
In Computing Science and Statistics 30 (1998), pp. 309{314.

Predicting Algorithm Performance

Joshua Landrum Janis Hardwick Quentin F. Stout

University of Michigan, Ann Arbor, Michigan 48109 USA

Abstract

We examine the problem of predicting the time that an
algorithmwill take to solve a problem of speci�ed size on
a speci�ed computer, and of predicting the uncertainty
in the estimate. The predictions are based on an adap-
tive sampling approach, constrained by a �xed time bud-
get for all experiments. Complications arise due to the
poorly understood nature of system variation, because
small inputs may be poor predictors of the performance
for large inputs due to changes in cache behavior, and
because time is both a constraint and the variable being
estimated.

Keywords and phrases: experimental algorithms,
computer performance prediction, regression, model
checking, design of experiments, adaptive sampling

1 Introduction

At times it is desirable to know how long a computer pro-
gram will need to run to solve a problem with a given
input size on a speci�c machine. By size, we mean such
things as the dimensions of a matrix or the length of an
array, etc. While in some cases there may be asymptotic
guidelines for the growth rate of running time as a func-
tion of input size, such rates provide neither input- nor
machine-speci�c answers.

Consider the problem of factoring large integers, one
that arises in cryptographic research. As the size of
the integer grows, factoring it becomes increasingly time
consuming; and thus, it's important to be able to predict
how long it will take to factor very large integers. For the
factoring problem, researchers are able to combine ana-
lytic models of growth with empirical estimates derived
from solving smaller problems to make good predictions
about larger ones. However, for many other problems
analytic guidelines are not available or may not apply to
the target problem size. In such cases, empirical methods
may provide the best basis for formulating predictions.

In this paper, we focus on a special case of the general
problem just described. We assume that there is a �xed
budget of machine time during which all exploratory runs
must be carried out. Incorporating a budget not only
helps us de�ne the prediction problem, but it also ad-

dresses serious practical concerns. Even given the con-
straint of a budget, an investigator's knee-jerk reaction
may be to run a program at the largest size believed to
�t within the budget. The intuition behind such an ex-
periment would be based on assumptions that the time
is a known deterministic power of size. As we will see,
these assumptions may be far from realistic.

What we propose here is that statistical techniques be
employed for the problem of algorithm prediction. For
a speci�c machine and problem setting, identifying and
modeling relevant sources of variation is critical to the
task of making accurate predictions. Variation, for ex-
ample, can be introduced by the data, by the algorithm,
by the hardware and software system running the algo-
rithm, and by other users on the system. It is also imper-
ative to incorporate model checking into the prediction
problem. The standard approach of using order notation
analysis to model growth provides only asymptotic rates
which, without speci�c constants, are too vague to apply
in practice.

In general, previous work in the algorithm perfor-
mance and prediction literature has tended to ignore
both model checking and sources of variability. Further,
we know of no previous work that incorporates a time
budget into the prediction process.

Certainly, there has been research on predicting ma-
chine performance using measures such as instruction
counts. However, while these techniques are useful for
improving code performance, especially when the in-
struction mix is known (see [2]), carrying out detailed
counts for speci�c inputs completely ignores system vari-
ability. Furthermore, most timing methods require ac-
cess to source code which we do not necessarily assume
to be available to the end users making the predictions.

Thus, while we take a \black box" approach to the
problem of predicting running time, we believe that do-
ing so addresses a problem of signi�cant importance
in computer science and general computing. Although
tackling the problem in this way makes it more di�cult
to handle, the results will apply in far more general sit-
uations.

To summarize, we address the following problem:
Given a particular machine, a target problem size, and
a �xed time budget during which all experiments must



take place, we wish to

(a.) Predict the running time for the target size, and

(b.) Assess the accuracy of the prediction.

In the next section, we provide a basic model for the
problem and in Section 3 we describe a simple adaptive
approach to solving it. In Section 4 we discuss sources
of timing variation, and in Section 5, the e�ects of cache
memory on time. In Section 6 we propose an improved
design algorithm, and we conclude with a short discus-
sion of ongoing work in Section 7.

2 Model and Notation

To simplify (and shorten) explication, we work with a
simple model in which the time, t, required to run a
problem depends only on the size, s, of the program in-
put. In some cases, time is a deterministic function of
size; and for our purposes here, this is assumed, although
it is not a requirement for the approach taken. Speci�-
cally, we assume the relationship between time and size
to be one commonly arising in the computer science lit-
erature. Let

ti = �0 + �1s
r
i + "i for i = 1; 2; : : : (1)

where �0, �1 and possibly r are unknown parameters.
In modeling the errors, we regard \system interrupts"

to be the fundamental source of variation. While a
plethora of factors may contribute to whether an inter-
rupt occurs (see Section 4), we model them together as
the black box that produces time delays. During each
time unit, there is a �xed probability that an interrupt
will occur and add a �xed extra amount of work. Only
the time charged to the algorithm, not the full time to
service the interrupt, is being considered. One way to
view the number of interrupts that occur during a given
run is as the sum of random variables whose variance is
proportional to their number. In other words, as pro-
gram input size increases, more time units are expended
and during each of these, there either is or is not an inter-
rupt. We assume that the total expected running time
for the program is the underlying time plus the total in-
terrupt time which, as noted, depends on size. Thus, we
take

E("i) = 0 and V ar("i) = �2i = ei(�0 + �1s
r
i )

p;

for i = 1; 2; : : : and V ar(ei) = �2 and p unknown.
On occasion, it will be reasonable to assume also that
the errors, "i, are independent and normally distributed
with variance �2i .

1. Sample a few sizes, to get a rough approximation of
the growth rate.

2. Repeat the following until the budget is exhausted:

� Use the current observations to estimate pa-
rameters.

� Pick as the next sample point the one within
the budget range which maximizes

expected variance improvement

projected cost of the sample

3. Predict the time the target problem size will take
and provide an estimation of the variance.

Figure 1: Basic Adaptive Sampling Procedure

3 Algorithm for Adaptive Design

Since sampling costs are proportional to time which in
turn is what is being modeled, we face the problem of
estimating how much of the budget will be used when
sampling at a certain size. This suggests adaptive selec-
tion of design points so that previously observed data
can be utilized to generate an estimate for the cost of
sampling at future sizes.

A simple, iterative, greedy or \myopic" approach to
adaptive selection of input sizes is illustrated in Figure 1.
While techniques that look further ahead might improve
accuracy, they tend to have higher computation cost,
and this cuts into the overall time budget.

To estimate the variance of the prediction (and thus
the expected improvement gained by sampling at a given
size), it is helpful to have the prediction as a function of
the timing measurements. To address this, we �rst as-
sume that r is unknown, E("i) = 0 and that the errors
are independent. We then expand the error term to sec-
ond order, and retain only the terms proportional to s2r,
where s is the target problem size. Assuming that the
target size is large in comparison with the observed sizes,
this technique is expected to provide a good approxima-
tion.

As we will �nd, however, using the simplistic algo-
rithm in Figure 1 can be problematic. For example, the
budget constraint makes it desirable to observe runtimes
for small sizes which are unlikely to actually �t the model
in the region of interest (see Section 5 for details). Fur-
thermore, the growth rate, p, of the variance is unknown,
and estimating it is not dealt with in the present sam-
pling algorithm. These two issues are addressed via a
more re�ned algorithm in Section 6.



4 Sources of Variation

The sources of variation that a�ect the run time of a pro-
gram can be grouped into two categories: those internal
to the problem and those external to it | dependent
on the system but not the inherent work the problem
performs.

For example, some algorithms, such as those used to
locate large primes for cryptography, are probabilistic.
Naturally the randomness in such algorithms produces
variation in running time. This is a case in which vari-
ability is internal to the problem. As another example,
consider the program input. In some situations, run-
ning time depends only on input size and not on the in-
put itself. This is true with matrix multiplication where
the individual elements of the matrix have no impact on
running time. In other instances, time can be a�ected
by the actual inputs. Consider searching an array. If
the element being sought is the �rst element examined,
then the search time is quick. However, if the element
isn't even in the search space, more time is taken for the
search | even though the array size is the same in each
case.

Thus, if you know everything about a given algorithm,
i.e., if you have the source code, you may be able to
model internal factors such as those just mentioned. In
this paper, however, we work only with problems having
no internal variation. Any variability associated with the
algorithm itself is considered along with the mix that we
refer to as \system variation".

As noted earlier, external sources are modeled as sys-
tem interrupts. Interrupts might come from either the
operating system, e.g., checking to see if the job has
been killed; or from swapping the process out entirely,
such as occurs on a multi-user machine. Figures 2 and 3
in Section 5 appear to show anomalies resulting from
a multi-user system. Since interrupts such as these are
unlikely to be uniform, we anticipate that some inter-
rupts will come in bursts and cause a good deal of short-
term correlation in timing measurements. Other mea-
sured sources of variation, such as those caused by poor
clock resolution or periodic system interrupts, are in fact
highly regular. A problem in which both small periodic
and large aperiodic system interrupts occur is examined
in [1].

Memory usage can also provide timing variations. An
interrupt, for example, may cause cached memory to be

ushed. If this memory is used again by the process,
and would not have been 
ushed otherwise, it must be
reloaded, and hence the interrupt causes a further delay.

Yet another source of variability comes from the
model itself. To avoid over�tting, while allowing gen-
erality, only two terms in the polynomial describing the
problem's \true" rate of growth are considered (the con-

stant term is included to deal with the changeover re-
gions discussed in Section 5). Of necessity this means
the model may be a less good �t for some regions. This
is true in particular, for small sizes for which lower-order
terms may be signi�cant.

Some machines may introduce some randomness at
the hardware level. For example, when pushing a sys-
tem to run as fast as possible, some consistency might be
sacri�ced. There are times when a memory read might
take between 60 and 65 cycles, rather than always taking
62. Other machines use random cache replacement algo-
rithms, to avoid pathological memory problems. While
hardware variability isn't explicitly incorporated into our
model, it too is assumed to contribute to the black box
representing general system variation.

We have only touched on a few of the many sources
of variability that a�ect this prediction problem. As
we continue to work in this area, and as systems be-
come increasingly complicated, we anticipate that we'll
encounter quite a number of others.

5 Cache E�ects

Modern computers are equipped with various types of
memory. Each has a small amount of fast memory, called
cache, coupled with a much larger and slower main mem-
ory system (RAM). Disk memory, sometimes called sec-
ondary storage, is even larger and slower, but will not
be considered here.

Problems run at \small" design points (small sizes)
�t into the cache memory while those run at \large" de-
sign points (large sizes) do not. Between the small and
large sized problems, there will be a declining portion
of data residing in cache as the problem size increases.
Ideally the transition from �tting in cache to requiring
main memory would be sharp and the region where the
changeover takes place would be clearly demarcated. An
illustration of such desirable behavior is given in Figure 2
where timing data for a very simplistic problem are dis-
played. For this problem, every 16th element of an array
is accessed in turn, with this access being repeated sev-
eral times. The data are the times for the process to
run for increasing array sizes. The HP workstation that
generated these data had a cache of 512k bytes, or 128k
words (our unit of measure for size).

There are 4 regions of interest in this graph. For array
sizes

1. 0 < s < 128k (i.e., when the entire array �ts into
cache), the time, t, is of the form t = acs;

2. 128k < s < 256k, the time is of the form t = ats+C;

3. s > 256k (i.e., when the array is more than twice
the cache size), the time is of the form t = ars;



0 100 200 300 400 500

Size in Thousands

0

4000

8000

12000

T
im

e

Figure 2: Sequential Array Access Times, HP processor.

4. s � 380k, the time is markedly higher than those of
neighboring array sizes.

Note that, in region (1), every reference is to data re-
siding in cache, while in region (3) references are only
to data in RAM. Thus we have ac < ar. In region (2),
we observe transition behavior. Here, the beginning and
end of the array map to the same cache locations and
hence are never in cache when referenced. The middle
of the array, however, remains in cache, although, as the
array size increases, the \middle" shrinks. In this case,
each increment in size adds another reference to RAM
and replaces a reference to cache with one to RAM. Thus
at = 2ar � ac. In region (4), the unusually high values
are assumed to be the result of multiple users accessing
the system.

As a digression, it should be mentioned that upon
rerunning this very same problem on the very same ma-
chine, we encountered perplexing di�culties of a di�er-
ent sort. The data in Figure 3 show what appears to be
a bimodal distribution of running times for large sizes.
Note that, while we retain from these data the infor-
mation about the changeover region, we also �nd what
appear to be two separate lines being �t by the timing
data. Our best explanation for this is again the mul-
tiuser phenomenon, but even given this, we �nd these
data hard to interpret.

Getting back to cache e�ects, we have also found that
such e�ects can vary among systems. In Figure 4, for
example, we again see data for the linear array problem.

0 100 200 300 400

Size in Thousands

0

10000

20000

30000

T
im

e

Figure 3: Sequential Array Access Times, HP run 2

The only di�erence here is that these data were gener-
ated by an IBM machine. Note that it is di�cult to
discern any changeover region due to cache e�ects.

Yet another example of di�culties associated with
cache e�ects is illustrated in Figure 5. These data re-

ect the time taken to do matrix multiplication using
an implementation of the Strassen algorithm. The runs
were carried out on a multiuser machine for matrix sizes
ranging from 500 � 500 to 1500 � 1500. This is an al-
gorithm for which we know the asymptotic growth rate,
so one can view the problem as being as simple as the
one just considered. One hundred sample observations
were taken at each design point, and careful examination
of the �gure shows that the growth rate is not smooth.
Furthermore, as it turns out, our best estimate of the
growth rate for sizes beyond the changeover region does
not yet conform with the asymptotic rate. Note, by the
way, that the data in Figure 5 comprise far more sam-
ples than would reasonably be used for a �xed-budget
problem. The goal in this case was simply to study the
complexity of experimentally measuring the growth rate
and variance growth rate in a problem that we knew
something about.

In closing this section, we note that while many re-
searchers have examined sources of variation such as
cache behavior, none that we know of have coupled the
work with prediction e�orts which estimate the varia-
tion.



0 100 200 300 400 500

Size in Thousands

0

4000

8000

12000

T
im

e

Figure 4: Sequential Array Access Times, IBM processor

6 Revised Algorithm

As has been discussed, the actual design problem that we
face is far more complex than that addressed in Section 3.
In this section, we outline a more re�ned algorithm that
better handles some of the di�cult issues that we've en-
countered. In particular, two problems we consider are
as follows:

1. Up to a point, small size inputs will give data in-
consistent with the growth rate we seek.

2. The growth rate, p, of the error variance is unknown
and needs to be estimated.

With regard to issue (1.), we know that sampling at
sizes that are too small \wastes" some of our budget
since the timing data from these sizes occur before we
have passed through the changeover region. Unfortu-
nately, however, locating the changeover region is a sta-
tistical problem in and of itself and it is one that we
cannot a�ord to ignore. Some small sizes must be run
before the changeover so that the region can be iden-
ti�ed. However, once this identi�cation is believed to
have been accomplished, we wish to drop times resulting
from the small sizes and focus on obtaining results from
the region of interest. To this end, we introduce model
checking into the adaptive design procedure detailed in
Figure 1.

If the estimated model appears not to �t the data
well, it is assumed to be the fault of the small design

5 7 10 12 15

Size in Thousands

0

1000

2000

3000

4000

5000

T
im

e
Figure 5: Strassen Multiplication, Sun proc. | Mul-
tiuser

points. The revised algorithm calls for the ongoing dele-
tion of times from the smallest design points as sampling
at larger sizes continues. Only the latter data are then
used to predict the target time. Note that an important
problem for a further revision of the algorithm is to as-
sess when to stop deleting small sizes. There are various
ways to model this, but we have yet to incorporate them.

Next, it's important to be able to detect when the
growth rate of the problem doesn't follow a polynomial.
The same model checking used to detect which small
sizes to drop can be used to this end. Once all the sam-
ples are taken, the data are re�t, and a prediction for
the target is made. If the polynomial model still doesn't
�t the data | or if too many points had to be thrown
out to make a good �t | a 
ag is raised to alert the user
of possible problems.

To deal with issue (2.), the model is again called into
play for estimation purposes. Here the deviation of the
sample points from the predicted curve serves as a proxy
for the variation. Because of the statistical bias intro-
duced by timings at small sizes, it is even more impera-
tive to ignore such values when estimating the variance
growth rate.

7 Future Work

This project is ongoing in the sense that we plan to in-
corporate a variety of re�ning factors into the model and
sampling design. Here, we brie
y mention some of our



concerns.
First of all, to do model checking, the points sampled

must be spread out. Not surprisingly, this goal competes
with that of minimizing the variance of the prediction.
As a result we need to develop a weighting scheme to
balance the two goals. While the greedy method for
selecting sample points is still reasonable it is also ad-
hoc. We hope to apply better methods to the problem
of data �tting.

Next, we need to develop a better understanding of
the sources of timing variation. The following are a few
of the problems on which we are presently working.

� The observed variance does not �t the independence
and normality assumptions;

� The variance growth rate may not be a simple power
of the average time;

� The variance may depend on measurable covariates
such as fraction of CPU time devoted to other users.

Finally, we would also like to include more than a one
dimensional version of size. Examples of cases where this
is needed are

� Graph problems which depend both on the number
of nodes and the number of edges

� Jobs done on parallel machines might be run on a
varying number of processors

In closing, we believe that the problem of algorithm
prediction is in its infancy, and we hope that the prob-
lem presented here will stimulate interest in both the
computing and statistical communities.

Acknowledgments

This research was partially supported by the National
Science Foundation under grants DMS-9157715 and
DMS-9504980.

References

[1] Tabe, T., Hardwick, J., and Stout, Q.F., \The com-
munication performance of the IBM SP2", Comput-
ing Science and Statistics 27 (1995), pp. 347{351.

[2] Saavedra-Barrera, Rafael H. and Smith, Alan Jay,
\Performance Prediction by Benchmark and Ma-
chine Analysis", Report No. UCB/CSD 90/607 De-
cember 1990 Computer Science Division (EECS)
University of California


