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Abstract

Isotonic regression is a shape-constrained nonparamegrtiession in which the ordinate is a non-
decreasing function of the abscissa. The regression o@t@®an increasing step function. For an
initial set ofn points, the number of steps in the isotonic regressionmay be as large as. As

a result, the full isotonic regression has been criticizeaeerfitting the data or making the rep-
resentation too complicated. So-called “reduced” is@@agression constrains the outcome to be
a specified number of steps, The fastest previous algorithm for determining an optinsduced
isotonic regression takeé3(n + bm?) time for theL, metric. However, researchers have found this
to be too slow and have instead used approximations. In #gempwe reduce the time for the exact
solution to® (n+bm logm). Our approach is based on a new algorithm for finding an opfirstep
approximation of isotonic data. This algorithm takeg: logn) time for theL; and L, metrics.

Keywords: step function, histogram, piecewise constant approdxonateduced isotonic regression

1 Introduction

Isotonic regression is an important form of nonparamegugession that allows researchers to relax
parametric assumptions and replace them with a weaker slomséraint. A real-valued functiof

is isotoniciff it is nondecreasing; i.e., if for alt1, 25 in its domain, ifz, < a2 thenf(z1) < f(a9).
Similarly, a function isantitoniciff it is nonincreasing. Such functions are also called ntonaally
ordered, where sometimes the term is used to mean isotothiothar times it means either isotonic
or antionic. Thousands of references to isotonic regrassite the fundamental books of Barlow
et al. [4] and Robertson et al. [15]. Further, there are tdérikausands of references to the search
terms “isotonic” and “monotonic” regression.

Fitting isotonic functions to data is useful in situationswhich the independent variable has
an ordering but no natural metric, such as S, M, L, XL sizeqic&ithe only important property
of the domain is its ordering, we assume that it is the in®eger.n for somen, and us€i : j],

1 <i < j < ntodenote the range .. ;. By weighted value$y, w) on [1:n], we mean weighted
values(y;,w;), i € [1: n], where they values are arbitrary real numbers and thevalues (the
weights) are positive real numbers. Given weighted valyesv) and a real-valued functiofi on
[1:n], the L, approximation error of is

n . 1
(S0 wilys — F@INYP 1<p<oo
max;; w;ly; — f(i)] p =00

An L, isotonic regressiofis an isotonic function that minimizes thig, error among all isotonic
functions and hence is optimal in that regard. Figure 1 giwveexample of an isotonic regression.

Isotonic regressions are step functions where the numtstep$;n < n, is determined by the
data. In certain cases, there is criticism that such funst@an overfit the data [16, 17] or produce
a result with too many steps [7]. Consequently, some rekeesaitilize isotonic regressions that
restrict the number of steps. Schell and Singh [17] havermnedeto such functions agduced
isotonic regressions
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Figure 1: Isotonic Regression, Where Size Indicates Weight

Restricting the number of steps is also a central issue igémeral area of approximation by
step functions. This concern arises in a wide variety ofregtt such as segmentation of time series
and genomic data [9, 11, 21], homogenization [6], histognamg [8, 10, 12, 14]z-monotone func-
tions [22] and piecewise constant approximations [5]. Aveuiof a variety of types and applications
of histograms to database queries appears in Poosala®jl.

In general, a functiorf is anoptimal L,, b-step approximationp = 1, ..., n, iff it minimizes
the L,, error over all functions wittb steps. Figure 2 is an example of an optimal approximation
by a step function. Since the specific valuepolvill always be clear, we refer to such functions
merely as optimab-step approximations. Generally, optinbadtep approximations are not unique.
For example, with unweighted values 1, 2, 3[dn3] andb = 2, for anyp the function which is 1.5
on[l:2] and 3 at 3 is optimal, as is the function which is 1 at 1 and 2.R203.

Here we are concerned with computing reduced isotonic ssgmes. An isotonic functiof is
anoptimal L,, b-step reduced isotonic regressidn= 1,...,m < n, iff it minimizes the L, error
over all isotonic functions havingsteps. Again we omit the;,” when citing such functions. Our
main results are faster algorithms for generating optibvstep isotonic regressions. In doing this,
we draw upon approaches used for generating optimal stepxpmtions. In 1958 Fisher [6] gave
a dynamic programming algorithm for determining an optitasiep approximation i (bn?) time.

His algorithm was foll., and can easily be extended to themetric, taking®((b+1log n)n?) time.

It remains the fastest known algorithm for general data sagldeen widely used and repeatedly
rediscovered. However, a problem cited by many researdtehat the quadratic time (in) of
Fisher’s algorithm makes it too slow for many applicationsq, 9, 11, 12, 21].

In Section 2.2, we examine the special case in which the gatethemselves isotonic. In this
case, optimab-step approximations and optimiaktep reduced isotonic regressions are the same.
The “unrestricted maximum homogeneity” approximationBisher and the optimal variable-width
“serial histograms” of loannidis [10] are instances of oyl b-step approximations of isotonic data.
Here we show that fof.; and L, optimalb-step isotonic regressions can be foun®ifbn logn)
time by a dynamic programming approach that exploits iSotproperties.

Most previous work for reduced isotonic regression withegahdata has only produced sub-
optimal approximations. It appears that the only publishlgdrithm that produces optimal reduced
isotonic regressions is due to Haiminen, Gionis and Laas¢nle Their algorithm is for thel
metric, taking®(n + bm?) time, wherem is the number of pieces of the unrestricted isotonic
regression andis the number of steps in the reduced isotonic regressianle€gen confusion, we
use “pieces” to refer to the steps of the unrestricted iSotegression.) The algorithm is based on
first finding an unrestricted isotonic regression and thguiyapg Fisher’s algorithm to its pieces.
In Section 3, we reduce this time @&(n + bm logm) by applying our algorithm for isotonic data.
Section 4 we give an algorithm fdr; reduced isotonic regression based on the same approach.
However, it produces an approximation which in practicesisngood but not necessarily optimal.

Section 5 contains some final comments.
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Figure 2: Optimal 4-Step Approximation of the Weighted \édun Figure 1

2 Approximation by Step Functions

As discussed, the isotonic condition implies that the regjom function is a sequence of steps or
pieces. A real-valued functiofion [1:n] is ab-step functionl < b < n, iff there is a set of indices
jo=0<ji...<jp =nandrealvalue€y, k € [1:b], suchthalf (z;) = Cj, fori € [jr—1 +1:ji].
If f is isotonic then the steps are nondecreasing With< Cs ... < Cj. An approximation with
fewer tharb steps can be converted té-step approximation by merely subdividing steps, and thus
we do not differentiate betweenh $teps” and “no more thansteps”.

Forl < p < oo, an optimalL,, step function has the additional property thigtis anL, mean
of the weighted values dpx—1 + 1: jx]. Since we are only concerned with optimal approximations;
from now on, whenever a function has a steg], then its value on that step is &n weighted mean
of the data. Fora giveh< p < oo, leterr?(i, j) denote the'"® power of theL,, error when using an
L, mean as the approximation of the weighted valueg ofj. Minimizing the sum of these values is
the same as minimizing thie, approximation error, i.e., determining stefgs= 0 < j1 ... < jp =
n that minimizezzz1 err?(jx—1+1, jx) is the same as determiningsteps=0< j1 ... < jp =n

s ; 1/p
and valueg”; ... C, that m|n|m|ze(ZZ:1 Zjijkflﬂ w;ly; — Ck|P) . Thus from now on only

theerr?(-) values will be used.

Given a set of weighted values, thdif, mean is unique fol < p < oo, while for L, it is
a weighted median value, where the weighted medians migit & interval. Thud.; isotonic
regressions are not unique. Fbg,, the situation is even less constrained. For example, fer un
weighted values 5, 1, 4, ah,, isotonic regression must have values 3 3wherex € [3,6]; i.e.,
a regression value on a piece need not be the mean of the aig®gh it must be on at least one
piece with maximum error.

2.1 Arbitrary Data

Fisher’s [6] dynamic programming approach to determiningoptimal b-step approximation for
1 < p < xis based on the observation thafifs an optimab-step approximation of the data, with
a first step off1 : j], then f restricted to[j + 1 : n] is an optimal(b— 1)-step approximation of the
data onj+1:n]. This is obvious since, if it were not optimal ¢fH1:n], then replacing it with an
optimal (b—1)-step approximation on that interval would reduce the error

Lete(i, ¢) denote the sum of ther? (-) values of the pieces of an optimapiece approximation
on [i:n]. Fisher's observation yields the equation:

e(i,c) = min{err? (i, j) + e(j+1,c—1):i < j<n—c+1}

By recording thej that minimizes this one can generate the optimal approximaf his leads to
Algorithm A. The time required i® (bn?) plus the time to compute th@(n?) err?() values.



fori=1ton

e(i,1) =errP(i,n), eend(i,1)=n
forc=2tob

fori=1lton—c+1

e(i,c) = min{errP(i,j) + e(j+1,c-1):i<j<n—c+1}
{record minimizing j in e_end(i, c)}

end for i

end for c

Algorithm A: Optimalb-Step Approximation Of Arbitrary Data

2.2 Isotonic Data

Reducing the time of Algorithm A requires reducing the numieerr?() values referenced. It is
not known how to do this for arbitrary data, but for isotonatalthere is a special property that can
be exploited. This is given in Lemma 2.2 and will be used tospro

Theorem 2.1 Givenn isotonic weighted valueg/, w) and number of steps < n, for the L; and
L, metrics one can find an optimédstep approximation, and hence find an optitwaktep isotonic
regression, i (bnlogn) time.

For isotonic data, the fact that values are nondecreadimgsabne to make inferences concern-
ing the means of intervals. For example, the weighted vadnds: j] have anL, mean no larger
than that of the values dn: 7+ 1]. This forms the basis of the following lemma:

Lemma 2.2 Foranyl < p < oo, givenisotonic weighted valuég, w) on[1:n] andl < b < n—1,
let f be an optimab-step approximation offl : n}, with first step ending af;. Then there is an
optimalb-step approximatior on [2:n| with first step ending af,, wherej; < j,.

Proof: Let h be an optimab-stepL,, approximation on2: n] with first step ending af,. If j, > j¢
then we are done, so assume otherwise. I}, etenote the intervgl: j,] andI; denote the interval
[2:77]. Let f~ be theb-step function on2: n] with first step beind; and the others, opy;+1:n],
being f. Sinceh is optimal, the error off — must be at least as large as thatofif they are equal
then choosing = f~ satisfies the lemma, so assume the errgfofs strictly greater than that of
h.

The mean of the values di is at least as large as that dp, and it has strictly greater weight.
Further, the value at 1 is no larger than either mean. Thexefe’(1 U I;) — err?(Iy) > err?(1 U
Ir,) — err?(I},), with equality iff all values o1 : j;| are the same and the errors are all 0. This
implies that the error off — equals the error oh. Since this case has already been eliminated
we assume the inequality is strict. Lkt be the function with first step U I;,, andh on the
remainder. Sinc¢ has a first step of U I, and which on the remaining valuesfis, the errorf is
err?(1UIy)+error(f~)—err?(Iy). Similarly the error orh ™ iserr?(1U I},) + error(h) — err?(I,).
Thus the error orf is greater than the error dn, contradicting the optimality of. Therefore the
error of f~ cannot be larger than that bf [

The above does not always hold if the values are not isotéiac example, fod, with b = 2
and unweighted values 4, 0, 4, 7 dn4], the optimal first step for the values @in 4] is [1: 3], with
value 8/3. However, the optimal first step for the valued2oni] is [2: 2], with value 0. Further, it
need not hold foll.., even if the values are isotonic: e.g., for values -1, 1, 10ai2®weights 10,
10, 1, 1 on[1:4], one optimal 2-step approximation @i 4] has|1: 3] as its first step, with value 0,
and value 20 ofd: 4]. However, any optimal 2-step approximation[@n4] must have a first step of
[2:2] with a value in[0.5, 1.5], and a second step ¢3: 4] with value 15. The above can be made to
hold for L., and isotonic values if one uses only strict, regression, i.e., regression which is the



Optimal initial step, starting at indicated location

Dashed lines: range of potential endpoints of initial step

Figure 3: Possible Endpoints of Odd Multiples of 1/8

limit, asp — oo, of L,, isotonic regression. In many senses, stfigt regression behaves like,
regression foil < p < oo [20]. However, as is mentioned in Section 5, there are fadggrithms
for L., which are not based on dynamic programming.

Among all optimalb-step regressions di: n] let R(¢, b) denote the function having the largest
endpoint of the first step. The lemma shows that for isotoata®R(-, b) is an isotonic function.
This fact can be used to efficiently compute, b)) andR(-,b) from the values o&(-,b — 1) and
R(-,b —1). Figure 3 shows an intermediate stage of the calculatiares $ingle stage. The optimal
first step for each multiple of 1/4 has been computed and neWitst step for each odd multiple
of 1/8 needs to be determined. For each of these, the possibies of the endpoint of the optimal
first step are the range indicated by the dashed lines witkdhe line indicating the part that any
optimal first step must include.

Suppose thad(-, ¢c) andR(-, ¢) have been determined for < iy ... < ig. Letj, ... i be such
thatjo < i1 < j1 < i2... < i < ji. To determine(-, ¢) andR(, ¢) for the j values, note that
sinceR(+, ¢) is isotonic therR(jo, ¢) € [jo: R(i1, )], R(j1,¢) € [max{j1,R(i1,¢)}:R(iz, )], ...,
andR(jx, ¢) € [max{jx, R(ix, c)} :n—c+1]. Thus, to determine(jo, ¢) andR(jo, ¢) we only need
to evaluateerr?(jo, ¢) + e({+1,c—1) for ¢ € [jo: R(i1, ¢)], to determine(j1, ¢) andR(j,¢), we
only need to evaluaterr?(j;, ¢) + e({+1,c—1) for £ € [max{ji, R(i1, ¢)} : R(i2, b)], and so forth;
i.e., we need at most+ £ total evaluations. In Figure 3, this corresponds to thetfaattthe dashed
lines can overlap only at endpoints. [rfog,n] iterations all values oé(-,¢) andR(-,¢) can be
determined. This gives Algorithm B.

To complete the proof of Theorem 2.1, we need to show that gadtion of the for k” loop
can be completed i®(n) time. ForL, this can be done quite easily using a standard technique.
By first computing the scan valugs’,_, w;y;, >-'_, w;y3, andy ", w; foralli € [1:n], each
err?() value can then be computed in unit time.

For L, there is no such algebraic simplification and an approachésled that exploits the fact
that the values are isotonic. The following explains theecodAlgorithm C which shows how
to compute each iteration of théot k” loop in Algorithm B. Algorithm C utilizes some simple
routines that are given in Figure 4.

For an intervali : j], let m denote the location of a median. Letlt = 7" wy, w_gt =
S i Wy ywlt = S ypwy, andyw.gt = 377 ypwg. Then, theL; error of using
ym as the regression value on: j], i.e., err' (i, 5), is yw_It — yw_It + yw_gt — y,,w_gt. To
determine the correspondimg, w_It, w_gt, yw_It andyw_gt values (and hencar!(-)) for interval
[i - j + 1], note that the location of the new medianitsm. Letw_gt = w_gt + w;; and
yw_gt = yw_gt + y,;r1w;41. If w_gt > w_lt + w,, then the location of the median f@r. j + 1] is



i_start...i_end : range of possible endpoints

fori=1tondo
e(i,1) =errP(i,n), R(i,1)=n
forc=2tobdo
for k = [log, n] — 1 downto 0
for j=2ton —c+ 1 by 21 do
if j = 2" then i_start = j
else i_start = max{j, R(j — 2, ¢)}
ifj+2“>n—c+1theniend=n—c+1
elsei_end = R(j + 2%, ¢)
e(j,c) = min{errP(j,i) + e(i+1,c—1) :istart <i <iend}
{store largest minimizing i in R(j,c)}
end for j
end for k
end for c

Algorithm B: Stepwise Constant Approximation of Isotoniata

med_loc : location of median
d_loc—1 i
W—|t7 W—gt : th; o W(h)7 Z;']:med_loc+1 W(h)

yw_lt, yw_gt : S y(h) s wih), S e ocrs V() = w(h)

i_start...i_end : range of feasible ends of first step
j...istart — 1 : any first step must include these positions
med_loc =0

wlt=wygt=yw.lt=ywgt=0
forj=2%ton —c+1by 2kt do
if j = 2" then i_start = j
else
i_start = max{j,R(j — 2¥,¢)}
fori =j — 2t to min{R(j — 2¥,¢),j} — 1 do {used in previous j but not this one}
remove_position(i)
end for i
ifj+2“>n—c+1theniend=n—c+1
elsei_end = R(j + 2%, ¢)
e(j,c) = o0
fori = i_start toi_end do
if not ((j > 2*) and (i_start = R(j — 2%,¢))) then {only omitted if used in previous j}
insert_position(i)
err_end_at_i = (w_It * median — yw_It) + (yw_gt — w_gt * median) +e(i+1,c—1)
If err_end_at_i < e(j, b) then
e(j,c) = errend_at.i, R(j,c) =i
end for i
end for j

Algorithm C: Interior of ‘for k” Loop of Algorithm B for L.; Isotonic Regression




insert_position(i) :  {i now rightmost active position}
if med_loc = 0 then
med_loc =i
median = v(i)
else
w_gt =w_gt +w(i), yw_gt=yw_gt+ v(i)*w(i)
update_median

remove_position(i) :  {i was leftmost position}
if (w_It =0) and (w_gt = 0) then {iwas last remaining position}
med_loc =0
else
w_lt = w_lt —w(i), yw_lt=yw_lt —v(i) * w(i)
update_median

update_median :

while w_gt > w_It + w(med_loc) do {median is larger}
w_lt = w_lt + w(med_loc)
yw_lt = yw_It + v(med_loc) * w(med_loc)
med_loc = med_loc + 1
w_gt = w_gt — w(med_loc)
yw_gt = yw_gt — v(med_loc) * w(med_loc)

end while

median = v(med_loc)

Figure 4: Routines Used in Algorithm C




> m (if there are duplicate values then it is possible thatis a median value anah is increased,
but only if y,,,+1 is the same value). Setlt = w_lt + wy,, ywIt = yw It + ypw,, wgt =
W_gt — Wpt1, YW-gt = yw_gt — Ym+1Wm+1, andm = m + 1. Continue this incremental process
until w_gt < w_It + w,,, at which pointy,,, is a median. Noverr! (i, j + 1) and the error of using
[i:7 + 1] as the first step can be determined.

The remaining concern is to calculase!(j, ¢) for ¢ € [R(5',¢):R(5”, ¢)], wherej’ < j < j”
are the largest preceding and smallest succeeding valuogsuted in the previoukiteration. To do
this using the incremental procedure above, one first neestart with the valuesify : R(j', ¢) — 1].
Fortunately these were already included in the final catmrdor j = j — 28!, which was the
previous; value in the for j” loop. The lasterr! (7, ) calculated was for the intervéj : R(j’, c)].
Thus, removing the values iy : j — 1] will give the required start. This involves a sequence of
operations for determining the location of the median aratedw andyw values for[r+1 : s]
given their values fofr: s|. This is done similarly to the case of incrementingshere here too the
location of the median cannot decrease.

For a fixedk, since all of the calculations are linear in the number o€sirthe start or end of an
interval is incremented or when is increased, the total time to compute the () values isO(n).
This completes the proof of Theorem 2(1.

Fisher defined another form of binning which he calledestricted homogenizatiorgive n
weighted values$y, w) andb € [1:n], partition them intd subsets?;, i € [1:b] and assign a value

C; to eachP; so as to minimize
b
o> wily -G

i=1jeP;

among all such partitions. He noted that this could be sobyesborting the values and then finding
the optimalb-step approximation. This fact easily extends ta/allmetrics,1 < p < oco.

loannidis [10] defined a problem that is essentially the saHis, calledvariable width serial
histograms was used to estimate the most efficient way to answer cealtabase join queries.
The values in his case corresponded to the number of entribg idatabase having each key. He
mistakenly believed that finding these values requires gxymonential inb. Jagadish et al. [12]
later showed that Fisher's dynamic programming algoritlamfoe used to find this i@ (bn?) time.
Theorem 2.1 shows that this can be reduced yet further.

Corollary 2.3 Givenn weighted values and number of stéps n, for the L, and L, metrics, one
can determine an optimalstep unrestricted homogenization and an optibratep variable width
serial histogram in@(bn logn) time.

Lemma 2.2 appliesto all < p < oo, but Theorem 2.1 only refers fo= 1, 2. For the remaining
values ofp, the bottleneck is in the computation of tiig weighted mean. The only othgis for
which one can get a closed-form solution for the mearmpate3, 4 since finding the mean requires
solving a polynomial equation. Far = 4, the approach fop = 2 can be used to give the same
time bounds. However, fgs = 3, there is the problem thay, — f(i)|? is either(y; — f(i))® or
its negative. One can first use binary search to determinéeftivevhichy;, < C' < y;,.1, whereC'
is the mean, and then compute the sums with the appropriate and determine the mean exactly.
Note that the mean is not known ass being determined. Rather,f is used as the mean, one
can determine whether the sum of the regression errorg, far. y; 1 is greater than the sum for
Yi+1---Yn. In this case; should be increased. If it is smaller, théshould be decreased. For
arbitraryp, one can find the bracketing index and then use approxingtmfind the mean to a
desired accuracy.
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Figure 5: Optimal 4-step Reduced Isotonic Regression afédin Figure 1

3 Reduced I sotonic Regression

Isotonic regressions are somewhat easier to compute tbageaeral approximations by step func-
tions. ForL. the isotonic regression can be determine®im) time, a fact apparently first proven
in 1955 by Ayer et al. [3] and then often rediscovered. Epthe isotonic regression can be deter-
mined in©(nlogn) time [2, 19]. ForL., the time is als®(nlogn) [13, 18] and for unweighted
data it is©(n) [19]. These algorithms use a simple left-right scan wheoh déacation is initially a
step and then adjacent steps are merged whenever theyetodasotonic condition. This approach
is known as “pair adjacent violators”, PAV.

Isotonic regression is a very flexible nonparametric apginda many problems. However, as
noted, it does have its detractors due to results with imjmaty many steps or due to potential
overfitting. Some researchers have instead used approaimatith a specified number of steps [7,
21]. To reduce overfitting, Schell and Singh [17] used thera@agh of repeatedly merging pairs of
adjacent steps whose difference had the least statistigalisance. Haiminen et al. [7] also used an
approach that repeatedly combines the adjacent steps wéite a minimum increase in the error.
The latter two approaches are known as greedy or myopic #iegaepeatedly make the choice that
seems to be the best at the moment. In contrast, dynamicgmoging considers the interaction of
the current choice with all future choices.

Greedy approaches do not always produce an optimal redsc&xhic regression. For example,
given the unweighted values 1, 2, 3, 4, 5, 6, the optimal B-stgression is 1.5 on the first two
points, 3.5 on the second two and 5.5 on the third two. Meaewtiie optimal 2-step regression is
2 on the first three points and 5 on the last three. Thus a gmedying approach which produced
the optimal 3-step regression could not then also prodweejtimal 2-step regression.

We address the problem of finding the optimal isotonic regoeswith a specified number of
steps; i.e., an optimal-step reduced regression. As a reminder, we use “piecesfén to the
steps of an unrestricted isotonic regression and “stepgéfer to the steps of a reduced isotonic
regression. In Haiminen et al. the authors provide an eXgotighm for an optimal solution, but
this takes (n + bm?) time for theL, metric, wheren is the number of pieces in the unconstrained
isotonic regression. Even though typicatly < n, they felt that this was too slow for their applica-
tion and as a result turned to the greedy heuristic just meatl. Our exact algorithm, which takes
O(n+bmlogm) time, should be sufficiently fast to be practical even fogéaproblems. Figure 5 is
an example of a reduced isotonic regression of the weigtdkeks in Figure 1. While the values of
the unconstrained. isotonic regression are uniquely determined, the step dexigs are not since
a sequence of identical values might be represented asphaudteps. However, if we require that
adjacent steps with the same mean be merged, thehsftie step boundaries, and henge are
also uniquely determined.

A critical observation in the Haiminen et al. paper is thateg the pieces of ah, unrestricted
isotonic regression, the steps of an optithateduced isotonic regression can be formed by merging



the pieces. Their observation immediately gives a simgerg¢ghm: find the unrestricted isotonic
regression and represent each piece as a weighted poinawélue that is the mean and a weight
that is the sum of the weights. Thenbsstep isotonic regression of these points givdsstep
isotonic regression of the original data. Haiminen et abduBisher’s algorithm to determine the
optimalb-step isotonic regression, but Theorem 2.1 provides arfastation.

Theorem 3.1 Givenn weighted valuegy, w) and number of steds an optimalL, b-step reduced
isotonic regression can be found®(n + bm logm) time, wheren is the number of pieces in the
unconstrained., isotonic regression.]

4 Quasi-Optimal L; Reduced Regression

Unfortunately, the approach of Haiminen et al. does notrekte anyp other than 2. For example,
for L; with values -3, 1, 0, -3, -0.1, 2, and weights 10, 1, 1, 1, 2,th8,unrestricted isotonic
regression has piecgs : 1], [2 : 5], and[6 : 6], with values -3, -0.1, and 2, respectively. The
unique optimal 2-step reduced isotonic regression has Eteg| and|5 : 6], with values -3 and 2,
which requires cleaving the middle piece. In practice, hmwyea very good.; reduced isotonic
function can be generated using Algorithm B without spidtthe pieces of an unrestricted isotonic
regression. This is especially true if the unrestrictedosit regression is carefully constructed.
Given weighted value§y, w), letS = {S;, : k£ = 1, m} be the unique set of steps such that

e there is anl, isotonic regression with stepsS whereg(S;) < ¢g(S2) ... < g(Sm), and
e foranyk € [1:m)], if his anL, isotonic regression, thenis constant orb,

It can be shown tha¥ is the intersection of the steps of @l| isotonic regressions of the data, with
the requirement that if an isotonic regression has adjasteps with the same value then they are
merged. Furthek$ can be found ir©(nlogn) time through a PAV approach where adjacent steps
are not merged unless the isotonic condition forces it. Wetlsat S is the set of steps of fully
refinedisotonic regression. For example, for values -2, 1, -2, 3,ith weights 10, 1, 1, 1, 1, 10,
one unrestricted isotonic regression is -2, 1, 1, 1, 1, 3lenfully refined one is -2, -0.5, -0.5, 1.5,
1.5, 3. In fact, this is the uniquk, isotonic regression for all < p < oo. Further, the optimal
2-step reduced isotonic regression has values -2, -2, 2,3,which requires cleaving the middle
piece of the former but which can be formed from pieces of dltteH.

A b-step isotonic function is guasi-optimall; reduced isotonic regression iff it minimizes the
L, regression error among aHstep isotonic functions which have steps that are uniorssaqfs in
S. Our approach for determining quasi-optimal regressisrsgnilar to that forL,, first finding an
unrestricted isotonic regression and then using it to findduced isotonic regressions. In certain
cases, however, the pieces of the unrestricted regresaimmtbe collapsed into a single value.
For example, for unweighted values 1, 0, 0, 2, 2, 1, 3, ¥ & {[1:3],[4:6],[7: 9]}, and the
unigue isotonic regression is 0, 2, and 3 on these steps. fAifeail-piece optimal reduced isotonic
regression has value 1. If instead the last value were 3,ttleeanconstrained isotonic regression
would remain the same but the 1-piece reduced isotonicssigrewould have value 2.

Theorem 4.1 Givenn weighted valuegy, w) and number of steps < m, a quasi-optimall,
reduced isotonic regression can be foundifv. logn + bnlogm) time, wheren is the number of
pieces in a fully refined.; isotonic regression.

Proof: The approach of Algorithm C will be used. Let the pieces offiliy refined L, isotonic
regression bdy, k = 1...m, wherel; = [a(k) : b(k)]. For the remainder of this proof the
indexing will be on the pieces not the original data, i.eisisubsets ofl : m], not[l : n]. As
before, if the median of piecds: j] is known, then determining the median of pie¢es;j + 1]
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piece i is [a(i):b(i)] of original data

y_sort : v in sorted order

m(h) : location of v(h) in y_sort

w_sort(m(h)) : w(h) if location h in an active piece, else 0. Initially 0
med_loc : initially 1

insert_piece(i) :  {iis now rightmost piece}
for h = a(i) to b(i) do
w_sort(m(h)) = w(h)
if 7(h) < med_loc then
w_lt =w_lt+w(h), yw_It=yw_It+v(h)xw(h)
else if w(h) > med_loc then
w_gt =w_gt + w(h), yw_gt=yw_gt+ v(h)*w(h)
end for h
update_median

remove_piece(i) :  {i was leftmost piece}
for h = a(i) to b(i) do
w_temp = w_sort(m(h))
w_sort(m(h)) =0
if 7(h) < med_loc then
w_lt = w_lt —w_temp, yw_It = yw_It — v(h) % w_temp
else if w(h) > med_loc then
w_gt = w_gt — w_temp, yw_gt = yw_gt — v(h) * w_temp
end for h
update_median

update_median :

while w_gt > w_It + w_sort(med_loc) do {median is larger}
w_lt = w_It + w_sort(med_loc)
yw_It = yw_It + y_sort(med_loc) * w_sort(med_loc)
med_loc = med_loc + 1
w_gt = w_gt — w_sort(med_loc)
yw_gt = yw_gt — y_sort(med_loc) * w_sort(med_loc)

end while

median = y_sort(med_loc)

Figure 6: Routines Used in Algorithm C for Quasi-Optinial Reduced Isotonic Regression
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merely requires adding the weighted valueg,ip; and then locating the new median, which is not
less than the previous one. Similarly, determining the mxedif[: — 1 : j] requires removing the
values corresponding th. Balanced trees could be used to keep track of the informatibere
each data value can be inserted or remove®ftogn) time, and the weighted median can be
determined in the same time. Since insertion and deletippédras at most once per value, the total
time for an iteration of thefér k” loop in Algorithm B would be©(n logn), giving a total time of
O(nlogn + bnlognlogm).

The time per iteration can be reducedd¢n), as for isotonic data, although the operations are
more complicated. First the values are sorted and stored mrrayy_sort, and a mappingr is
created so that(7) is the location ofy; in y_sort. A left-right scan ofy_sort mimics the left-right
scan ofy for isotonic data. An array_sort will be used, wherev_sort(i) corresponds tg_sort(i).

It will be used as a flag, in that if piecés: j] are currently represented, thensort(k) is 0 if
71 (k) € I U...U I;, while otherwise it is the correct weight. In this setting say that pieces
[i:4] are “active”. Initiallyw_sort is zero.

Moving from the calculation of the median of pieces j] to that of[i : j + 1] merely means
that for eact? in piecel, 1, w_sort(w(¢)) = w, and thew_ andyw_ sums are updated. Then, the
incremental procedure to locate the new median begins. kewan update during the insertion
may involve adding tav_It andyw_It since some values ify; may be smaller than the median.
Removing a piecé; occurs similarly, settingv_sort(7(¢)) = 0 for each? € I; and then updating
the median.

Further,med_loc is modified so that it is initially 1 and is never reset to 0. laynbe that
w_sort(med_loc) = 0 at some point in the algorithm (such as the start), but whedian is deter-
mined inupdate_median then eithew_sort(med_loc) is a median of the active pieces (though not
necessarily a value in the active pieces), or there are rieeguieces but when the next piece is
inserted its median will be at least this value since it is aliare of the last piece removed. The
detailed operations needed for Algorithm C are given in Fegu As before, the time per iteration
is ©(n), yielding the time claimed in the theorem.

5 Final Comments

We have shown, in Theorem 2.1, that foisotonic values, for thé,; and L, metrics, an optimal
b-step isotonic regression can be compute@ {bn logn) time. For the more general problem with
arbitrary data, we have shown in Theorem 3.1 that an optimatstep reduced isotonic regression
can be found i@ (n + bmlogm) time, wherem is the number of pieces in the unconstrained
isotonic regression. Prior to these results, far the best known times to solve these problems
were© (bn?) for isotonic data an®(n + bm?) for general data [7]. FoE; we did not provide an
algorithm guaranteed to find the optimal reduced regres$iot) in Section 4 we did provide one
that generates a good approximatiordin logn + bnlogm) time. It is an open question as to
whether there is a(nlogn + bnlogm) time algorithm to producé; optimal reduced isotonic
regressions.

In an extended version of this paper, results fgg will be included. Using a quite different
approach, we show that the reduced isotonic regressioneéoubnd in© (n logn) time. Note that
b does not appear in the time. This is because in linear timecanalecide, for a gives if there
is ab-step isotonic function witll o, error < e. (This does not seem possible for thg error when
p < o0.) Combining this with a technique known as parametric degiees the time claimed. An
algorithm using the same approach and time bound is also §ardinding anL ., optimalb-step
approximation. For this problem the fastest previouslwkmalgorithm, due to Chen and Wang [5],
takes© (min{n log® n, nlogn + b*log* n}) time. For unweighted data the time can be further
reduced t®(n + mlogm).
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Finally, an interesting problem that we have not address#thit of selecting the most desirable
number of steps for applications calling for fewer thansteps. Schell and Singh and Haiminen
et al. start with an unconstrained isotonic regression aed tepeatedly merge pieces together
until their criteria are met. As was shown, the resultingueat regressions may be sub-optimal
among reduced isotonic regressions with the same numbéeus.sOther researchers chodse
priori based on considerations such as storage or access timesragois. In contrast, dynamic
programming approaches offer the possibility of creatiptiral b-step isotonic regressions for
each value ob asb increases. One can then stop when a criterion is met and silweaxe an optimal
result. We are unaware of any research, even giving sulmaptiesults, that has taken this last
approach. Equally interesting questions arise regardingt\® good criterion would be for any
particular application.
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