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Abstract

The problem of allocating patients in a two treatment chihic
trial with dichotomous response is considered. The trial go
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complete description of a clinical trial design should abdr
all aspects of trial protocol (e.g., eligibility criteriaterpreta-
tion of responses, data analysis, etc.), we focus on theteffe
of changing allocation rules within otherwise fully spesifi

is to determine the better treatment while incurring as fewdesigns.

patient losses as possible. Several allocation rules are co
pared and it is found thdtandit strategies perform well on
both criteria in that they achieve nearly optimal power whil
keeping expected trial failures nearly minimal. The rules a
also evaluated according to their computational complexit

1 Introduction

Researchers designing clinical trials often encountéicdif
ties when trying to determine the best way to allocate pttien

to treatments so that trial goals may be achieved and the cost
to all concerned kept at a minimum. Conventional designs, Vi =
in which subjects are allocated to groups in equal or predete

It is assumed that the sample size for the trial is a fixed
numbery, butthatthe sample sizes for the treatment groups,
ny for T1 andns for T, may be random. The response vari-
ables,X andY from T} andT:; respectively, are independent
Bernoulli random variables such that

(1) X17X27NB(17P1)7 }/17}/23NB(17P2)

where(Py, Py) € 2, forQ = (0,1) x (0,1).
An allocation rulg ~, is defined to be a sequence
(71, - -, 7vn) such that,

{

0,
L

if T is used for patient;

if T» is used at patient i=1.

oM.

mined proportions, have good decision making properties byt iS required that the decision, at stagei, depend only on

lack the flexibility to incorporate other desirable desigals.

the information available at that time.

Adaptive designs, in which allocation strategies may depen The parameter of interest is the mean difference in re-
on data observed during the trial, have more flexibility. TheSPonses,A = P» — P1, andT; is said to besuperiorto T
consideration of adaptive techniques raises the quesfion & & > 0, andinferior if A < 0. Theterminal decision rule

what anoptimalallocation rule is for a problem where statis-
tical merit is not the only measure of the quality of a design

This question is complex and intriguing, and it deservesamor

attention than it is given here, where only a simple trialiget

is examined. What we can show, however, is that adaptive de-

signs based on optimal strategieslianditproblems perform
well according tanultiple criteria, which include but are not
restricted to the ability to make a good terminal decisian. |
particular, these rules are evaluated according to ethiual

computational criteria and then compared with standardifixe

allocation techniques.
Now, consider a clinical trial in which we wish to com-

depends on the maximum likelihood estimate fowhich,

aftern observations, is given by

An:An(V) :?ng _Ynln
where ny =1 + ...+ Yn, ne =n —mnq, and
1 n
22,7':1 (1—%‘)Yj-

n

_ 1 o, _
Xm:n_lzjzl%‘Xj; Yo,

2 Design Characteristics

With the primary goal being to select the better of two com-
peting therapies, the decision rule has been formulatesbto t

pare two treatments and determine, if possible, which has ththe hypothesis

higher efficacy rate. The patients, who enter the trial seque
tially, are to be allocated to one of the two therapies in suc

a way that trial goals are met as well as possible. While any,qit specifies
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r(2) Hy : A<0 vs. Hy: A>0,
Reject Hy it A, >0;
3) No decision if A, =0;
Fail to reject Hy if A, <O0.



An informative measure of how well a test performs is given Here we have only &avo-armed bandi{TAB), but these
by its power For this problem, the power is simply the prob- techniques generalize easily to problems with several .arms
ability, as a function of® € (2, of correctly identifying the Let the outcomes for the two treatment arms be given by (1),
superior treatment. In practice, a rule allowing the de- and model the prior information on the success raieg.,
cision option should not be used without a null hypothesisas independent beta distributions
of equality and corresponding acceptance region. We would
prefer, in fact, a test that not only recognizes similarttresnt p1 ~ Be(ag,bp) and p2 ~ Be(co,do).
effects with high probability, but also one that has maximum
power at thesmallest clinicallysignificant difference between At any stagen < n, the posteriors fop; andp, are
the parameters. The testing regions here, however, have bee
established so that we may study the behavior of the allocd®) (p1 | k,i,5) ~ Be(a,b); (p2 | k,i,j) ~ Be(c,d)
tion rules over the entire parameter space and obtain lower m ) X ) ek
bounds for the power of (3). In [3], we examine problemsWhere k=Y, 1=51,X; j=%2"Y;, and
incorporating both type | and Il errors.

It is not difficult to show that, for any? € (, the prob-
ability of making an incorrect decision based on (3) is mini-

mized by allocating patients to therapies in equal proposti The posterior means f andps atm are simplyE,,,[p1 ] =

This may be achieved via alternating assignments or by cond/(a +b) and Ep[p2] = ¢/(c + d), whereE,, denotes
strained or blocked randomization. Since an equal allocaéxpectation in thénmodel (4) ’ "

tion rule guarantees that fully half of the patients aregrs=i

to the inferior treatment, designs utilizing them tend toun
more failures than may be necessary for the decision proce
Our evaluations of allocation rules are based on threerizite

a:i—i—ao, b:/{—l—i-bo,
c=j+c, d=m—k—j+dp.

Typically, the choice of a prior distribution will depend,
somewhat subjectively, on the knowledge of the investigato
Sﬁreceding the trial. We use independent uniform priors here
ag = bgp = ¢y = dg = 1, because they contain no initial
d bias and little information, and because the parameteiseof t
beta posteriors concisely summarize the relevant study dat
to date.
2. The expected number of failures during the trial, It is worthwhile to note that these allocation rules, which
arise within a Bayesian framework, are being evaluated ac-
3. The complexity of the computations required to utilize cording to frequentist standards. In Section 4, the Bayesia
the design. design is seen to have had little effect on the results ofthle t
from this viewpoint. However, if desired, the design may be
Due to space limitations, the manner in which these criteriget up to impact the trial and its results more heavily, since
are assessed is quite simplistic. While each of these itermisvestigators can strengthen and/or bias the parametéhs of
can be viewed from many angles, the results (Section 4) seetyeta distributions to reflect a preferred level of inforroati
to be representative of the behavior of the allocation rinles
more general settings as well.

1. The probability of making a ‘correct’ decision at the en
of the trial,

2.2 Ethical Criteria

2.1 Bandit Problems An advantage of using bandit problems to model clinical tri-
als is that elements of the discount sequence can be selected

The sampling plans that we propose are based on optimé&b represent an ethical decision regarding the relativeoimp

rules for multi-armed bandit problems. In a bandit problem tance of the patient outcomes both during the trial and in the

the goal is to maximize the sum of weighted outcomes arisfuture. At each stage of the sequential decision process, a

ing from a sequence of experiments frarmswhose out- bandit allocation rule is a function both of the effort to lyet

comes follow the laws of a specified Bayesian modehah-  information and of the effort to gain immediate reward. Here

dit allocation ruleis thus one that utilizes prior information we consider two discount sequencgs, g1, 32, . .., Bn }: the

on unknown parameters together with incoming data to detem-horizon uniformsequence witt; = 1,7 = 1,...,n, and

mine optimal selections at each stage of the experiment. Thiéegeometricsequencefl, 3,32, 33,...},0< 3 < 1.

weighting of returns is known adiscountingand it consists In the uniform, finite horizon case, the optimal strategy wil

of multiplying the payoff of each observation by the corre- begin by emphasizing the gathering of information with the

sponding element of a discount sequence. The properties oésult being that the first patients will be treated rather pa-

any given bandit allocation rule will depend upon the associtients in an equal allocation trial where one assumes throug

ated discount sequence and prior distribution. out that the treatments offer the same prognosis. Toward



the end of the study, with a decision imminent, the emphabeen treated and there wersuccesses andfailures onT?,

sis on immediate reward is increased until, at the last stagandk successes aridailures only;. (Note that one parameter

a completely myopic rule is used. In the geometric case, itan be eliminated sinces = i + j + k + [.) The algorith-

is assumed that that there will always be more patients, smic approach is based on the observation that ifvere used
the need for information is never completely absent as in then the next patient, then the expected number of failures for
last stage of a finite horizon problem. However, as more angatientsn + 1 throughn would be

more patients are treated, the need to sacrifice immediatere ., ) ,

ward to gain information will decrease. Since the sample siz 7 (i,5:k;0) = Em[pi] - Fona (i + 1,5, k1) +

in the present problem is fixed at we truncate the alloca- En[l—p1] - 1+ Frni1(i, 7+ 1, k1))
tions aftern observations. Thus bandit allocation strategies = . |

for problems with geometric discounting are not exactly op-VNile if 7> were used then we would get

tir_nal for_the truncated case. As we see, however, these rul@srirflz (i,j.k,1) = En|pa] - Frsr(isj b+ 1,0+
still provide good model strategies for the problem at hand. .

See Hardwick [2] for further discussion of the incorporatio Em[l =p2] - (1+ Frnga (i, K, L+ 1)),
of geometric bandit strategies in clinical trial designs. ThereforeF satisfies the recurrence

.. . T - - Ty/: -
23 Computational Criteria fm(z,],k,l) = mln{]:m (Za]a kal)7]:m (Z,],k,l)}

Ethical attributes aside, an experimental design must b%VhICh can be solved by dynamic programming, starting with

straightforward to carry out if it is to be useful. For comgut patientn andtf rocgedmg toward the ;IrSt pat!ent.

tional purposes, this means that the rules should use reason For them™ patient there a_r@(m ) p_oss_lble vglugs of
able amounts of time and space (memory), and be sufficientl§ 7’ kL, S0 to evalfate all pos_5|ble combmatyonsmfz, Js k’.

easy to program. We distinguish here between the comput -"?0” requiresd(n®) comput:_mons. A clever |mplementat|on
tional requirementsto set design parameters and thosetnieetpq'ght not ev_aluate all possible values, but a stra|ghtfodw_a_

to carry out the trial. In general the former will be signifi- |m_plemen_tat|_on, as used_ here, ne4eds to do so, and empirical
cantly greater than the latter, but can be carried out orelargevIdence indicates tha_t, in fadh(n®) values must be com-
computers without significant deadline pressure. TherlattePUted' The space requirements can be kep(af’) (see [3]).

may require timely response, and may often be performed on

personal computers. The latter will be analyzed here in th&.2 GittinsLower Bound

next section, while the former will be discussed in [3]. ) . .
According to a theorem of Gittins and Jones [1], for bandit

problems with geometric discount and independent arms, for
3 Allocation Rules each arm there exists an index with the property that, at any
given stage, it is optimal to select, at thextstage, the arm
The following three allocation rules were evaluated with re With the higherindex. The index for an arm, @étins Index
spect to the given criteria: is a function only of the posterior distribution and the disot
factor 3. While the existence of the Gittins Index removes
) ) many computational difficulties associated with other liand
UB = Uniform Bandit, and problems, the only known technique for computing the index
TGLB = Truncated Gittins Lower Bound. involves an iterated dynamic programming approach which
The “truncation” in TAA and TGLB refers to a rule whereby, is computationally intensive whefi is close to 1 (see [1]).
if a state is reached such that the final decision can not bE&nfortunately, these are th#values needed to produce tests
influenced by any further outcomes, then the treatment wittof suitable power.

TAA = Truncated Alternating Allocation,

the best success rate will be used for all further patients. Here we show that very good results can be achieved by
utilizing an easily computed approximation. For an arm with
31 Uniform Bandit posterior distribution Bgu, b), a lower bound for the Gittins
' Index is given by (see [1, 2])

By definition, then-horizon uniform TAB uses prior and , ,

. . S . I(a+1) b B I(a+)
accumulated information to minimize the number of fail- _ T(atbt1) i=1 "~ Tlatbtitl)
ures during the trial. We can determine the optimal strat- T Lla) b " piLllati=l)

T'(a+b) i=1" T(a+b+i)

egy for this bandit problem using dynamic programming. Let
Fm (i, 7, k,1) denote the minimal possible expected numbeBecause\, is a unimodal function of, the best such lower
of failures remaining in the trial, ifn patients have already boundisA,-, wherer* = min{r : A, —A, 1 > 0}. EachA,.



Parameters — A=01 A=0.3
! Criteria TAA | TGLB UB TAA | TGLB UB

n=20 Power 0.671 | 0.667 | 0.647 || 0.913 | 0.906 | 0.874

8 =.999 Average Failureg| 9.947 | 9.774 | 9.768 || 9.505 | 8.330 | 8.217

n=50 Power 0.760 | 0.754 | 0.708 || 0.985 | 0.982 | 0.947

6 =.9999 Average Failureg| 24.828| 24.148| 24.117|| 23.489| 19.673| 19.214

n=100 Power 0.841 | 0.835 | 0.771 || 0.999 | 0.996 | 0.980

8 =.99999 | Average Failures| 49.614| 47.779| 47.642|| 46.762| 38.051| 36.984

n=150 Power 0.890 | 0.885 | 0.811 || 1.000 | 0.998 | 0.989

6 =.999999 | Average Failures| 74.393| 71.243| 70.890|| 70.031| 56.367 | 54.611

Table 1: Comparisons of Discrimination and Ethical Craeri
can be computed from the previous one in a constant number,  Parameters uB TGLB
of steps, so the total time to compute the best lower boundis| n B A=01]A=03
proportional tor* + 1. 20 0.999 8,855 180 174
The computational requirements of the TGLB approachare | 50 0.9999 292,825 611 597

difficult to analyze since they depend upon the value‘aind 100 0.99999 4,421,275 1,705 1,687
upon the successes and failures encountered. In the simpleg 150 0.999999 21,947,850, 4,124 4,109

implementation, the approximate indices for both treatimien
are computed at each stage and compared to determine the
best choice. However, computation can be saved by noting
that a “play the winner” property holds, in that if the indéce
resulted in treatmentbeing chosen for the previous patient, {5 the value presented and may be prohibitive. For TGLB,
and the outcome was a success, then they will again choosge value also represents a quantity which is proportianal t
treatment. Therefore an index needs to be computed onlyihe total computational time needed to utilize TGLB during
when a failure has occurred, and then only for the treatmen} trial. The value presented is the average, over all tridls,
that failed since the posterior distribution of the oth@atr ¢ total number of\,. values which must be computed for
ment is unchanged. index calculations throughout the trial. While space regui
ments were not tabulated, recall that UB ne€ds?) space
and TGLB needs onl$(1) space.

Table 2: Comparisons of Computational Time

4 Resaults

The results of our investigations are summarized in TableR ef er ences
1 and 2. The computational techniques used are explained
in [3]. [1] Berry, D. and Fristedt, B. (1986Bandit Problems: Se-

Table 1 shows that TAA, which is optimized to make the  quential Allocation of Experiment€hapman and Hall,
correct selection, incurs a large ethical cost, while UBiclvh New York.
is optimized to minimize failures, has a poor discriminatio
ability. The TGLB rule is a compromise with nearly the [2]
power of TAA and nearly the ethical behavior of UB. Note
that TGLB has an extra parametgrwhich must be adjusted
to optimize its performance. One can show thahust con-
verge to 1 as increases in order to obtain increasing power.
The specific values of used have been indicated.

Table 2 compares UB and TGLB on computational
grounds. TAA was not included since the total computation
time is merely proportional te, i.e.,©(n). For UB, the value
presented is the number of evaluationgoivhich occur, each
of which takes a constant amount of time. Thus the com-
putational time for a clinician to utilize UB is proportiona

Hardwick, J. (1986)The Modified Bandit: an approach
to ethical allocation in clinical trials Ph.d. thesis, Uni-
versity of California at Los Angeles.

[3] Hardwick, J. and Stout, Q. F. (1991), Computational as-
pects of sequential allocation for testing with multiple
criteria. In progress.





