
International Journal of Computer and Information Sciences, Vol. 11, No. 1, 1982

Searching and Encoding for

Infinite Ordered Sets

Quentin F. Stout;

Received November 1979; revised March 1982

We consider the relationships between binary search algorithms and binary
prefix encodings of infinite linearly ordered sets. It is known that each search
algorithm determines a prefix code, and in three cases we show to what extent
the converse is true. For sets similar to the natural numbers we show that
search-related codes are as flexible as all prefix codes, while for general ordered
sets they are only asymptotically as flexible.

KEY WORDS: Unbounded search; prefix codes; search codes; linear order;
infinite sets.

1. INTRODUCTION

This paper is concerned with the connect ions between near ly opt imal
searching in an infinite l inearly ordered set and efficient prefix encodings of
that set. Searching and prefix encoding of finite sets are topics with a long
his tory and extensive l i terature (see Knuth (13) or Gallager(8)), but only
recently has at tention focused on infinite sets. Efficient prefix encodings of
the natural numbers appear in Elias, (5~ Even and Rodeh, {v) Levenshtein, (ts)
and Stout, (23) and near ly opt imal searches for the natural numbers appear in
Bentley and Yao, (2) Raoul t and Vuillemin, (19) and Stout. (24) These codes and
searches have helped solve problems concerning channel capaci ty , (s) message
separat ion, ~7) da ta compression, (21) and comput ing the dis tance between
leaves of a tree. (17) Raoul t and Vuillemin ~19) consider searching and
encoding of the natural numbers and also searching in the posit ive real

I Research partially supported by a fellowship from the State University of New York
University Awards Committee.

2 Mathematical Sciences, State University of New York, Binghamton, New York.

55

0091-7036/82/0200-0055503.00/0 �9 1982 Plenum Publishing Corporation

56 Stout

numbers. Further, Papadimitriou ~ls) and Reiss ~2~ consider searches in finite
parts of the rationals and show their relevance to linear programming.

We study both encodings and searchings simultaneously because of
their strong connections. Any deterministic search algorithm with only
"yes/no" questions corresponds to a binary prefix encoding of the set being
searched. This is accomplished by representing the search algorithm by its
decision tree and labeling each "yes" branch with a 0 and each "no" with a
1. There is a 1 -- 1 correspondence between the leaves of this tree and the
elements of the set, and we encode each element of the set with the string of
the labels along the path from the root to the leaf corresponding to the
element. For example, Fig. 1 shows a search and its corresponding encoding
for the set {0, 1, 2,..}. Here the number n is encoded as In~2] l 's followed by
a 0 followed by n rood 2. We call a code which arises in this manner a
search eode. We will explore the extent of search codes within the collection
of all prefix codes.

0 1
Code Code
00 01 0

Q

Fig. 1.

2 3
Code Code
100 i01

A search code.

Searching and Encoding for Infinite Ordered Sets 57

We consider situations where there is no probability distribution on the
underlying set. When there is one then there may be natural definitions of
optimal search and encoding, and in some cases results from finite sets can
be extended to infinite sets. (See Gallager and van Vorhis ~9~ or
Golomb~~ Without probability distributions one must define new
notions of efficiency and optimality. Several have proposed such definitions,
but we will not do so because we are interested in results linking arbitrary
codes and searches. Nonetheless, the most important applications involve
efficient codes. Bentley and Yao determined an "almost optimal" algorithm
for searching the natural numbers and noted that the corresponding search
code was similar to the "asymptotically optimal" encodings of Elias, Even,
and Rodeh. The similarities that they had found motivated Bentley and Yao
to ask "Does there exist a search strategy corresponding to every prefix code
for the (positive) integers? Does the framework of unbounded searching
provide any insight into problems in information theory?"

We answer these questions in section 3. There are many natural ways
that a search strategy and a prefix code can be compared, and we analyze
three such comparisons. The nature of the solutions makes it clear that the
order type of the underlying set plays a critical role, which leads us to
consider other order types. In section 4 we consider the integers in detail, and
in sections 5 and 6 we analyze arbitrary order types.

Our emphasis is on transfering searches and encodings, one to the other,
through search codes. Besides acting as a gluon between searching and
coding theory, we believe search codes deserve attention for their inherent
usefulness. For example, both encoding and decoding are natural for search
codes, but only decoding is easy for an arbitrary prefix code. Search codes
preserve the order structure of the set, permitting efficient computation of the
order relation. Further, we will show that for certain ordered sets, such as the
natural numbers, there is no loss of flexibility in restricting prefix codes to
the set of search codes, and for general ordered sets there is no asymptotic
loss. The applications in ~2'17'18'19'2~ all rely on efficient search codes.

All theorems except the last are effective in the sense that if one is given
an encoding known to satisfy the hypotheses, then an algorithm is given to
find the encoding promised in the conclusion. The last theorem should be
considered as a purely mathematical result which we hope will point the way
for further research on effective results. This paper should be considered as
an initial attempt to study the theoretical underpinnings of infinite search
and infinite prefix codes, and as such raises more questions than it answers.
In particular, at some points we have been forced to make choices and
consider one option among several equally valid ones.

58 Stout

2. PRELIMINARIES

Unless otherwise stated, ordered means linearly ordered, all sets are
countably infinite, all trees are binary, rooted, and complete, and all prefix
codes are binary and complete, that is, if P is a prefix code then no new
codeword may be added to P without destroying its prefix property. To any
complete binary prefix code there corresponds a rooted binary tree such that
each interior node has two subtrees, each of which contains at least one leaf.
Such trees form a proper subset of the rooted complete trees since, for
example, the rooted complete infinite tree with no leaves corresponds to no
code. We think of trees as having their roots on top. In the correspondance
between trees and prefix codes an edge to the left represents a 0 and one to
the right represents a 1. For example, if P encodes the numbers 0, 1, 2 in
the unary encoding 0, 10, 110 then the tree for P will have an infinite
branch to the right and a single leaf at each depth. Our convention is that the
root is at depth 0, which means that a leaf at depth n represents a codeword
of length n.

For a node p, R(p) denotes the set of leaves in the right subtree o f p
and L(p) denotes the set of leaves in the left subtree. When L(p) ~) R(p) is
infinite we say that p is a major node. The major nodes form an incomplete
subtree without leaves. If l and m are nodes or leaves we say that l
lexicographically preceeds m if the labeled path from the root to ! is
lexicographically less than the labeled path to m. Equivalently, l
lexicographically preceeds m if and only if either m E R(I), I E L(m), or
there is a node p such that l E L(p) and m E R(p). If X is an ordered set
then an encoding P of X is order preserving if for every xl , x 2 E X such that
x 1 < x z, P(x 0 lexicographically preceeds P(x2).

We use N to denote the natural numbers {1, 2,...}, Z for the integers,
and co for the first infinite ordinal. For a natural number n we use co + n to
denote the ordered set { 1, 2 co, co + 1,..., co + n - 1 }.

For any infinite set X and any prefix code P for X we define a new
prefix code P* for N by sorting the codewords of P first by length and then,
among words of the same length, lexicographically. P*(n) is then the n-th
codeword of P under this ordering. P* can also be determined by taking the
tree corresponding to P and encoding n by the n-th codeword appearing in a
breadth-first, left to right search. For the reader familiar with finite trees it is
important to keep in mind that in an infinite tree a breadth-first traversal will
visit the entire tree, but a preorder or inorder traversal may not and a
postorder traversal cannot.

For an ordered set X we consider search strategies which use only
questions of the form "Is it <x?" or "Is it ~<x?" for some x in X. If every
element x has a successor x + then any question of the form "Is it ~ x ? " can

Searching and Encoding for Infinite Ordered Sets 59

be rewritten as "Is it <x+? ' ', and if every element x has a predecessor x -
then any question of the form "Is it <x?" can be rewritten as "Is it ~<x-?"
However, some ordered sets have elements which have neither predecessors
nor successors, in which case both types of questions are needed. If x is such
an element then the only way to find that the answer is x using only a finite
number of questions is to ask both "Is it ~<x?" and "Is it <x?" Another
possibility is to introduce questions of the form "Is it = x?" However, this
destroys the order-preserving properties of searches, which are central to
several of our results. Nonetheless, it is an interesting topic for future
research. Also notice that certain questions are forbidden. For example, if we
are searching the rational numbers then "Is it <x/~?" is not allowed. An
interesting problem is to decide which of our results would change by
allowing such questions. This would not effect any of our results for rational
numbers, but the comments following Proposition 10 show that certain other
results change for trivial reasons. The most interesting problem is to
determine its effect on extensions of Theorem 4c to other ordered sets. (See
Stout(25~.)

For an ordered set X we say a tree T is a search tree for X if the leaves
of T are labeled with the elements of X in lexicographic order and each node
is labeled either " < x " or "~<x" for some x in X such that the tree is
consistent. That is, if a node p is labeled " < x " then x must be the minimal
label of a leaf in R(p), or i fp is labeled "~<x" then x is the maximal label of
a leaf in L(p). Search trees, also called comparison trees, capture the
essential properties of search algorithms. Because of this we regard search
trees as representing the possible search algorithms. The prefix code
corresponding to a search tree is called a search code, and the set of all
search codes for X is denoted Y(X) .

Lemma 1. Let X be an ordered set, P be a prefix code for X, and T
be the tree corresponding to P. A necessary and sufficient condition that P
be a search code for X is that P be order preserving, and for any node p of
T, L(p) has a lexicographically maximal element and/or R(p) has a
lexicographically minimal element.

Proof. The necessity is obvious from the above discussion. To show
sufficiency we must show how to label the nodes of T. Let p be a node. If
L(p) has a lexicographically maximal element let x be its label and label p
as "~<x". Otherwise let x be the label of the lexicographically minimal
element of R(p) and labe lp as "<x" . II

We will see that in certain circumstances P being order preserving will
be sufficient to guarantee that it is a search code.

The following lemma is just a restatement of the Kraft-McMillan

60 Stout

equality for finite codes and its proof will not be given. See, for example,
Gallager ~8) or Even. (6)

Lemma 2. a) Let T be a finite complete tree with leaves l~ I n in
lexicographic order, let p be a node of T, let k (p) = max{/< n : l i E L(p)},
and let k ' (p) = max{/~< n: l i E R(p)}. Then k (p) < k ' (p) ,

k(p)
S ~

i = l

2 - d e p t h (i i) -~ L / 2 - d e p t h (p) + 1

for some odd integer L, and

k'(p)

V
i = 1

2 -depth(l/) = (L + 1)/2 depth(p)+1

In particular, ~2~=1 2 - d e p t h (/ i) ~ 1.

b) Conversely, let dl,..., dn be a sequence of positive integers. Then
there is a finite tree with leaves ll ,..., l, in lexicographic order such that d i =
depth(li) iff whenever Y'~=I 2 - d i = L / 2 M where L is odd and k < n, then
there is a k < k' ~< n such that Y~'=I 2-a~ =- (L + 1)/2 M. I

It is impossible to extend Lemma 2 to infinite trees. Fortunately we only
need a much weaker extension. We use I [t o denote length.

Theorem 3. (2s) Let P be a complete prefix code for some countably
infinite set X, and define the function d by d(x) = I P(x)l for x ~ X. Then

O< ~ 2 -a~i) ~ l
xEX

Conversely, let X be a countably infinite set and let d: X ~ N be such that

0 < ~ 2-d(x)~<l
x E X

Then there is a complete prefix code P for X such that d(x) = I P(x)l for all x
in X. II

Given a code P on a set X we call ~x~x 2-tP(x)l the characteristic sum of P.

3. SEARCH CODES FOR THE NATURAL NUMBERS

There are several ways in which two prefix codes P and Q for the set X
could be said to be equivalent. The strongest equivalence is identity, in which
case P(x) = Q(x) for all x in X. A commonly used equivalence is to require

Searching and Encoding for Infinite Ordered Sets 61

IP(x)l = I Q(x)l for all x in X. When X has a probability distribution this
equivalence preserves the expected codeword length. The weakest
equivalence which is useful is to require that the codes have the same
number of codewords of each length, or, equivalently, IP*(n)] = I Q*(n)l for
all n in N. In our opinion this last equivalence is particularly appropriate
when there is no underlying probability distribution on X. This equivalence
has been studied in Boyd (3) and Golomb. C~)

The next theorem answers Bentley and Yao's question concerning
search codes for N, at least for the three forms of equivalence discussed
above.

Theorem 4. Let P be a complete prefix code for of N. Then there is
a search encoding S and N such that

1. P(n) = S(n) for all n iff P is order-preserving.

~n=l 2 - = L /2 ~ where L 2. lP(n)l=JS(n)l for all n iffwhenever k Im,)l
is odd and L < 2 v - l , then there is a k ' > k such that
~.n=lk' 2-1P(n)l = (L + 1)/2 M.

3.]P*(n)l --- I S*(n)l for all n iff the characteristic sum of P is 1.

ProoL a) By Lemma 1 it suffices to show that if P is order-preserving,
T is the tree corresponding to P, and p is any internal node of T, then L (p)
has a maximal element. Since P is complete, R(p) is nonempty. If k is a
label of a leaf in R (p) then the order-preserving property of P shows that the
labels of the leaves in L (p) are a subset of the natural numbers less than k,
and hence L (p) is finite and has a maximal element.

b) Note that any search tree for N has exactly one infinite path, which
is the rightmost path of the tree. To show necessity, let S E Y (N) and let k
be any integer. Let p be the node of Ss tree which is the lexicographic
successor of the leaf corresponding to S(k). Let M = depth(p) + 1. Then by
Lemma 2a, ~ 2 -Is~"~q ~,=1 = L / 2 M where L is odd. If L < 2 M - 1 then P is
not the rightmost node at its depth, and hence not major. Therefore R (p) is a
finite set. If k' is the maximal label of a leaf in R(p) , then k' > k and
Z~'=~ 2-1s~")l = (L + 1)/2 "~t.

To show sufficiency, assume that P has the indicated property. We
claim that for any l in N there is a number N(I) such that ~N(t) 2-fe(,)S_ z k . a n = 1

1 - -2 -t. We define N(0) to be 0. To find N(1), let M = tP(1)I. If M = 1 then
2 -Imn)l 1/2 ~t, so by the property of P N(1) equals 1. Otherwise, Y~=I =

kl tP(n)l there is a kl such that ~ .=1 2 - = 2/2 M = 1/2 ~-~. Repeated usage of
the property of P gives a sequence 1 < k l , (k 2 . , . <kM_ 1 such that

ki - I P (n) l ~ , = ~ 2 = l/2M-i for l <~ i <. M - - 1 . Set N(1) equal to Kg_ 1. Having
found N(I), let K = tP(N(I) + 1)]. Then K~> I + 1 and v~u~t)+a 2 -le~")l - / - . . .an = 1

828/J1/1-5

62 Stout

1 - 2 - t + 2 -K = [2K-t(2 t - 1) + 11/2 K. As before, repeated use of the
property finds N(l + 1), which completes the claim.

We will now use the N(I) to build a search tree for N. By Lemma 2b
there is an S l of Y ({ N (/ - 1) + 1,..., N(/)}) satisfying [Sl(n)[= IP(n)l- l for
all N(1--1)< n<.N(1). Our tree consists of the tree for the St and extra
nodes PI, l C N. The root of the tree is Pl . The left subtree of pl is Sis tree
and its right subtree is the subtree with root P1+1. The label for Pt is "~-.N(/)".
If S is the code corresponding to this tree then IS(n)l = IP(n)l for all n.

c) The necessity of the condition was shown in the proof of b. To
show sufficiency, we will actually show that if ~.n 2-1mn)l = 1 then there is
an S C Y (N) such that IP*(n)l = IS(n)l for all n, in which case S* = S. To
do this we merely note that since Y'., 2-1P*(")l = 1 and the codewords of P*
are ordered by length, P* satisfies b. 1

Corollary 5. Let P be a prefix encoding, complete or otherwise, of
some infinite set. Then there is an S in Y (N) such that Ie*(n)l >~ IS(n)l for
all n.

Proof. If the characteristic sum of P equals 1 then this follows from
the proof of Theorem 4c. Otherwise there exists a function d: N ~ N such
that d(n)<~ (P*(n)l for all n and Y~, 2 -a~")= 1. By Theorem 3 there is a
prefix code Q for N such that [Q(n) l=d(n) for all n. By the proof of
Theorem4c there is a search code S for N such that IS(n)[= IQ*(n)l <~
IP*(n)l for all n. |

There are many conditions on a complete prefix code which guarantee
that its characteristic sum is 1, and hence that allow Theorem 4c to be
applied. Two of the simplest are given in the following corollary.

Corollary 6. Let P be a complete prefix encoding of N. If either

a) For any n there are only finitely many codewords of P which
lexicographically precede P(n), or

b) There is an integer K such that Ps tree has at most K major nodes
at any depth,

then the characteristic sum of P is 1 and hence there is a search code
S@ S(N) such that [P*(n)l-= IS*(n)l for all n.

Proof. a) Suppose P has two major nodes p and q at the same depth,
where p lexicographically precedes q. The subtree rooted at p has infinitely
many leaves, all of which lexicographically preceed each leaf of q. Therefore
condition a implies condition b with K = 1. b) Assume that the condition
holds. Let T be the tree for P, and let d be an element of N. If each major

Searching and Encoding for Infinite Ordered Sets 63

node of T at depth d is replaced by a leaf then the characteristic sum of the
resulting finite tree is 1, and therefore the characteristic sum of T is at least
1 - K 2 -d. Letting d-~ oo gives the result. |

We note that there are simple examples which show that the converse of
Corollary 6 is incorrect, i.e., there are prefix encodings of N whose Kraft
sum is 1 but which satisfy neither a nor b. In fact, there are prefix encodings
of N which fail to satisfy a or b) and yet which satisfy the condition of
Theorem 4b. On the other hand, any encoding satisfying the condition of
Theorem 4a must satisfy conditions a and b of Corollary 6.

4. SEARCH CODES FOR THE INTEGERS

In this section we provide the integer analogue of Theorem 4. The
reasons for this analysis are fourfold: first, the integers are an important
ordered set. Second, the results here provide a useful contrast to the results
of the last section, showing the extent to which the order properties of N are
reflected in Y (N) . In fact, one might read Corollary 5 as showing that for
some purposes there are no differences between search codes and the set of
all prefix codes, an impression which will be corrected here. Finally, the
results of this section and the preceding one motivate our consideration of
omnipotence, a concept introduced and analyzed in the next two sections.
They also show how the order preserving properties of search codes impose
restrictions. If we allowed order destroying questions such as "Is x = 0?"
then one could have a search encoding S of Z such that IS(0)I = 1, which is
impossible with our restrictions.

Theorem 7. Let P be a prefix encoding of Z. Then there is a search
encoding S C Y (Z) such that

a) P(n) = S (n) for all n in Z iff P is lexicographically ordered.

b) iP(n)l = IS(n)t for all n in Z iff whenever k -le(,)j Z , = -oo 2 = L / 2 'v*
where L is odd and L < 2 M - 1, then there is a k ' < k such that
Z~'---oo 2-1~(")' = (L + 1)/2 M.

c) lP*(n)l = IS*(n) l for all n in N iff the characteristic sum of P is 1
and for any k/> 1, Ps tree has at least two nodes at depth k which
are not leaves.

ProoE Let S C Y (Z) and let p be the root of S. No matter how p is
labeled, its right subtree will be a search tree for a translated copy of N and
its left subtree will be a mirror image of such a tree. We infer that at every
depth beyond zero there are exactly two major nodes, and there are no leaves
at depth one. Using this, a and b follow essentially as in Theorem 4 and their

64 Stout

proof will not be given here. For c we first prove necessity. The necessity of
the characteristic sum being 1 follows from b. Suppose there is only one
node of Ps tree at depth k which is not a leaf. Then it is the only major node
of Ps tree at that depth. Further, if N is the number of leaves of depth k or
less, then any prefix code Q such that [P*(n)l = [Q*(n)[for 1 ~<n ~<N will
also have only one major node at depth k. Therefore Qs tree cannot be the
tree of any member of Y (Z) .

To show the sufficiency of c, we need to partition the multiset {IP*(n)[:
n C N} into two infinite multisets M 1 and M 2 such that ZmeM1 2 - m =
Y~m~M2 2-m = 1/2. We can then use Theorem 2 to find $1, $2 E Y (N) such
that { [S* (n) [+ l : n C N } = M 1 and { I S * (n) [+ l : n ~ N } = M 2. Our tree
would then have a top node with left subtree a mirror image of S1 s tree and
right subtree equal to S 2 s tree. To find Mj and M 2 we will iteratively show
how to allocate [P*(n)[to either M~ or M 2 in such a way that after all
IP*(n)[less than or equal to k have been allocated, then Y~ {2-m: m ~ M 1,
m ~< k} ~ 1 / 2 - 1/2 k and Y~ {2-m: m E M 2, m ~ k} ~< 1 / 2 - 1/2 k. Assuming
this has been done for k we show how to do it for k + 1. Since at least 2
nodes of depth k + 1 are not leaves, ~ {2-1P*(")l: IP*(n)l <~ k + 1 } <~ 1 - 2 k.
If L is the number of leaves of P of depth k + 1, then allocate
r a i n (L , (1 / 2 - 1 / 2 k - l - y ~ { 2 '~:m~M~, m ~ < k }) • k+l) of them to M r,
and the remainder, if any, to M 2.]

We remark that there are easy examples to show that the two conditions
in c are independent. In particular, the tree with one leaf at each depth
greater than zero has characteristic sum of 1, but there is no corresponding
search code for Z. There is one for N, so in a sense there are ways of
searching N which have no direct equivalent for Z, and so in the same sense
Y (Z) provides a less versatile collection of codes than does .Y(N).
However, the fact that no code in Y (Z) can have a codeword of length 1
does not severely limit the asymptotic properties of the search codes. For
infinite prefix codes P and Q we use the notation IP*I >/]Q*[to mean that
IP*(n)l >/]Q*(n)l for all n in N, IP*I =]Q*I to mean IP*(n)l =[Q*(n)l for
all n in N, and]P*]>/alQ*] to mean that]P*(n)]>~lQ*(n)] for all
sufficiently large n (the "a" is for "asymptotically").

Corollary 8. Let P be a prefix code for some infinite set. There is an
S in 5P(Z) such that IP*(n)l >i IS*(n)l for all n sufficiently large.

Proof. Using Corollary 5, let Q C Y (N) be such that I P * I) [Q * [.
Let T denote Qs tree. We will modify T to produce a new tree U satisfying
the conditions of Theorem 7c, and such that [P*[) a I U* [. (Here we have
extended our * notation to trees in the obvious way.) Let P0 and Pl be the
major nodes of T of depth 0 and 1, respectively. Let U1 be any finite tree

Searching and Encoding for Infinite Ordered Sets 65

with as many leaves as L(po)UL(pl) and let U 2 denote the right subtree of
Pl with every leaf replaced by a node each of whose sons are a leaf. Form U
by having a root node whose left subtree is U1 and whose right subtree is U 2.

Each leaf in R(p 0 (i.e., all but finitely many leaves of T) corresponds
to two leaves in U whose depth is the same as that of the original leaf. If d is
the height of U 1 then :for any h > d, U has at least as many leaves at depth h
or less as does T. For n sufficiently large,]g*(n)l ~ IQ*(n)l ~ IP*(n)}.
Finally, to see that at any depth k >~ 1, U has at least two nodes at depth k
which are not leaves, note that each major node of U has at least two leaves
in its left subtree, and hence neither the major node of depth k nor the left
son of the major node of depth k - 1 are leaves. 11

5. OMNIPOTENT SEARCH CODES

Corollary 5 shows that if one is only concerned with the rate at which
codeword lengths grow, then Y (N) is as versatile as the collection of all
prefix codes. In particular, some properties of 5P(N) can be carried over to
properties of arbitrary codes. Motivated by this, we say a set g- of prefix
codes is omnipotent (asymptotically omnipotent) if give any prefix code P
there is a T of g- such that IP*I >/IT*I ([P*I >/a IT* t). Corollary 5 shows
that 5 ; (N) is omnipotent, while Theorem 7c shows that Y (Z) is not, and
Corollary 8 shows that Y (Z) is asymptotically omnipotent. In this section
we characterize those ordered sets X such that J~(X) is omnipotent, and in
the next section we characterize the ordered sets whose search codes are
asymptotically omnipotent. Our theorems are really about order types since
if X and Y have the same order types then there is a natural isomorphism
between Y (X) and Y(Y) .

If (X, <x) and (Y, <y) are two ordered sets then X + Y denotes the
ordered set of X followed by Y, i.e., the elements of X + Y are those of the
disjoint union of X and Y, and the order < is given by e < d iff either e,
d C X and e <x d, or c, d C Y and c < r d, or e ~ X and d E Y. For example,
(-co) +co is of the same order type as Z, where by the negative of an
ordered set we mean the reverse order on the same objects. For another
example, co + (-co) is the same order type as {• n C N} with its natural
order.

Let X be an ordered set. A eut of X is a partition of X into two sets B
and C such that b < e for all b ~ B and e ~ C. Notice that X = B + C. If
both B and C are infinite then we say the cut is major. For example, co has
no major cuts, Z has infinitely many, co + (--co) has one, and co + 1 + (-co)
has two. (The set co + 1 + (--co) is of the same order type as {•
n C N} U {0}.) Further details on ordered sets, order types, cuts, etc. can be
found in Sierpinski ~22) (Chapters XI and XII) or Zuckerman (z6) (Chapter 6).

66 Stout

Insight into the power and subtlety of cuts can be gained by reading
Conway {4) or Knuth's novel. {~4)

Proposition 9. a) The only infinite order types with no major cuts
are those of co, -co, co + n, and n + (-co) for n E N. b) The only order type
with exactly one major cut is that of co + (-co).

Proof. a) Let X be an infinite ordered set with no major cuts. Define
the perhaps empty set X 1 which consists of the minimal element of X, the
successor of the minimal element, the successor of that, and so on. Similarly
define the perhaps empty set X~ which contains Xs maximal element, its
predecessor, and so on. If X\(XI U X~) is not empty then let x be one of its
elements. If X\(X I U X2) is infinite then { y E X: y ~ x} and { y E X: y > x }
forms a major cut, while if it is finite and nonempty then X1 and X2 must
both be infinite, so again { y ~ X: y ~ x} and { y E X: y > x} forms a major
cut. Therefore XI Or X2 is finite. If X~ is empty then X has the order type of
-co, while if X is finite and nonempty then X has the order type of n + (-co)
for n = card(X~). Similarly, if X2 is finite then X either has the order type of
co of co + n for some n. b) Let X be an infinite set with exactly one major
cut, of the form X = X1 + X2. Each of X1 and Xz are infinite sets with no
major cuts. Trying all possibilities from part a shows that X must have the
order type of co + (-co). |

We will show that Y (X) is omnipotent iff X has at most one major cut.
We already know that 5"(co) is omnipotent, and since Y (X) is omnipotent
iff Y(- - X) is omnipotent, we also know that Y(--co) is omnipotent. We need
only consider Y(co + n) and .Y(co + (-co)). The following proposition is
similar to Theorem 4a and its proof will not be given.

Proposition 10, a) Let P be a prefix encoding of co + n for some
n C N There is an S in Y(co + n) such that P(k) = S(k) for all k in co + n
iff P is lexicographically ordered.

b) Let P be a prefix encoding of co + (-co). There is an S in
5~(co+ (-co)) such that e(k)=S(k) for all k in co + (-co) iff e is
lexicographically ordered and Ps tree has only one infinite branch. II

The extra condition in b is necessary because one could encode {•
n E N} as follows: let Q be any search encoding of N. Define P(1/n) = 1Q(n)
and P(-1/n) = 0Q(n), where Q(n) denotes the one's compliment of Q(n). In
the tree for P, the top node corresponds to asking if the number is positive or
negative. Our requirement that the labels on search trees must be of the form
" < x " or "~<x" does not allow such a question. It is easy to show that if we
allowed questions of the form "Is x in B?" where B and X - - B is a cut of the

Searching and Encoding for Infinite Ordered Sets 67

ordered set X, then for any prefix encoding P of X there is an S in Y (X)
such that P(x) = S(x) for all x in X iff P is lexicographically ordered.

Theorem 11. Let X be an infinite ordered set. Then Y (X) is
omnipotent iff X has at most one major cut.

Proof. Suppose X has at least two major cuts. Then there is an x in X
with infinitely many elements greater than x and infinitely many elements
smaller than x. If S C Y (X) then there are infinitely many leaves both to the
right and to the left of the one labeled x, so there are two infinite branches.
To show that Y (x) is not omnipotent it suffices to show a prefix code P for
which there is no S in J (x) such that [P*[/> IS* 1. Consider the unary code
P on N such that IP(n)[= n. If [P*] >/IS*l then S can have only one infinite
branch, and therefore there is no such S in Y(x) .

Conversely, suppose that X has no more than one major cut. Let P be
an arbitrary prefix code. The proof of Corollary 5 showed that we need only
consider the case where the characteristic sum of P equals 1. By Theorem 4
there is an S C Y (N) such that [P*] = [S*]. Using S, we will show that
there is a T in Y (N) such that IP*I = IT*I and such that infinitely many of
the major nodes have only a leaf as their left subtree. If p is such a major
node then rotating Ts tree o f p and at the major node directly beneath p with
create a tree with lexical order type co + 1. Doing this n times will give
co + n and doing it infinitely many times will give co + (-co) if one is careful
to keep infinitely many leaves to the left of the infinite branch. By
Proposition6, these will be trees for members of 5P (co+n) and
5~(co + (-co)), respectively. To construct T we will take Ss tree and recur-
sively modify it. Let k be the least integer such that no major node at depth
k or greater has only a leaf as its left subtree. (If there is no such k then we
are done.) Let p be the major node at depth k, and let l be any leaf in ps left
subtree. Let q be the major node at depth one less than that of l. Notice that
q is a successor of p. Replace l with qs left subtree and make qs new left
subtree a single leaf. No change has occured in the number of leaves at any
depth. Repeating this infinitely often will give the required tree. |

6. SEARCH CODES FOR ARBITRARY SETS

We know that the ordered sets with omnipotent search codes are the
ones with no more than one major cut. In particular, we know that .Y(Z) is
not omnipotent because no code in it can have a leaf at depth one. On the
other hand, Corollary 8 showed that ,Y(Z) is asymptotically omnipotent. It
will be shown that Y (X) is asymptotically omnipotent for any X. Essentially
we do this by using the fact that Y (N) is omnipotent and showing that for

any S in Y (N) there is a T in Y (X) such that IS*[>~ a IT* I. We first need
the following fact about Y (N) .

that

!

Lemma 12. Let P be a prefix code. There is an S in Y (N) such

lira I P * (n) l - I S*(n)l = oo

Proof. Let Q C Y (N) be such that I P*I ~ [Q* I. Let T be the tree for
Q, and let q; be its major node of depth i for i = 0, 1 We construct a new
search tree U using T. U will contain, among others, nodes u0, ul The
root of U is u 1. The node u2i+l has as its left subtree a finite tree whose root
node is u2i, and as its right subtree the infinite tree whose root node is u2,.+3.
The node u2i has as its left subtree a tree isomorphic to the left subtree of
q2i, and as its right subtree a tree isomorphic to the left subtree of q2;+1. The
label on u~ is the same as the label on q~. See Fig. 2.

Let S be the code corresponding to U. If in T the leaf corresponding to
n is in L(qi), then I S(n)l - I T(n)[= [i/21 - 1. As n tends to infinity so does i,
and [T * (n) [- [S*(n)l tends to infinity, as does l e* (n) l - IS*(n)l. II

Up to this point all of our results have been effective, but our final
result will not be. We prove that Y (X) is asymptotically omnipotent for any
ordered set X, but since there are more countable order types than there are
programs that result cannot possibly be effective. (The cardinality of coun-
table order types is that of the real numbers.) The following lemma is a fairly
simple set-theoretic result. Since its proof is nonconstructive we do not give
it.

T

68 Stout

Fig. 2. Rearranging a tree.

Searching and Encoding for Infinite Ordered Sets 69

Lemma 13. Let X be an infinite ordered set. There is a subset Y of X
such that exactly one of the following is true:

I. Y is of the same order type as co and {x: x > y for all y in Y} is
empty or has a least element.

2. Y is of the same order type as -co and {x: x < y for all y in Y} is
empty or has a greatest element.

3. Y = Y~ + Y2 where Y~ is of the same order type as co, Y2 is of the
same order type as -co and {x: Yl < x < Y2 for all y~ in Y1 and Y2
in Y2} is empty. II

Theorem 14. Let X be an ordered set. Then 5"~(X) is asymptotically
omnipotent.

Proof. Let P be an arbitrary prefix code and let S C Y (N) be as in
Lemma 12. Let Y be as in Lemma 13. We will show that there is a T in
Y (X) such that T is "like" S on Y. The construction of Ts tree depends
upon the nature of Y. We will proceed for case 2) only, the other cases being
similar.

T F

Fig. 3. Ts tree.

70 Stout

Let Y(1), I1(2),... be the elements of Y in order. Let X - = {x: x < Y(I)}
and X + = {x: x > Y(n) for all n}, let T_ be a search tree for X - and T + a
search tree for X +, and let x + be the least element of X +. Let X(n)= {x:
Y(n) < x < Y(n + 1)} and let T, be a search tree for X(n). Notice that
x = Y y x - u x + u U , x (n) . Modify Ss tree to produce a tree S ' as
follows: let n be such that X(n) is nonempty and let l be the leaf of S with
label n. Replace l with a node labeled '~<Y(n)' with left branch a leaf labeled
Y(n) and with T, as its right subtree. Repeat this for all nonempty X(n).

The tree for T is as in Fig. 3, where if T - or T + is undefined, both it
and the node above should be deleted. I T(Y(n))I<~IS(n)I+3, so
lim n IP*(n)l- IS*(n)l = oo implies lira, IP* (n)} - IT*(n)l = oo. II

7. CONCLUSIONS

Bentley and Yao (2) showed that good search algorithms for the natural
numbers determine efficient prefix encodings for them, and we have shown
that the converse is also true. If the only matter of concern is the number of
codewords of each length, then the search codes for the natural numbers are
just as good as general prefix codes. Search codes are therefore a powerful
mechanism for transferring efficient encoding to efficient searches, and vice
versa. Further, since search codes have several seductive properties, we
characterized those ordered sets whose search codes are as good as all prefix
codes, showing that they were the ones having no more than one major cut.
Once two or more major cuts are present there are restrictions on the
number of small codewords. If one ignores small codewords then for any
ordered set the search codes are as good as general prefix codes.

For both N and Z we also characterized those prefix codes for which
there is a search code which assigns to each element a codeword of the same
length as that given by the prefix codes. These results are more subtle than
those mentioned above for they must take into account the small codewords.
It would be interesting to see the corresponding result for arbitrary ordered
sets, or even just for the dyadic rationals.

There is a computationally important ordered set which we have not
considered here. Let S denote all finite binary strings, ordered
lexicographically. What is the equivalent of Theorems 4 and 7 for S? This
result is probably more subtle since S is a more complex ordered set than are
N o r Z .

We have considered search codes for only the easiest case, the linearly
ordered sets. There are many other sets with structure for which this ordering
is inappropriate. For example, the set may be the integer lattice points in the
plane and the probes may consist of giving a line and determining which
half-plane contains the desired point. In this simple case we can take

Searching and Encoding for Infinite Ordered Sets 71

products of search done for Z, but there are probably other interesting
searches. Since two or more dimensional data is receiving more attention
(image processing, data compression, array computers, database
applications, etc.) it may be fruitful to explore these extensions, especially
since several of these applications involve very large amounts of data.

One final question. Miller and Rosenberg ~lv) used efficient searching of
N to find an efficient solution of a particular case of the lowest common
ancestor (LCA) problem. Aho, Hopcroft, and Ullman (1) showed that LCA is
an important problem with many applications, and Maier (16) gave a solution
of the general LCA problem which used less space than the solution of Aho,
Hopcroft, and Ullman (see also Harel(12)). Let p and q be nodes in a tree
and let d(p, q) denote the number of edges on the path from p to q. Can
efficient searches for N be used to give efficient algorithms for the on-line
lowest common ancestor problem, where the time is measured in terms of
d(p, q) alone and where the trees are not necessarily finite?

A C K N O W L E D G M E N T S

The author w o u l d like to thank an a n o n y m o u s referee for several
helpful comments .

REFERENCES

I. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "On finding lowest common ancestors in
trees," SIAMJ. Comput., Vol. 5, pp. 115-132, 1976.

2. J. L. Bentley and A. C. Yao, "An almost optimal algorithm for unbounded searching,"
Info. Proe. Let., Vol. 5, pp. 82-87, 1976.

3. D. W. Boyd, "The asymptotic number of solutions of a diophantine equation from coding
theory," J. Comb. Theory Ser. A, Vol. 18, pp. 210-215, i975.

4. J. H. Conway, On Numbers and Games (London, Academic Press, 1976),
5. P. Elias, "Universal codeword sets and representations of the integers," IEEE Trans. lnfo.

Theory, Vol. 21, pp. 194-203, 1975.
6. S. Even, Algorithmic Combinatorics (New York, Macmillan, 1973).
7. M. Rodeh, "Economical encodings of commas between strings," Comm. ACM, Vol. 21,

pp. 315-317, 1978.
8. R. G. Gallager, Information Theory and Reliable Communication (New York, Wiley,

1968).
9. R. G. Gallager and D. C. van Vorhis, "Optimal source codes for geometrically

distributed integer alphabets," IEEE Trans. Info. Theory, Vol. 21, pp. 228-230, 1975.
10. S. W. Golomb, "Run-length encodings," IEEE Trans. Info. Theory, Vol. 12, pp. 399401,

1966.
11. S. W. Golomb, "Sources which maximize the choice of a Huffman coding tree," lnfo. and

Control, Vol. 45, pp. 263-272, 1980.

72 Stout

12. D. Harel, "A linear time algorithm for the lowest common ancestor problem," 21st
Annual Symp. on Foundations of Computer Science (New York, I.E.E.E., 1980),
pp. 308-319.

13. D. E. Knuth, The Art of Computer Programming, Vol. 3, Searching and Sorting (Reading,
Addison-Wesley, 1973).

14. D. E. Knuth, Surreal Numbers (Reading, Addison-Wesley, !974).
15. V. E. Levenshtein, "On the redundacy and delay of separable codes for the natural

numbers (Russian)," Problemy Kibernetiki, Vol. 20, pp. 173-179, 1968.
16. D. Maier, "An efficient methods for storing ancestor information in trees," SlAM J.

Comput., Vol. 8, pp. 599-618, 1979.
17. R. E. Miller and A. L. Rosenberg, "On computingdistances between leaves in a complete

tree," Int. J. Computer Math. See. A, Voh 8, pp. 289-301, 1980.
18. C. H. Papadimitriou, "Efficient search for rationals," Info. Proc. Let., Vol. 8, pp. 14 ,

1979.
19. J. E. Raoult and J. Vuillemin, "Optimal unbounded search strategies," Automata,

Languages and Programming, Seventh Colloquium, Noordwijkerhout, July 1980, (Berlin,
Springer-Verlag, 1980), pp. 512-530.

20. S. P. Reiss, "Rational search," Info. Proc. Let., Vol. 8, pp. 89-90, 1979.
21. M. Rodeh, V. R. Pratt, and S. Even, "Linear algorithm for data compression via string

matching," Journal ACM, Vol. 28, pp. 16-24, 1981.
22. W. Sierpinski, Cardinal and Ordinal Numbers, 2nd Ed., Revised (Warsaw; Panstowe

Wydawnictwo Naukowe, 1965).
23. Q. F. Stout, "Improved prefix encodings of the natural numbers," IEEE Trans. Info.

Theory, Vol. 26, pp. 607-609, 1980.
24. Q. F. Stout, "Efficient search-based encodings of the natural numbers," to appear.
25. Q. F. Stout, "Infinite trees and the Kraft-MacMillan equation," to appear.
26. M. M. Zuckerman, Sets and Transfinite Numbers (New York, Macmillan, 1974).

