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Abstract

We consider the ways in which adaptive allocation is al-
tered when some of the observations become unavailable.
Such “missing outcomes” are a strong form of censoring.
The problems analyzed involve adaptive sampling from two
Bernoulli populations. Both fully sequential designs and few-
stage designs are examined. For each type of design, we de-
veloped an algorithm to determine the optimal design. Prior
approaches were ad hoc and did not fully optimize under the
censoring assumptions. Perhaps one reason for this is that
censoring turns the populations into 3-outcome populations,
which increases the complexity of the problem. We also con-
vert designs for uncensored problems into natural designs for
the censored problem, and compare to the optimal design.
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1 Introduction

An adaptive allocationproblem is one in which an investi-
gator has the option to determine how to sample while the
experiment is being carried out, using the results that have
been observed so far. This is in contrast with the standard
technique offixed allocation, in which all sampling decisions
are made prior to beginning the experiment. Adaptive alloca-
tion is useful because in certain situations it can be dramat-
ically superior to standard techniques. For example, it can
often allow significant reductions in costs or fatalities over
fixed allocation without sacrificing statistical objectives such
as maximizing the probability of determining the best treat-
ment. Unfortunately adaptive allocation is more complex to
analyze, which has often inhibited its utilization.

To help make adaptive allocation more practical, we have
been developing a collection of algorithms to help in their
design, optimization, and analysis. As part of this process,
we are adding the ability to deal with various real-world fac-
tors. One such factor is the censoring of observations. There
are many forms of censoring that can take place, and here
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we consider only the strongest form, “missing outcomes”, in
which no information is obtained about the population being
sampled. For example, one may assign a patient to a drug
therapy, but then an accident unrelated to the therapy occurs
and the effects of the drug become unknown. This is in con-
trast with other forms of censoring, such as right-censoring in
survival data, in which at least some information is obtained
from each censored observation.

In this paper we begin an investigation of how censoring
affects adaptive allocation. For a given setting, there are sev-
eral natural questions which arise, a few of which are:

Q1: What is the optimal design for the censored problem?

Q2: How well can one predict the expected outcome of the
optimal design for the censored problem, by using the
outcome for the optimal design for the uncensored prob-
lem?

Q3: How well do interesting suboptimal designs perform rel-
ative to the optimal design?

Q4: How can one utilize a design for the uncensored problem
in situations where censoring occurs?

We provide answers, or mechanisms for obtaining the answer,
for these questions for several classes of adaptive allocation
problems. To the best of our knowledge, this is the first inves-
tigation of the design of adaptive algorithms that are optimal
for censoring. The closest work we have been able to find is
that of Eick [1] and Hayre and Turnbull [4], but these papers
consider models that are quite different than ours.

In Section 2, we define our censoring model and the types
of adaptive allocation problems we consider. In Section 3,
we describe the approaches we use for answering Q2 and Q4,
and in Section 4 we describe the algorithms which generate
the optimal design for Q1 and which provide the analyses
for arbitrary designs. In Section 5 we describe the results
obtained when these procedures were applied to two sample
problems, and mention further research.

2 Models and Problems Considered

Our initial work is for adaptive designs in which there are two
Bernoulli populations, denoted Pop 1 and Pop 2, and a fixed



sample sizen. The fixed sample size is merely for conve-
nience of explanation, and is not a requirement of the proce-
dures. Sampling Popi at thejth observation has outcome

Xij =

�
0 “failure” wp 1� Pi
1 “success” wpPi

for i = 1; 2 and j = 1; : : :, where the population success
parametersPi are unknown.

The censoring is modeled as another Bernoulli indepen-
dent processC with outcomes:

Cj =
�
0 “not censored” wp1� Pc
1 “censored” wpPc

for j = 1; : : :.
To combine censoring and the experiment we overlay the

two population sampling problem with the censoring process
to get outcomes as follows:

1. For trialj select a target population, Pop 1 or Pop 2.

2. Next, sample from theC process.

3. If Cj = 1 then thejth outcome iscensored.

4. If Cj = 0 then observe a sample from the population
targeted in (1): Then thejth outcome is either asuccess
or a failure from the population sampled.

Thus the outcome of each trial is either a success or a failure
on the targeted population, or it is censored.

Note that the censoring is assumed to be independent of
the population being sampled, which is appropriate for many,
although not all, situations. Another model would be to have
two independent censoring processes, one for each of the
populations in the experiment. Here, due to time and space
constraints, we investigate only the former model, and we
plan to investigate the latter model later.

At stagej = 0; : : : ; n, let (si; fi) represent the number of
successes and failures observed on Popi for i = 1; 2, and
let c represent the number of censored observations. Then
hs1; s2; f1; f2; ci forms a vector of sufficient statistics for this
model, which we call astate. Also, we utilize a Bayesian
approach, where on the parameters(P1; P2; Pc) we assume a
prior distribution that is taken to be the product of the three
independent prior distributions.

2.1 Objective Functions

We assume that there is some objective functionO which de-
pends on the final state of the experiment, and that the goal
is to optimize the expected value ofO at the end of the ex-
periment. This is a quite general framework, and all of our
design and analysis algorithms will work for arbitrary objec-
tive functions. However, to illustrate results it is necessary

to pick specific objective functions, so we have selected the
following two as examples.

2-arm bandit In this problem, the objective is to maximize
the number of successes. This is a well-known problem
with an extensive literature and applications to a great
many areas.

product of meansThis is a non-linear estimation problem,
where the goal is to minimize the mean squared error of
the posterior estimate ofP1 � P2. Several people have
studied fixed and adaptive designs for this problem, see
the references in [3].

2.2 Types of Adaptive Designs

There are many different ways that adaptive experiments can
be structured, and in general each different structure requires
a different set of algorithms for design and analysis. In this
work, we restricted ourselves to considering three types of
designs: fully sequential, 1-stage, and 2-stage.

In fully sequential allocationthe trials occur one at a time,
and each sampling decision can be based on the outcomes of
all previous trials. This includes the most powerful designs,
as it permits designs which can make increasingly better deci-
sions about which populations to sample from next, and thus
quickly adapt to achieve the goals of the problem.

In contrast to sequential allocation, instaged allocation,
trials occur in groups. The trials in each group can overlap,
but different groups don’t overlap. This allows the results
of all previous stages to be available before making the de-
cision for the next stage. Here we only examine two types
of staged allocation: 1-stage and 2-stage. 1-stage allocation,
also known as “fixed” allocation, is non-adaptive, as the only
decision that is allowed is how many trials to assign to each
population. The 2-stage sampling design is more complex.
First, a decision is made about how many trials to use in
the first or “pilot” stage, and to which populations to assign
them. The second stage is then just like the 1-stage proce-
dure, except we now have the information gathered from the
first stage to use in making the allocation decision.

3 Methodology

Once one has selected an objective function, sample size,
prior distributions, and type of adaptive experiment desired,
the optimal design can be determined by the algorithms de-
scribed in Section 4. However, as noted in the Introduction,
there are other natural questions that arise. For example, be-
cause most approaches assume no censoring, uncensored de-
signs may already have been evaluated before the censoring



was considered, and hence one may wish to predict an ex-
pected value from a censoring design for the problem based
on an expected value from the design assuming no censoring.

To describe some options, letD represent a family of de-
signs for a given problem and type of adaptive experiment.
For example, it might be a family of 2-stage designs for ban-
dits which uses equal allocation on a first stage of size

p
n,

followed by allocating all observations on the final stage to
the population with the highest posterior mean at the end of
the first stage.

3.1 Predicting Censored Performance

If D includes designs for the censored problem, then let
D(n; F (Pc)) represent the design for sample sizen with and
prior distributionF onPC . Note thatD(n; F (Pc)) also de-
pends on the prior distributions forP1 andP2, but these will
be omitted from the notation throughout the rest of the paper.
Let E[O(D(n; F (Pc)))] represent the expected value of the
objective function obtained by usingD(n; F (Pc)).

One naive answer to Q3 is to estimate this by ignoring
censoring, equivalently, by assumingF is a point mass at
0, in which case the estimate is merelyE[O(D(n; 0))]. In
general, a far better answer can be obtained by adjusting the
sample size. Since the expected number of uncensored ob-
servations isn(1 � �(F )), this provides a natural “equiva-
lent” sample size, and thus, a natural approximation for Q3 is
E[O(D(n(1� �(F )); 0))].

3.2 Extending Uncensored Designs

Extending designs not intended for censoring into a form that
can be applied when censoring occurs has varying degrees
of difficulty. For example, a common approach to fully se-
quential designs is to use a myopic approach (also known as a
greedy approach), in which the next population to be sampled
is the one that will minimize the expected value of the objec-
tive function if the experiment were immediately terminated.
Such a design can be naturally used in the presence of censor-
ing, and whenever a given population is sampled the sampling
on it continues until an uncensored result is obtained.

However, many other adaptive designs are more compli-
cated, and base their decisions, either explicitly or implicitly,
both on the observed data and on the number of observations
remaining. To describe how an arbitrary family can be ex-
tended, supposeDu denotes a design family for the uncen-
sored problem. LetDu(m j hs1; f1; s2; f2i) denote the de-
cision made by the member ofDu which has observed state
hs1; f1; s2; f2i and which hasm observations remaining. For
example, in a two-stage design family,hs1; f1; s2; f2i might
represent the results of the first stage, andm would be the
length of the second stage. Note that there might not be a nat-
ural member ofDu which has observed statehs1; f1; s2; f2i.

For example, ifDu is a 2-stage design which always allo-
cates equally in the first stage, whens1 + f1 6= s2 + f2 the
statehs1; f1; s2; f2i could not be observed at the end of a first
stage. Thus, in such a situation, one would first need to ex-
pand the family to decide what to do in the second stage.

There are two natural ways to extendDu to handle censor-
ing. The simplest, which we call theobliviousextension, is
to make each decision using the uncensored observations ob-
tained, assuming that no further censoring will occur. Thus,
for 2-stage design, the first stage allocation would be that of
Du(n), and if the resulting state washs1; f1; s2; f2; ci then
the second stage allocation would be the second stage alloca-
tion ofDu(n�s1�f1�s2�f2�c j hs1; f1; s2; f2i). For 1-stage
design there is no change, and for fully sequential designs the
changes are as for the 2-stage design.

Another extension, which we callcognizant, is to make
the decision using the observations obtained so far and as-
suming that there is an equivalent uncensored sample size re-
maining. If P̂c represents the posterior estimate ofPc, and
m = s1+ f1+ s2+ f2+ c is the number of trials so far, then
the equivalent sample size remaining is(n � m)(1 � P̂c),
and for a fully sequential problem the decision is that of
Du((n � m)(1 � P̂c) j hs1; f1; s2; f2i). For staged allo-
cation one must also scale the allocation. For example, for
1-stage allocation, the equivalent sample size isn(1 � P̂c).
If Du(n(1 � P̂c) j ;) would allocateoi observations to Pop
i, then the cognizant extension would allocateoi=(1 � P̂c)
observations to Popi.

4 Algorithms Developed

For each type of design considered (fully sequential, 1-stage,
or 2-stage), we developed algorithms to

� determine the fully optimal censoring design;

� determine the expected value of the objective for an ar-
bitrary censoring design;

� determine the expected value of the objective for the
oblivious and cognizant extensions of an arbitrary un-
censored design.

In this section we briefly describe the algorithms, and their
computational complexity. Due to space limitations, the de-
tails of the algorithms are omitted. In general we only refer to
the changes needed, compared to the algorithms for the un-
censored situation. See [2, 3] for a more detailed explanation
and pointers to the algorithms for the uncensored situation.

4.1 Optimal Designs

Determining the optimal design for a censored environment
is very similar to determining the optimal design for an un-



censored one. One uses dynamic programming. However,
the censored programs are more challenging because of the
increase in the number of outcomes possible. Note that a dif-
ferent dynamic programming algorithm is needed for each
type of experiment, but that the algorithm (as opposed to its
output) does not depend on the objective function or priors.

For fully sequential designs, the time to find the opti-
mal uncensored design is�(n4), which is the size of the
state space. For censored outcomes, the number of states is�
n+5
5

� � n5=5!, and there are 3 outcomes for each of the two
possible options, rather than 2 outcomes as in the uncensored
case. The total time is�(n5).

For 1-stage allocation, there aren + 1 possible different
options (i.e., one need only determine how many observa-
tions to sample from Pop 1 and place those remaining on Pop
2). In the uncensored problem there areO(n2) outcomes per
option, so a simple summation over them determines the op-
timal option in�(n3) time, which is linear in the number of
terminal states. For many specific objective functions it is
possible to algebraically evaluate an option in constant time,
which would reduce the time to�(n), but here our analy-
ses will be for the worst-case general situation where no such
reductions are assumed.

However, in the censored case, each option may result in
O(n4) outcomes, so a simple summation would takeO(n4)
time per option, and�(n5) time overall, which is superlinear
in the number of terminal states (

�
n+4
4

�
= �(n4)). To achieve

time linear in the number of terminal states, we create termi-
nal meta-statesho1; o2; ci, whereoi denotes the number of
uncensored observations on Popi. Since each terminal state
contributes to exactly one meta-state, the expected value of
the objective function for all of the meta-states can be eas-
ily determined in time linear in the number of true terminal
states. Then one can evaluate each option by a weighted sum
over all of the meta-states it could produce. There are only
O(n2) meta-outcomes per option, and the total time is re-
duced to�(n4).

For 2-stage allocation, the fastest algorithm known for the
uncensored situation first determines, for each intermediate
state, the optimal final stage from that state, and then deter-
mines the optimal initial state. There are�(n4) intermedi-
ate states, withO(n) options per state andO(n2) outcomes
per option. Through some algebraic manipulation, the total
time for determining the optimal decision at each intermedi-
ate state can be reduced to the product of the number of states
and the number of options, giving�(n5) time. The time for
determining the optimal first stage is�(n4), so the total time
is �(n5). For the censored situation, the number of interme-
diate states is�(n5), with O(n) options per state andO(n4)
outcomes per option. Similar algebraic manipulations keep
the total time down to a constant per state-option, or�(n6).
The optimal first stage can then be found in�(n5) time, so

the total is�(n6).

4.2 Evaluating Designs

To determine the expected value of an objective function for
a given fully sequential design, one typically uses backward
induction. This is a close relative of dynamic programming,
but there is no optimization involved and only one option to
consider per state (the option the design chooses). Only de-
signs with deterministic decisions at each state will be con-
sidered here — random sampling decisions can be similarly
evaluated, but the time increases depending on the number
of possibilities. In general, for fully sequential allocation
one needs to evaluate all states, so the time for the censor-
ing model would again be�(n5).

For 1-stage allocation there are�(n4) possible outcomes,
so the time would be�(n4). For 2-stage allocation there are
�(n4) possible outcomes at the end of the first stage. Eval-
uating each of these separately would take�(n8) time, so
instead one would use an approach similar to the dynamic
programming approach for optimization, and merely record
the value corresponding to the design’s decision at each inter-
mediate state. This reduces the time to�(n6).

The above analyses assumed that the design’s decisions
could be determined in time no worse than the evaluation
time. For the oblivious and cognizant designs there may be
additional computational challenges. For example, we evalu-
ated the oblivious and cognizant versions of the optimal un-
censored designs. For the sequential case this required deter-
mining the solution for all sample sizes less than or equal to
n, which takes�(n5) time. While this is not worse than the
analysis time, it is a nontrivial increase over the�(n4) time
needed to determine only the optimal uncensored solution for
n. The space required increased similarly.

5 Conclusions

To answer questions Q2 and Q3, the algorithms described
above were run for various sample sizesn and for each com-
bination of experiment type and the two sample objective
functions. For each combination we also compared the op-
timal censored design to the oblivious and cognizant versions
of the optimal uncensored design.

For Q2 and the 2-armed bandit problem, we found that the
expected value of the uncensored design applied to an equiv-
alent sample size, as discussed in Section 3.1, was a poor
estimator of the actual value obtained from the optimal cen-
soring version. In fact, the prediction by the non-censoring
version varied by as much as 10% from the censoring value.

For Q3 and the 2-arm bandit, the oblivious extension of
the uncensored design, as discussed in Section 3.2, was fairly
good as a method for handling censoring. Among all the



cases we tried it was at most 1% worse than the optimal.
The cognizant extension was even better, differing by at most
0.1% over all of the cases we tried. It is interesting that this
was true for all of the types of experiments considered.

The results for the product of means problem were very
similar to those for the 2-armed bandit problem. Again, we
found that the uncensored design was a poor estimator of
the performance obtained from the optimal censoring design.
This time the uncensored estimate varied by as much as 30%
from the true censoring value. The oblivious and cognizant
versions behaved basically the same as for the 2-arm bandit,
differing by at most 1% and 0.1% respectively.

Our data point to the unexpected result that simple modi-
fications to adaptive allocation procedures not originally de-
signed for censoring can yield procedures that perform ex-
tremely well when confronted with it. Unfortunately, an anal-
ysis of the expected outcome obtained by these methods re-
quired the same amount of computational resources as the
optimal method. In general, then, our experimental results
can be summarized as

For adaptive allocation with a single censoring
mechanism, censoring is more of an analysis nui-
sance than an optimization problem.

In the future, we plan to pursue various extensions of this
work. One is to investigate how having different censoring
rates for the different populations would affect the perfor-
mance of the oblivious and cognizant design extensions (with
refinements to the cognizant extension to cope with the dif-
fering rates). We believe that for the staged allocation, the
oblivious extension will fare poorly in such a setting if the
censoring rates are significantly different, although the obliv-
ious fully sequential extension may still show acceptable per-
formance. We believe that the oblivious staged allocation
performed well for the single censoring mechanism in the
problems considered because the optimal allocation quickly
converges to a fixed ratio allocation between the populations
within the initial stage, with the second stage converging to a
fixed ratio dependent on the outcome of the first stage. Since
the oblivious allocation converged to the same ratio, it re-
sulted in very similar allocation, although the initial stage was
too small. If the censoring rates differ on the different popu-
lations, then the oblivious allocation will no longer be in the
correct ratio and we can expect performance to suffer.

Another area to explore is the manner in which censoring
affects a more varied selection of problems and types of ex-
perimental designs. Because the design and analysis is more
computationally challenging than the uncensored problem,
evaluating useful sample sizes may require porting some of
the programs to parallel computers.
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