
for parallel processing based on orthogonal trees,” IEEE Trans. Comput.,
1983.

Q. F. Stout, “Mesh connected computers with broadcasting,” IEEE
Trans. Comput., vol. C-32, pp. 826-830, 1983.

S. H. Bokhari, Finding maximum on an array processor with a global
bus, IEEE Trans. Comput., vol. C-33, no. 2, pp. 133-139, Feb. 1984.
V. K. Prasanna-Kumar and C. S. Raghavendra, “Array processor with
multiple broadcasting,” in Proc. Annu. Symp. Computer Architecture,
June 1985.

Q. F. Stout, “Meshes with multiple buses,” in Proc. 27th IEEE Symp.
Foundations Comput. Sci., 1986, pp. 264-273.

Hunt, “The ICL DAP and its application to image processing,” in
Languages and Architectures for Image Processing, M. J. B. Duff and
S. Levialdi, Eds. New York/London: Academic Press, 1981.

L. Snyder, “Introduction to the configurable highly parallel computer,”
Comput., vol. 15, no. 1, pp. 47-56, Jan. 1982.

A. Aggarwal, “Optimal bounds for finding maximum on array of pro-
cessors with & global buses,” IEEE Trans. Comput., vol. C-35, no. 1,
pp. 62-64, Jan. 1986.

D. M. Champion and J. Rothstein, “Immediate parallel solution of the
longest common subsequence problem,” in Proc. Int. Conf. Parallel
Processing, Aug. 1987, pp. 70-77.

H. Li and M. Maresca, “Polymorphic-torus network,” IEEE Trans.
Comput., vol. 38, no. 9, pp. 1345-1351, Sept. 1989.

1. D. Ullman, Computational Aspects of VLSI. New York: Computer
Science Press, 1984.

V. K. Prasanna-Kumar and D. Reisis, “Parallel image processing on
enhanced arrays,” in Proc. Int. Conf. Parallel Processing, Aug. 1987,
pp- 909-912.

M. Furst, J. Saxe, and M. Sipser, “Parity, circuits and polynomial time
hierarchy,” in Proc. IEEE Symp. Found. Comput. Sci., Oct. 1981, pp.
260-270.

L. G. Valiant, “Parallelism in comparison problems,” SIAM J. Comput.,
vol. 3, 1975.

R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. Assoc.
Comput. Mach., vol. 27, pp. 831-838, 1980.

D. Nassimi and S. Sahni, “Data broadcasting in SIMD computers,” IEEE
Trans. Comput., vol. C-30, no. 2, pp. 101-107, Feb. 1981.

V. K. Prasanna-Kumar and D. Reisis, “VLSI arrays with reconfigurable
buses,” Comput. Res. Inst., Univ. Southern CA, Los Angeles, Tech.
Report CRI-87-48, Sept. 1987.

R. Miller and Q. F. Stout, “Some graph and image processing algorithms
for the hypercube,” in Proc. SIAM Conf. Hypercube Multiprocessor,
1987.

Q. F. Stout, “Pyramid computer algorithms optimal for the worst-case,”
in Parallel Computer Vision, L. Uhr, Ed. New York: Academic Press,
1987, pp. 147-168.

Y. Shiloach and U. Vishkin, “A O(log ") parallel connectivity algo-
rithm,” J. Algorithms, vol. 3, 1982.

D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing
connected components on parallel computers,” Commun. Assoc. Comput.
Mach., pp. 461-464, 1979.

S. E. Hambrusch and J. Simon, “Solving undirected graph problems on
VLSI,” Dept. Comput. Sci., PA State Univ., Univ. Park, PA, Tech. Rep.
CS-81-23, 1981.

C. Savage and J. Ja’Ja’, “Fast, efficient parallel algorithms for some
graph problems,” SIAM J. Comput., vol. 10, pp. 682691, 1981.

M. Atallah and R. Kosaraju, “Graph problems on a mesh connected
processor array,” J. Assoc. Comp. Mach., vol. 31, pp. 649-667, 1983.
J. G. Nash and D. B. Shu, “The image understanding architecture,”
in Proc. 21st Annu. Asilomar Conf. Signals, Syst., Comput. (Monterey,
CA), Nov. 1987.

C. C. Weems et al., “The image understanding architecture,” Int. J.
Comput. Vision, vol. 2, pp. 251-282, 1989.

H. Freeman and R. Shapira, “Determining the minimal-area enclos-
ing rectangle for an arbitrary closed curve,” Commun. Assoc. Comput.
Mach., vol. 18, pp. 409-413, 1975.

V. K. Prasanna-Kumar and M. Eshaghian, “Parallel geometric algo-
rithms for digitized pictures on mesh of trees organization,” in Proc.
Int. Conf. Parallel Processing, Aug. 1986, pp. 270-273.

H. M. Alnuweiri and V. K. Prasanna-Kumar, “Parallel architectures and
algorithms for image component labeling,” Inst. Robotics Intell. Syst.,
Tech. Rep. IRIS #253, May 1989.

J. Ja’Ja’ and V. K. Prasanna-Kumar, “Information transfer in distributed
computing with applications to VLSI,” J. Assoc. Comput. Mach., vol.
31, no. 1, pp. 150-162, Jan. 1984.

692

(35]

[36]

(371

(38]

(391
[40]

[41]

[42]

(43]

[44]

145}

[46]

(471

(48]

{491

J. Ja’Ja’, V. K. Prasanna-Kumar and J. Simon, “Information transfer
under different sets of protocols,” SIAM J. Comput., vol. 13, no. 4, pp.
840-849, Nov. 1984.

J.-W. Jang and V. K. Prasanna, “An optimal sorting algorithm on
reconfigurable mesh,” Inst. Robotics Intell. Syst., Tech. Rep. IRIS#277,
Aug. 1991.

J-W. Jang, H. Park and V. K. Prasanna, “A fast algorithm for computing
histogram on reconfigurable mesh,” Inst. Robotics Intell. Syst., Tech.
Rep. IRIS#290, Feb. 1992.

J.-W. Jang, H. Park, and V. K. Prasanna, “An optimal multiplication
algorithm on reconfigurable mesh,” Inst. Robotics Intell. Syst., Tech.
Rep. IRIS#294, Mar. 1992.

D. Reisis, “An efficient convex hull computation on the reconfigurable
mesh,” in Proc. Int. Parallel Processing Symp., 1992, pp. 142-145.

Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, “The power of
reconfiguration,” J. Parallel Distributed Computing, pp. 139-153, 1991.
J. Jenq and S. Sahni, “Reconfigurable mesh algorithms for the area and
perimeter of image components and histogramming,” in Proc. Int. Conf.
Parallel Processing, 1991, pp. 280-281.

J. Jenq and S. Sahni, “Reconfigurable mesh algorithms for image shrink-
ing, expanding, clustering, and template matching,” in Proc. Int. Parallel
Processing Symp., 1991, pp. 208-215.

K. Nakano, T. Masuzawa, and N. Tokura, “A sub-logarithmic time
sorting algorithm on a reconfigurable mesh,” IEICE Trans., vol. E74,
no. 11, pp. 3894-3901, Nov. 1991.

B. F. Wang, G. H. Chen, and F. C. Lin, “Constant time sorting on a
processor array with a reconfigurable bus systems,” Info. Processing
Lerts., pp. 187-192, 1990.

M. M. Eshaghian and V. K. Prasanna-Kumar, “VLSI electro-optical
computers for signal and image processing,” in Proc. 3rd Int. Conf.
Supercomputing, 1988.

R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout, “Meshes
with reconfigurable buses,” in Proc. MIT Conf. Advanced Res. VLSI,
Jan. 1988, pp. 163-178.

R. Miller and Q. F. Stout, “Geometric algorithms for digitized pictures
on a mesh-connected computer,” IEEE Trans. Pattern Analysis Mach.
Intell., vol. PAMI-7, pp. 216-228, 1985.

D. Reisis and V. K. Prasanna-Kumar, “VLSI arrays with reconfigurable
buses,” in Proc. Int. Conf. Supercomputing (Athens, Greece), June 1987.
S. Olariu, J. Schwoing, and J. Zhang, “Fast Computer Vision Algorithms
for Reconfigurable Meshes,” in Proc. Int. Parallel Processing Symp.,
Mar. 1992, pp. 258-261.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 6, JUNE 1993

Russ Miller (S’84-M’85) was born in Flushing,
New York, on January 8, 1958. He received the
B.S., M.A,, and Ph.D. degrees in computer sci-
ence/mathematics from the Department of Math-
ematical Sciences, State University of New York,
Binghamton, in 1980, 1982, and 1985, respectively.

In 1985, he became an Assistant Professor in
the Department of Computer Science at the State
University of New York, Buffalo, and has been an
Associate Professor since 1990. He currently serves
as a consultant for Thinking Machines Corporation
and for three years served as Associate Director for the Graduate Group in
Advanced Scientific Computing at the State University of New York, Buffalo.
His primary research interests are parallel algorithms, parallel computing,
parallel architectures, and computational crystallography. He has coauthored
over 50 technical papers in these areas.

Dr. Miller is a member of the IEEE Computer Society, the Association
for Computing Machinery, SIAM, and Phi Beta Kappa. He is also on the
editorial board of Parallel Processing Letters.

V. K. Pr (V. K. Pr Kumar) (M’84-SM’91), for a photograph
and biography please see page 642 of this issue.

Dionisios 1. Reisis, photograph and biography not available at time of
publication.

Quentin F. Stout (M’82-SM’92) was born on
September 23, 1949. He received the B.A. degree
from Centre College, Danville, Kentucky, in 1970,
and the Ph.D. degree from Indiana University in
1977.

Since 1984, he has been an Associate Professor
in the Electrical Engineering and Computer Science
Department at the University of Michigan, Ann
Arbor, where he is a member of the Advanced Com-
puter Architecture Laboratory and the Laboratory
for Scientific Computing. From 1976 to 1984 he was
on the faculty of the State University of New York, Binghamton. His primary
research interests are in parallel computing, especially parallel algorithms.
He recently coedited (with Hungwen Li) Reconfigurable Massively Parallel
Computers, published by Prentice-Hall.

Dr. Stout is a member of the IEEE Computer Society, the American
Mathematical Society, the Association for Computing Machinery, and the
Society for Industrial and Applied Mathematics. He is on the editorial board
of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.

