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Abstract—Energy consumption has become a critical factor
constraining the design of massively parallel computers, ecessi-
tating the development of new models and energy-efficient gb-
rithms. The primary component of on-chip energy consumptio
is data movement, and the mesh computer is a natural model
of this, explicitly taking distance into account. Unfortunately the
dark silicon problem increasingly constrains the number ofbits
which can be moved simultaneously. For sorting, standard neh
algorithms minimize time and total data movement, and hence
constraining the mesh to use only half its processors at any
instant must double the time. It is anticipated that on-chipoptics
will be used to minimize the energy needed to move bits, but
they have constraints on their layout. In an abstract model,we
show that a pyramidal layout and a new power-aware algorithm
allows one to sort with only a square root increase in time ashe
fraction of processors simultaneously powered decreasd®revious
algorithms assumed fully powered systems, hence pyramid ging
was of no interest since when fully powered they are no faster
than the base mesh. Our results show asymptotic theoretical
limits of computation and energy usage on a model which takes
physical constraints and developing interconnection teatology
into account.

Keywords—Parallel algorithms, sorting, routing and layout,
nearest neighbors, minimum spanning tree.

I. INTRODUCTION

Power consumption has become an important design con
sideration for systems ranging from mobile devices to supera
computers. As the number of processing units has increased,
has energy usage, which is a problem when there is a limit o

the available total energy or peak power. In addition, iasieg
transistor densities has brought about physical conssrain
heat dissipation, limiting the fraction of chips operatatgull
speed. This “dark silicon” problem will only worsen [1], [2]

Further, since processors occupy physical volume, theze a
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Our goal is to study fundamental limits in the trade-
off of time vs. peak power for basic problems such as
sorting. Towards this end we use a classic abstract model
of a scalable parallel architecture that addresses thedssu
of locality and power consumption. While there are many
models of distributed-memory parallel architectures,hsas
hypercubes, it is the mesh that is most relevant. Numerous
mesh models have been analyzed and built ever since von
Neumann introduced cellular automata [3]. The mesh is a
scalable parallel computer architecture and has also bssh u
as a model of many physical processes where locality styong|
affects behavior [4], [5]. Here, both roles are intertwiniad
the consideration of energy consumption in massively fedral
computation.

A 2-dimensionalmesh-connected computer, or mesh, of
size N is a parallel computer consisting d¥ processors
arranged in a square lattice. All operations on values dtore
in a processor's memory, including transmitting a value to a
neighbor, take constant time and energy. Technically itigho
be constant energy per bit, not word, but we will ignore this
extra logarithmic factor. Thus the time and energy requiced
transmit a word of information from one processor to another
is linear in the distance between them. Energy can often be
viewed as equivalent taork, a term frequently used in the
parallel algorithms literature.

_ A processor isactive if it is calculating or communicating

nd is otherwise inactive and not using energy. More prgise
an inactive processor is in a very low power sleep mode and
pur algorithms consider the power needed above this level. W
give algorithms that minimize time givenpeak power bound,
where peak power is the maximum number of processors active
at any one time. The fraction of processors that are actille wi
be denoted by, so peak power will be equal to- N. Total

gnergy usage is the integral of power over time.

processors that are far apart from each other that take non- Much current research focuses on making processors more
constant time and energy to communicate between. Algosithmpower efficient and one approach is to add optical connestion
must take advantage of locality to reduce time and energy, gr lasers onto processors [6]-[13]. This technology is psech

fact typically ignored in algorithms for abstract sharedmory

to bring about many advancements. For example, the atticle

models such as the PRAM. Note that for parallel computerserconnect Opportunities for Gigascale Integration [14] states:
the relevant energy concern is peak power consumption from

an external source of power, as opposed to the total energy Microphotonic interconnects have long-term po-

limits of battery-powered devices.

tential to reduce latency, power dissipation, and



crosstalk while increasing bandwidth. e =
opohpOlo
Since light is fast relative to electrical connections anfless MemerrenO
less attenuation optical connections have important adgas: T T Y
they can link processors far apart and transfer data quitrkly Dopomogd
addition, power usage is less as transmitting an opticalasig [(H= {1 [
scales to long distances while taking nearly the same energy
for shorter distances [10], [15]. We model on-chip photsnic I e !
capabilities by adding “optical” connections optics to the ettt U
mesh. We refer to the connections in the standard mesh model OoOooooon

X

aswires. Communication time over an optical connection will Fig. 1: The optical connections of &
be counted as the same as communication over a single wigax'8 hesh

on the mesh, which is a constant. It is difficult to build mpiki

layers in hardware so we allow only one layer of optics, and

we prohibit crossings [9].

4 optical mesh on a

jonly of optical connections on top of the wire mesh. This

We do not require that this extra layer actually be optica - h . .
9 Y y b k x k mesh, which we will call aroptical mesh, consists of

interconnects, merely that it provides the capability @ins- o A
mitting information long distances with low power relatite Erocesslo_rlfP(z,]), fori,j € {O’I”/Ik’_%/k’f' i (k_l)ﬁ/k)'}fe
the capabilities of standard wires. Whether this is sugplie F'gure 1 llustrates an example. It is useful to note thataa

via optical waveguides, carbon nanotubes, or whatever els%/ki x n/k submesh there is one processor that is part of the
emerges, is not relevant to our analyses. optical mesh and so the communication diameter of the mesh

with an optical mesh i®©(v/N/k + k), which is less than the
The main result of this paper is a power-aware sortingo(/N) communication diameter of a standard mesh.

algorithm for this model. Sorting is a fundamental opematio )

which requires extensive communication, and it is a key step N the more general case where we allow optics of any

in many algorithms. Given a mesh of si2é with N items length, multiple mesh-like optical networks of differertes

stored one per processor, sorting takeéyN) time and ~ Can be embedded and a pyramid-like network can be achieved

Q(N?/?) total energy since simple matrix transposition resultg/ithin one layer of optics. We call this asptical pyramid,

in items moving a total distance 6f(N3/2). Mesh algorithms defined as follows: let: be the index of the least significant

achieving these lower bounds have been widely known anc‘;ta Birto(():]:ais.slc:)(r)rineggrug?i\;\t ;;’flh tg]gapﬁageéslc%rﬁr:clc’)lS%nﬁr;i:t
refined since the 1970’s [16]-[24]. i >
[16]-{24] 1)-2471 —1, for 0 < b < n/2971 — 1. Likewise, for each
By stepwise simulation, sorting can be accomplished incolumni such that2 < a < lgn — 1, connect a processor

© (1y/N) time usingrN peak power. In Section V it will be N Tow b-2°"! to a processor in rowb + 1) - 2~ — 1, for

a—1 i —1
shown that by adding an optical layer this can be reduced tq <b< n/2¢""—1. Note that optics are o_f lengdt -1 and
LN+ Llos N). F og® N\ this i bi It is easy to check that none of these optical connectiorsscro
O(7#VN +logN). Forr € w( =%~ ) thisis asublinear gigyre 2d illustrates the layout of the optical connections
increase in time as the peak power is decreased. lllusrativ . , L )
applications which exploit sorting and have the same tréideo Alternatively, a recursive deflnmpn may be easier to under
are given for two different classes of problems: all-neares Stand: on am x n mesh, place optical connections of length
neighbors in Section VI and minimum spanning forest in”/4 — 1 so that the following eight pairs of processors are

Section VII. connected:
P(n/2,0) ,P(n/2,n/4-1)
Il. THE MODEL P(n/2,n/4) ,P(n/2, nj2—1)
To simplify exposition, letz = v/N and assume that is a P(n/2,n/2) ,P(n/2,3n/4-1)

power of 2, with modifications to the more general case being
straightforward. We start off with the standard mesh model o
N processors connected imax n grid, where each processor
is connected to its adjacent neighbo#2(i, j) denotes the n/4,n/2) ,P(n/2 =1, n/2)

processor at coordinatés j), fori,j € {0,1,...,n—1}. Each n/2,n/2) ,P(3n/4—1,n/2)

processor has a fixed number of words of memory, each with P(3n/4,n/2), P(n—1, n/2)

©(log V) bits. This is enough to store its location in the mesh ) ) o

and a constant number of other values. Modeling physicalhen recursively place eight optics in each of the foyg x
properties, we assume that optics cannot cross and eaciloptin/2 submeshes until reaching the base case ¢f<ad mesh
connection has a fixed minimal width. This implies that eachafter a total oflgn — 1 levels of recursion.

processor has at most a constant number of optical connsctio

and that the bisection bandwidth of the network of just aptic A. Useful Properties

is O(V'N). The optical pyramid has a communication diameter of
We first consider the simple case of adding only optics 0f®(log N'), which is far smaller than thé&(v/N) communi-

one length to the mesh. Given optics of a specific length, sagation diameter of the mesh. Thus small amounts of data can

of lengthn/k, we can create & x k mesh network consisting be moved across the mesh quickly. More precisely, we will

(

(

(

(n/2,3n/4), P(n/2,n —1)
(0,n/2) ,P(n/4—1,n/2)
(
(

el g !



Another property is that optics of the same length compose
a network that can simulate any2¢+! x n/2%*! optical mesh
with a constant factor overhead, f&r < a < lgn — 1.
This is accomplished using processors evenly spaed
apart in the entire mesh, that is, processbB(s, j), for i,j €
{298,20 20+ 29 4 (n/20t1 — 1)29+1} are processors
in the optical mesh. Specifically, it takes eight time steps t
communicate between adjacent processors in an optical;mesh
processors need only to send data over four wire connections
and four optical connections to reach the next processar. Fo
convenience, we will refer to these as optical meshes, iggor
the constant factor overhead contributed by the gaps batwee
optics. Note that communication from a processor on on& opti
mesh with a processor on the next smaller or next large dptica
L - - - mesh takes constant time.
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(a) 1 x 1 optical mesh (optics of length
7) -

—_ _T_ _—— _T_ — (d) Optical connections and processors Our results utilize the pyramid in new ways. T_he _classical
in optical meshes of 82 x 32 mesh  Pyramid computer model (structure and communicationsslink

| | with an optical pyramid shown in figure 2e) is a model that has been considerably
| | studied in the past. However, no previous work on pyramid
computer algorithms considered energy usage, that ise ther
| | was no penalty for having all processors running all the time
B Algorithms for a standard pyramid can be run on the mesh with
| | an optical pyramid using stepwise simulation with a constan

_ , factor overhead, though such simple usage in general has a

g;)“? optical mesh (optics of length linear tradeoff of time vs. peak power and is of less interest

here. Further, for communication-intensive problems sash
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| | | | sorting, the pyramid with all processors active is no fattan
N the base mesh. Our power aware algorithms achieve a sublinea

i i i i increase in time as the peak power decreases, a property

: : : : unaqhievable if. only the base _mes.h is utilized. Howeves thi
et requires pyramid algorithms quite different from previones.

I I I I

I I I 1 . .
b Eﬁgdg O?'iiszse'cfé pyramid - computer lIl. L OWERBOUNDS

: : : : In the mesh model, there are two fundamental properties
L N N N that provide lower bounds. The first is communication diam-

? ? ? ? eter, which is relevant when data needs to be moved from
(c) 4 x 4 optical mesh (optics of length one side of the mesh to the other. On a standard mesh of
1) size N, the diameter i®©(v/N). If a problem requires global

. . . , communication, that is, at least one processor may receive
Fig. 2: lllustration of different levels of the layout of ogal jyformation originated by any processor, then any algatith
connections for @2 x 32 mesh with an optical pyramid (fig- {hat solves the problem také/N) time. The other property
ures 2a-2c), the optical pyramid (figure 2d), and the clasic ig e pisection bandwidth, relevant when the problem resui
pyramid computer model (figure 2e) moving all of the data in one half of the mesh to the other

half. For the mesh, the bisection bandwidth@$y/N), and
any algorithm which moves all the data from one half to the
other takes2(v/N) time.

see that the mesh with optics yields algorithms with noedin The benefit of optical connections on meshes is the ability
tradeoffs between peak power and time. to decrease the diameter, effectively lowering the communi
cation lower bound and reducing the total energy required to
move data across the mesh. Unfortunately, they do not change
the bisection bandwidth lower bound. Thus they can reduce
energy usage but cannot reduce running time of problems
that require significant bandwidth. As will be shown, adding
aﬂbtical connections allows sorting and permutation to be
solved ino(N?3/?) total energy, surpassing the lower bound
for permutation in a standard mesh. The algorithms in this
paper run at peak power most of the time, so total energy will
e O(time x peak powey.

A particularly useful property algorithms can utilize isth
recursive definition of the layout of the optical pyramideth
layout of the optical connections in any square submeslsés al
a logical optical pyramid. That is to say, an optical pyramid
over any square submesh can be simulated with a const
factor overhead. In situations where recursive algorittames
applied to ordered data, the Hilbert space-filling curvesoirty
is useful as it keeps local data in close proximity. In faot, f
items ordered in a Hilbert curve, every set lofconsecutive
items is contained within a square submesh with an optica
pyramid of sizedk. In addition to the bisection bandwidth, there are some



important lower bounds on meshes with optical connectionsare first moved to the x s optical mesh inO(v/S + log N)
These include: time using the tree structure of the pyramid. Then all values

: i . . can be routed on the optical mesh to theirs x n/s submesh
Diameter: no matter how optics are added, the diameteryqqination. Using pipelining, this can all be accomplisie

of the mesh i (log N). Since each processor is adjacent to :
only a constant number of processors, the number of reaEhab?(\/g +log V) time. More generallys processors can send

processors is at most exponential in the number of time step§ata o other processors @(v'S + log N) time using the
s x s optical mesh as long as the bandwidth on the optical

Permutation Energy: no matter how optics are added, the mesh between processors and their destinatiofiXéS).
total energy to permute iQ(N log V). To see this, note that
the comments above about the number of reachable process®'s Broadcast and Reduction
shows that if processors are connected to at mo#ters, then . . i
with more thany7_ ¢ < "+ = VN processors. Given an \/_N) time. The lower b_o_ur_ld comes from the communication
optical layout, construct the following permutation: goahgh ~ diameter and evenly dividing the peak power of the optimal
the processors in row-major order. For each processortsset ialgorithm, and it is easy to achieve this bound. On the pydami
destination to be the first processor which is not reachabte i this can be reduced (; +log N). To do this, the value to
or fewer steps and which is not already the destination ofesombe broadcast is moved to processtin/2,n/2) in O(log N)
other processor. It is possible that the findlV processors time. Then, using the tree network embedded in the pyramid,
have no such destination, in which case choose the destinati the value is broadcast to eaafis x n/s submesh irO(log V)
arbitrarily from the processors that are not yet destimstio time. In each submesh, one unit of energy per time step is used
Thus at leasO(N) processors are sending to a destinationf@ broadcast to all processors in the submesh, takig)
requiring at leas® (log N) steps. time.

Sorting Energy: there is the obviou$)(Nlog N) lower The data movement in a reduction operation is the reverse
bound on energy due to the number of comparisons require@f broadcast, where values are combined using a semigroup
This is also a lower bound on the energy needed for datg@Perator. This can also be accomplishe@iff +log V) time.
movement. This follows from the permutation bound since
a permutation can always be achieved by sorting, using th€. Scan

destination as the key. .
y Given valuesig, - - - ,an_1 stored one value per processor

Note that while all parallel computers have AN log N)  on the mesh, and given a semigroup operatigra scan oper-
lower bound for sorting comparisons, they do not all shai® th ation results in processétaving the value,y® a1 ® - - - ® a;,
lower bound for permutation. In standard models of sharedfor 0 < i < N — 1. We assume thap can be computed in
memory machines, permutation takes o@lyN) operations, constant time.
while the above proof shows that for distributed-memory
machines with bounded degree, the lower bound on dat%e
movement isO(N log N).

If the values are ordered by a Hilbert or z-order curve in
mesh with an optical pyramid, a scan can be computed
in ©(1 + log N) time using the tree network embedded in
the optical pyramid. If the values are in row-major ordeg th
IV.  BASIC ALGORITHMS VN x v/N optical mesh can be used to compute the scan in

The following operations on the mesh with an opticaI@(% +VN) time.

pyramid are frequently used operations in algorithms. We
denote peak power by (which is equal tor N, wherer is V. SORTING
the fraction of total processors that are activey < r < 1).

For convenience, let = v/S and assume thatis a power of In this section, we show that, given\ peak power,
JVETIR LS, IR X ermutation and sorting can be accomplishedifi-v/N
2. This simplifies notation as we will frequently refer to the P g P VT )

s x s optical mesh. time using the optical pyramid, as opposed to &gt v/N)

time required on a standard mesh, fore Q(%). We
first give an algorithm for permutation and then use it within
the sorting algorithm. Note that, due to bandwidth limits,
the algorithm is not as simple as movingV items at a
time to their destinations. To simplify notation, algorith are
presented in terms of peak powgr

Our analyses in the following sections will be given in
terms of the available peak powst However, running times
will often be expressed in terms of in order to emphasize
the relationship between the amount of slowdown and fractio
of processors active.

A. Routing Lemma 5.1: On a mesh of sizé&v/ l/vith an olptical pyramid,
On the standard mesh, given two arbitrary processors ir]1V. ltems can be permuted i (\/;\/N+ " 1OgN) fime
which one sends a word of data to the other, routing the datd>'N9 rNV peak power.
between the processors tak€gy/N) time, with the lower Proof: Our algorithm uses the x s optical mesh to
bound set by the communication diameter. On the pyramidmnove data across the mesh. We conceptually partition thb mes
data can be communicated@(log V) time by using the tree horizontally inton/s x n submeshes, referred to agtic rows,
structure of the pyramid. /'S processors have data that needslabeled Ao, ..., A,_1 and also partition the mesh vertically
to be sent to other processors, the values at those prosessarto n x n/s submeshes, referred to agtic columns, labeled



for all items; S at a time,s per optic columndo those fromB. with destinationd
tint < index of optic column of origin J
igest<— index of optic row of destination
for i,j7 < 0, s parallel do
count (s, j) < number of items fromB;
With 7 = igest

. isep then the item has

an intermediate location in columjy: = L% - 8]

of optics. To tag each item, the items move to the

processors on the optical mesh as in the previous step,
but instead of being discarded once it reaches the

. Y aes optical mesh processor, it gets tagged and reverses its
(i, §) — 3y—g count (i, j') mpovement anI(Dj returns to i?s origi%%I location.
y(i) — Y5y count (i, j') :
» < index within items moved t4A;,.., B;) o ltems are moyed to the diagonal of the mesh, that
§ 2(i,5)+2 is, row iiny = j of the optical mesh, which is the
Jint = LWS intermediate row items move in before moving to
end for their destination row. Then, each item moves to its
Move item to A;,, intermediate columnjy, then to its destination row
Move item to Bj;, igess ONCe each item is moved to its destination row,
Move item to A it is spread out so that eaeky/s x n/s submesh in
end for the row has an equal number of items that have been
for i < 0, s parallel do moved to that row so far.
for all items in A;; s at a timedo
Move item to destination Now eachA; contains only items that have destinations
end for within A;. For eachA;, s active processors are used to move
end for s items at a time to their correct destinations.
Fig. 3: Permutation algorithm At each iteration, there are never more théatems moving

at a time in each4; or B;, so there is enough bandwidth

to accomplish each iteration i®(+/S) time. Since it takes

O(log N) time to reach a processor on the optical mesh and
By, ...,Bs_1. Every A; contains a single row of the x s there areN/S iterations, the running time i®(N/v/'S +

optical mesh, and every; contains a single column, for NloeNy _ g(_L /N 4 L]og N). -
0 <1i < s— 1. Each processor on the optical mesh belongs to s vr "
a unique pair(A;, B;) of submeshes. A generalization of the permutation algorithm is needed

for the sorting algorithm. We will call itedistribution. Instead

of a unique destination processor for each item, the mesh is

partitioned into approximately square contiguous blockd a

e  Within eachB;, s items that have not yet been moved each item has a destination block. Within its destinatiathl
are chosen. A copy of each of thesétems is moved an item can be assigned to an grbltrf_;lry processor as long as
along the vertical optical connections ii; to the each processor ends up wnh a sm_gle item. Within a blc_)ck, the
processor on the optical mesh ify,,_, the optic row Processor of smallest index is designated as the repréisenta

with the item’s destination. Each processor on thedestination location of the block. For simplicity, we assum

optical mesh has a counter that keeps track of th&lock sizes are a multiple a¥/S. For block sizes less than or
number of items that were moved to it. Every time an equal toN/S, items moving to these blocks use the same data

item is moved to a processor on the optical meshmovement as in the permutation algorithm. For blocks of size

the counter is incremented by one and the item isV/S, there is no change to the permutation algorithm except

discarded. The result of this is that each processor offeMs designate their destination as the representaiaepsor

the optical mesh in(A;, B;) knows count(i, j), the pf their destination block and, in the Igst step, items jutt_ fi

number of items inB; that have a destination i;. in eachn/s x n/s submesh as they arrive by moving the first
processor in row-major order of the block without an item yet

e A scan operation is performed on the counters on theor blocks of size greater tha¥i/ S, each processor on the s

optical mesh that determines the number of items abptical mesh has to keep track of whether all the processors

processors in columns numbered less than each pron its n/s x n/s submesh has received an item yet. Before

cessor’s column number in the same row. A reductioreach iteration of the first loop in the permutation algorithm

is also performed in eacH; to determine the number the S items being moved are moved on the s optical mesh.

of items in that row. With this information, each item Each processor on the optical mesh determines how many of

is tagged with the column numbeis;, of the optical  the S items will be moved to its submesh, and if it is full, it

connections it must use in order for items to be dis-changes the item’s destination to the next available submes

tributed as evenly as possible among thgrocessors  This takesO(N/+/S + nggN) = 0(LVN+2LlogN) time.

on the optical mesh in each submesh That is, each vr "

item is assigned an/s x n/s submesh, in4;,.. and Theorem 5.2: On a mesh of sizéV with an optical pyra-

B, as an intermediate location. Specifically, for anmid, N items can be sorted i® (L\/NJF llogN) using

item starting inB; with a destination i, if zis 5 peak power vr "

the number of items with a destination in the same '

submesh4,,., and in a submestB;/, j/ < j, y is Proof: The following algorithm sorts items into a Hilbert

the number of items with a destination in the samespace-filling curve order. All sorting in any submesh using

submeshA4;,., and z is the index of the item out of the standard mesh algorithm or a recursive call is in terms of

Figure 3 is an outline of the algorithm. In more detail, the
following is repeatedV/S times:




pro%egure ?}DRK%’tﬁ) Step 4: in the worst case, the size of each paftig'NS),
! ISZti(nda)rd_sorMen but each part of siz& (/N S) takesO(v/N) time to sort, so
this step is accomplished i@(N/+/S) time.

else
Partition M into y/NN/S submeshes of siz¢g NS In the case whereS < N'% a few modifications to
for all submeshed/’ do >step 1 the algorithm must be made. For steps 1 and 2, the sorting
SoRT(M’, S) algorithm using peak powev/'N is simulated. Therefore, in
end for step 1, the items are partitioned ind'/* submeshes of size
Select everys™ item as splitter N3/ and each is recursively sorted wighpower. For step 2,
Standard sort théV/S splitters >step 2 the simulation of sorting the/N splitters is run on the x s
Redistribute intoV/S submeshes > step 3 optical mesh, that is, the wirgm/s x \/n/s mesh around each
for all submeshed/’ do >step 4 processor in the optical mesh that acts as a submesh of size
SorT(M’, S) VN /S part of they/N splitters. Since the total energy required
endeirfld for to sorty/N items on a mesh i873/4, step 2 take®)(N3/4/S)

time, which is within the required time. No other changes
are required for the remaining steps, where the redistabut
algorithm and recursive calls witly peak power are used,

Fig. 4: Sorting algorithm for mesi/ of size N with peak  \ynich takes©(N/v/S + NYogNy _ (L /N + Llog N
power S, for NV/4 < § < N i (N/VS + sy (\/;\/_4- Llog .)

end procedure

Given this algorithm for sorting, algorithms that also use

sorting or routing can have similar time-power tradeoffe W
a Hilbert space-filling curve. If another order is desiredeo Will only consider peak powenN?’, for 0 < 6 < 1, because
can switch to any other sorted order by a simple permutatiorivhen peak power is close to 1, algorithms are more serial in
Figure 4 gives an outline of the recursive algorithm thatssor nature and are less interesting.
N items with S peak power, forN'/4 < S < N.

VI. ALL-NEARESTFNEIGHBORS
The base case of the algorithm occurs when the submesh . ) _ . .

is of sizeS, when a standard mesh algorithm [22] can sortthe Given a setd of points in d-dimensional space, the all-
s x s mesh inO(+/S) time using peak powe§. Whens = N nearest-neighbors problgam is to determine, for_ every point
this is just the standard mesh sorting algorithm that serts i? € 4, the closest point inA — {p}, where distance is

O(v/N) time. There are four steps: measu_red via arL, metric,1 < p < oo. It is well known
(VN) P that this fundamental problem can be solvedd(N log N)

Step 1: the mesh is partitioned intg N/S submeshes of time serially [25].

size vV NS, and each submesh is individually sorted one at Theorem 6.1: Given NV or fewer points ind-dimensional
a time with S peak power inO(v/N) time, for a total of space, distributed one per processor on a mesh of’éinéth
O(N/+/S) time. an optical pyramid, the all-nearest-neighbors problem lzan
— _solved in©(J-V/N) time usingrN peak power, forr =
Step 2: everyS™ item in egch of the submeshes sorted |n1/N175' 0 < & < 1, where the implied constants depend
step 1 is designated as a splitter and moved toithex n/s ond
optical mesh, where they are sorted using a standard meéﬁ) '
sorting algorithm. Sincé& > N'/4, this takesD(N/+/S) time. Proof: We present the algorithm fat = 2. The algorithm
for higher dimensions is the same, with only the various

Step 3: the data is partitioned along a Hilbert curve. Eacktonstants changing (e.g., number of slabs at each step,erumb
splitter must determine its correct position in the Hilomstve  of points that need to be broadcast) as functiongl.ofhe
ordering, and each item must determine which part it belongalgorithm follows the outline of solving all-nearest-niefigprs
in. To do this,S copies of the splitters in parallel are distributed on the mesh in [26].
so that each submesh of six& S has a copy of the splitters. In

each submesh, there is one active processor at any given time | N€ POINts are first partitioned into five disjoint, linearly
and the splitters are merged with the items to determinehwhicsep"jlrable vertical S'abs’ with each s_Iab contaiiig points.
'{he all-nearest-neighbors problem is solved within eaah ve

part each item belongs in and the number of items from th Lo ! g . . .
submesh that belong in each part. Wien N''/3, the number Hical slab. Likewise, the points are divided into five honal
slabs and the problem is recursively solved in each slab. By

of splitters,N/S, is less than the size of an individual submesh, . s
VNS, so there are extra copies of the splitters that can bé lemma proven in [26], 'ghere are at most 8 points in each
disre ’arded Each item individually can determine its irart ?ectangular region determined by the intersection of aicadrt

9 : y M&M “slab and a horizontal slab that has not determined its true

O(log N) time by just searching the copy of the splitters. closest neighbor. A broadcast of these 8 points from each of
Then a reverse movement happens so that the total numbﬁ{

) : . . the 25 rectangular regions is then used to determine the true
of items in each part for the whole mesh is determined. Th|§] : ,
. . . . earest neighbors of these points.
data is sent to all the items in the mesh so each item knows the
location of the part it needs to move to. Then, the redistitiou In order for the problem to be recursively solved in a
algorithm is used to move each item in its correct part. Thissquare submesh for each of the slabs, the points are sorted

takesO(N//S) time. using Hilbert curve ordering. Points are sortedibgoordinate



for vertical slabs and by-coordinate for horizontal slabs. 2) In each quadrant of the mesh, recursively solve

Determining the 8 points in each rectangular region that may the problem using only edges in the quadrant. The
not know their true nearest neighbor can be accomplished by number of edges selected in each quadrant is propor-
sorting the points in each region and performing a reduction tional to the number of supervertices, so for all the
operation. In our algorithm, the available power is divided quadrants combined, the number of edges is at most
evenly among the recursive calls so that recursive calls can 4% (1/32) = 1/8 the number of original vertices.
be executed in parallel. Therefore, the running time obkgs t 3) Move these edges to a submesh of si¥¢g, and
recurrence€l'(N') = Teor(N') + 2T(NT/), whereTson(N') is recursively solve the problem in this submesh. This
the time to sort\’ items with S/NA power. uses the fact that a minimum spanning forest of the

i _ entire graph is a minimum spanning forest of the

We define the base case of our algorithm to occur when union of the subgraphs.
the power islog® N. At this point, there arer\oE—N submeshes
2 & H ns H

running in parallel, each of siz& 1°§ N with log2 N available Power is divided evenly among the parallel recursive calls.

peak power per submesh. Now, a serial algorithm is simulatef Zwsr is the time to find a minimum spanning fore$ir is

to solve the all-nearest-neighbors problem. Since thecapti the time to do a vertex reduction afldo. is the time to sort

pyramid reduces the communication diameter of the mesh tg© move edges to a submesh of six¢s), then

the logarithm of the size of the mesh, a serial algorithm on _

an input of sizeM can be simulated on a mesh of sizé Tuse(N, §) = 5Tur(N, S) + Tuse(N/4, 5/4)

. . 2

with O(log M) overhead. Thus the base casd %2 ) ¢ +Tusr(N/8, 8) + Tson( N, 5)

o) Nlog2N1 2/ Nlog? N
Vertex reductions are done recursively, using upward tree

reductions at each step, which are themselves done reelyrsiv

Since peak powef = N?, Tson(N') € @( N/N) and

S In an upward tree reduction, there is a directed tree witleedg

the total running time i9(N/V'S) = ©(-vVN). m  pointing toward the root. Each vertex has a value, and thetres
of the value is a semigroup operation applied to all of these
VII. M INIMUM SPANNING FOREST values. See [22], [27], [28] for an explanation of how these

) ) ) operations are used. Ty is the time for doing upward tree
Often parallel algorithms for a graph given as an adjacencyeduction, then

matrix are faster than those for when they are given as a set

of edges, and this holds true for finding a minimal spanning

forest on the mesh with optics. However, for large graphs, a

more natural input format is to be given the graph as a set Tvr(N, 5) = Tut(N, §) + Tvr(N/2, 5) + Tson(N, 5)
of edges. Here we only give an algorithm for the harder Cas&; ore

For adjacency matrix input it can be shown that a minimal

spanning forest can be found i@ (1 log N) time, forr € Tur(N, S) = Tson( N, S) + Tur(N/4, S/4)

O(keely,

Theorem 7.1: Given N weighted edges of an undirected Similar to the all-nearest-neighbors algorithm, before th
graph arbitrarily distributed one edge per processor on shme power available to a recursive call becomes too small (less t
of size N with an optical pyramid, a minimum spanning forest the square of the logarithm of the size of mesh), a serial-algo
can be determined i@(%\/ﬁ) time usingrN peak power, rithm is simulated to solve the lowest levels of recursianc&
forr =1/N'=9,0 <5< 1. a minimum spanning forest can be computedJV log NV)

time serially, Tusg(N, S) € ©(N/V/S) = 6(<-V/N). [
Proof: For simplicity, each edge is represented twice so Y Tinse( ) (N/VS) (ﬁ\/_)

that an edge between verticesindv is stored in one processor Finding the minimum spanning forest of a graph is often a
as(u, v) and in another a&, u). Also assume that every vertex key step in many other graph algorithms. Algorithms for find-
has an edge to itself as a way of ensuring it is represented.ing connected components, biconnected components, bridge

The algorithm uses a recursive approach where for eac d%efég]nd articulation points follow almost immediate][
vertex an incident edge of smallest weight is selected. Th ’ '
resulting subgraph consists of edges in the minimum spannin  Corollary 7.2: The connected components, biconnected
forest, and they form trees which asapervertices, i.e., ver-  components, bridge edges, and articulation points of ahgrap

tices for the following stages. For each tree, one of théee@st with N edges can be found '@(%\/N) time usingrN peak
is chosen and its label becomes the label for the superverte ower, forr = 1/N1=3,0 < § < 1, on a mesh of sizeV with

Then some of the original edges in the graph become edg S\ optical bvramid -
between supervertices, where the edge between supeegertic P Py '
U andV is the one having minimal weight among all edges
connecting a vertex i/ with one in V. This is known as VIIl. CONCLUSION
vertex reduction.

Energy and peak power are becoming are increasingly
1) Do vertex reduction five times. The number of ver-important in parallel computing. E.g., the DOE rep@rthi-
tices is now no more thari/32 of the original tectures and Technology for Extreme Scale Computing [30]
number. states:



The primary design constraint for future HPC sys-
tems will be power consumption. ...Data move-
ment will be a bigger factor for system energy
consumption and cost than FLOP/s. ...Energy and
performance costs should be reflected in abstract
machine model.

conjunction with our algorithms. Since the algorithms a$tno
always haveS = rN processors active at any one time, one
merely needs to introduce a multiplicative factor for a ¢aif

of increasing peak power versus decreasing clock speed.

Future work will study how optics can reduce time and/or
energy usage for other problems, particularly ones inmgjvi

Unfortunately few parallel algorithms address the enemy-c 9raphs or geometric objects. In [36] it is shown that, for
sumption problem. It is addressed in some algorithms fosome problems, peak power usage can be reduced, without
sensor networks, but they are limited by the total energyncreasing the time, on the standard mesh with no optics.

available in their batteries, while parallel computerslanited ~ Depending on advancements of computer architecture and
by peak power which is supplied externally. fabrication technology, we will continue to need the depelo

ment of theory and models of computation. Extensions irelud

Our power aware algorithms address these issues, colnalyzing algorithms on models with more than one layer
sidering fundamental tradeoffs of time versus peak powepf optics or 3-dimensional meshes. It can be shown that for
for communication intensive problems. Our abstract modep-dimensional meshes, two layers of noncrossing optics are
is based on ideas first expressed in von Neumann’s finitgsymptotically as powerful as any constant number of layers
autamata model which addressed physical locality and daigf noncrossing optics. In 3-dimensional meshes the problem

movement. To this we added a model of on-chip opticalof optical pathways crossing is eliminated, which allows fo
connections, a capability which is rapidly becoming av#i#a more optical connections and bandwidth on them. Further,

and which offers the possibility of reducing time and/ormgye

the underlying 3-D mesh has a smaller diameter and larger

As the number of processors greatly increases, the asyimptotyisection bandwidth than the 2-D mesh.

bounds of our algorithms are descriptive of the behavior of
their running times.
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The optical interconnects form a pyramid which we use for
problems quite unlike its previous roles in parallel conimmpgt
It is a fundamental layout appearing in VLSI design as well as
being a model of parallelism studied for problems involving 1]
images, adjacency matrices, etc. [22], [31]-[35]. However
simple bandwidth arguments show that it cannot sort faster
than the base mesh; therefore, the pyramid has no advantages
for problems which require sorting. This suddenly changes
when peak power is limited, though new approaches are

needed. (2]

Using the pyramid, we achieved a non-linear time/peak
energy tradeoff, where if the peak power is cut in half then
the time increases by only a factor ¢®, instead of the factor (3
of 2 that occurs with stepwise simulation. Similar resulerev
obtained for problems where the input was an unstructured se[4]
of edges or points. The algorithms presented combine gérall
divide-and-conquer approaches with stepwise simulatibn o [5]
serial algorithms when there is only one active processor pe [6]
submesh.

These results explore a new perspective for modeling
energy usage on massively parallel architectures and émgerg
capabilities. The actual implementations of these algors [7]
and realization of the model in hardware is another area of
research, but it is abstract enough to be applied to modgrate
different computer architectures. For example, dependimg
the physical properties of the interconnection technalagy [g]
may be the case that the communication over some of the
shorter optics in our model are more efficiently implemented
using standard electrical wires. Nevertheless, the basic p  [9]
ciples of routing data with numerous processors and power
constraints shown in this work still hold. Further, theydé&br
any technology which can supply a layer of interconnections[;lo]
which can transmit information long distances with low powe
relative to standard wire interconnections.

. . .11
Note that one energy-reducing hardware option, reducm& ]
the clock as the voltage is decreased, can be utilized in
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