
In Proceedings IEEE International Parallel and Distributed Processing Syposium (IPDPS) 2013

Time-Power Tradeoffs for Sorting on a
Mesh-Connected Computer
with Optical Connections

Patrick Poon
Computer Science and Engineering

University of Michigan
Ann Arbor, MI

ppoon@eecs.umich.edu

Quentin F. Stout
Computer Science and Engineering

University of Michigan
Ann Arbor, MI

qstout@umich.edu

Abstract—Energy consumption has become a critical factor
constraining the design of massively parallel computers, necessi-
tating the development of new models and energy-efficient algo-
rithms. The primary component of on-chip energy consumption
is data movement, and the mesh computer is a natural model
of this, explicitly taking distance into account. Unfortunately the
dark silicon problem increasingly constrains the number ofbits
which can be moved simultaneously. For sorting, standard mesh
algorithms minimize time and total data movement, and hence
constraining the mesh to use only half its processors at any
instant must double the time. It is anticipated that on-chipoptics
will be used to minimize the energy needed to move bits, but
they have constraints on their layout. In an abstract model,we
show that a pyramidal layout and a new power-aware algorithm
allows one to sort with only a square root increase in time as the
fraction of processors simultaneously powered decreases.Previous
algorithms assumed fully powered systems, hence pyramid sorting
was of no interest since when fully powered they are no faster
than the base mesh. Our results show asymptotic theoretical
limits of computation and energy usage on a model which takes
physical constraints and developing interconnection technology
into account.

Keywords—Parallel algorithms, sorting, routing and layout,
nearest neighbors, minimum spanning tree.

I. I NTRODUCTION

Power consumption has become an important design con-
sideration for systems ranging from mobile devices to super-
computers. As the number of processing units has increased,so
has energy usage, which is a problem when there is a limit on
the available total energy or peak power. In addition, increasing
transistor densities has brought about physical constraints of
heat dissipation, limiting the fraction of chips operatingat full
speed. This “dark silicon” problem will only worsen [1], [2].
Further, since processors occupy physical volume, there are
processors that are far apart from each other that take non-
constant time and energy to communicate between. Algorithms
must take advantage of locality to reduce time and energy, a
fact typically ignored in algorithms for abstract shared-memory
models such as the PRAM. Note that for parallel computers
the relevant energy concern is peak power consumption from
an external source of power, as opposed to the total energy
limits of battery-powered devices.

Our goal is to study fundamental limits in the trade-
off of time vs. peak power for basic problems such as
sorting. Towards this end we use a classic abstract model
of a scalable parallel architecture that addresses the issues
of locality and power consumption. While there are many
models of distributed-memory parallel architectures, such as
hypercubes, it is the mesh that is most relevant. Numerous
mesh models have been analyzed and built ever since von
Neumann introduced cellular automata [3]. The mesh is a
scalable parallel computer architecture and has also been used
as a model of many physical processes where locality strongly
affects behavior [4], [5]. Here, both roles are intertwinedin
the consideration of energy consumption in massively parallel
computation.

A 2-dimensionalmesh-connected computer, or mesh, of
size N is a parallel computer consisting ofN processors
arranged in a square lattice. All operations on values stored
in a processor’s memory, including transmitting a value to a
neighbor, take constant time and energy. Technically it should
be constant energy per bit, not word, but we will ignore this
extra logarithmic factor. Thus the time and energy requiredto
transmit a word of information from one processor to another
is linear in the distance between them. Energy can often be
viewed as equivalent towork, a term frequently used in the
parallel algorithms literature.

A processor isactive if it is calculating or communicating
and is otherwise inactive and not using energy. More precisely,
an inactive processor is in a very low power sleep mode and
our algorithms consider the power needed above this level. We
give algorithms that minimize time given apeak power bound,
where peak power is the maximum number of processors active
at any one time. The fraction of processors that are active will
be denoted byr, so peak power will be equal tor ·N . Total
energy usage is the integral of power over time.

Much current research focuses on making processors more
power efficient and one approach is to add optical connections
or lasers onto processors [6]–[13]. This technology is promised
to bring about many advancements. For example, the articleIn-
terconnect Opportunities for Gigascale Integration [14] states:

Microphotonic interconnects have long-term po-
tential to reduce latency, power dissipation, and

crosstalk while increasing bandwidth.

Since light is fast relative to electrical connections and suffers
less attenuation optical connections have important advantages:
they can link processors far apart and transfer data quickly. In
addition, power usage is less as transmitting an optical signal
scales to long distances while taking nearly the same energy
for shorter distances [10], [15]. We model on-chip photonics
capabilities by adding “optical” connections oroptics to the
mesh. We refer to the connections in the standard mesh model
aswires. Communication time over an optical connection will
be counted as the same as communication over a single wire
on the mesh, which is a constant. It is difficult to build multiple
layers in hardware so we allow only one layer of optics, and
we prohibit crossings [9].

We do not require that this extra layer actually be optical
interconnects, merely that it provides the capability of trans-
mitting information long distances with low power relativeto
the capabilities of standard wires. Whether this is supplied
via optical waveguides, carbon nanotubes, or whatever else
emerges, is not relevant to our analyses.

The main result of this paper is a power-aware sorting
algorithm for this model. Sorting is a fundamental operation
which requires extensive communication, and it is a key step
in many algorithms. Given a mesh of sizeN with N items
stored one per processor, sorting takesΩ(

√
N) time and

Ω(N3/2) total energy since simple matrix transposition results
in items moving a total distance ofΘ(N3/2). Mesh algorithms
achieving these lower bounds have been widely known and
refined since the 1970’s [16]–[24].

By stepwise simulation, sorting can be accomplished in
Θ

(

1
r

√
N

)

time usingrN peak power. In Section V it will be
shown that by adding an optical layer this can be reduced to
Θ

(

1√
r

√
N + 1

r log N
)

. Forr ∈ ω
(

log2 N
N

)

this is a sublinear
increase in time as the peak power is decreased. Illustrative
applications which exploit sorting and have the same tradeoff
are given for two different classes of problems: all-nearest-
neighbors in Section VI and minimum spanning forest in
Section VII.

II. T HE MODEL

To simplify exposition, letn =
√

N and assume thatn is a
power of 2, with modifications to the more general case being
straightforward. We start off with the standard mesh model of
N processors connected in an×n grid, where each processor
is connected to its adjacent neighbors.P (i, j) denotes the
processor at coordinates(i, j), for i, j ∈ {0, 1, . . . , n−1}. Each
processor has a fixed number of words of memory, each with
Θ(log N) bits. This is enough to store its location in the mesh
and a constant number of other values. Modeling physical
properties, we assume that optics cannot cross and each optical
connection has a fixed minimal width. This implies that each
processor has at most a constant number of optical connections
and that the bisection bandwidth of the network of just optics
is O(

√
N).

We first consider the simple case of adding only optics of
one length to the mesh. Given optics of a specific length, say
of lengthn/k, we can create ak×k mesh network consisting

Fig. 1: The optical connections of a4 × 4 optical mesh on a
8× 8 mesh

only of optical connections on top of the wire mesh. This
k × k mesh, which we will call anoptical mesh, consists of
processorsP (i, j), for i, j ∈ {0, n/k, 2n/k, . . . , (k−1)n/k)}.
Figure 1 illustrates an example. It is useful to note that in each
n/k × n/k submesh there is one processor that is part of the
optical mesh and so the communication diameter of the mesh
with an optical mesh isΘ(

√
N/k + k), which is less than the

Θ(
√

N) communication diameter of a standard mesh.

In the more general case where we allow optics of any
length, multiple mesh-like optical networks of different sizes
can be embedded and a pyramid-like network can be achieved
within one layer of optics. We call this anoptical pyramid,
defined as follows: leta be the index of the least significant
1 bit of i. For each rowi such that2 ≤ a ≤ lg n− 1, connect
a processor in columnb · 2a−1 to a processor in column(b +
1) · 2a−1 − 1, for 0 ≤ b ≤ n/2a−1 − 1. Likewise, for each
column i such that2 ≤ a ≤ lg n − 1, connect a processor
in row b · 2a−1 to a processor in row(b + 1) · 2a−1 − 1, for
0 ≤ b ≤ n/2a−1−1. Note that optics are of length2a−1−1 and
it is easy to check that none of these optical connections cross.
Figure 2d illustrates the layout of the optical connections.

Alternatively, a recursive definition may be easier to under-
stand: on ann× n mesh, place optical connections of length
n/4 − 1 so that the following eight pairs of processors are
connected:

P (n/2, 0) , P (n/2, n/4−1)

P (n/2, n/4) , P (n/2, n/2−1)

P (n/2, n/2) , P (n/2, 3n/4−1)

P (n/2, 3n/4), P (n/2, n−1)

P (0, n/2) , P (n/4−1, n/2)

P (n/4, n/2) , P (n/2−1, n/2)

P (n/2, n/2) , P (3n/4−1, n/2)

P (3n/4, n/2), P (n−1, n/2)

Then recursively place eight optics in each of the fourn/2×
n/2 submeshes until reaching the base case of a4 × 4 mesh
after a total oflg n− 1 levels of recursion.

A. Useful Properties

The optical pyramid has a communication diameter of
Θ(log N), which is far smaller than theΘ(

√
N) communi-

cation diameter of the mesh. Thus small amounts of data can
be moved across the mesh quickly. More precisely, we will

(a)1×1 optical mesh (optics of length
7)

(b) 2×2 optical mesh (optics of length
3)

(c) 4×4 optical mesh (optics of length
1)

(d) Optical connections and processors
in optical meshes of a32 × 32 mesh
with an optical pyramid

(e) A classical pyramid computer
model of size 16

Fig. 2: Illustration of different levels of the layout of optical
connections for a32× 32 mesh with an optical pyramid (fig-
ures 2a–2c), the optical pyramid (figure 2d), and the classical
pyramid computer model (figure 2e)

see that the mesh with optics yields algorithms with non-linear
tradeoffs between peak power and time.

A particularly useful property algorithms can utilize is the
recursive definition of the layout of the optical pyramid: the
layout of the optical connections in any square submesh is also
a logical optical pyramid. That is to say, an optical pyramid
over any square submesh can be simulated with a constant
factor overhead. In situations where recursive algorithmsare
applied to ordered data, the Hilbert space-filling curve ordering
is useful as it keeps local data in close proximity. In fact, for
items ordered in a Hilbert curve, every set ofk consecutive
items is contained within a square submesh with an optical
pyramid of size4k.

Another property is that optics of the same length compose
a network that can simulate ann/2a+1×n/2a+1 optical mesh
with a constant factor overhead, for2 ≤ a ≤ lg n − 1.
This is accomplished using processors evenly spaced2a+1

apart in the entire mesh, that is, processorsP (i, j), for i, j ∈
{2a, 2a + 2a+1, . . . , 2a + (n/2a+1 − 1)2a+1}, are processors
in the optical mesh. Specifically, it takes eight time steps to
communicate between adjacent processors in an optical mesh;
processors need only to send data over four wire connections
and four optical connections to reach the next processor. For
convenience, we will refer to these as optical meshes, ignoring
the constant factor overhead contributed by the gaps between
optics. Note that communication from a processor on one optic
mesh with a processor on the next smaller or next large optical
mesh takes constant time.

Our results utilize the pyramid in new ways. The classical
pyramid computer model (structure and communications links
shown in figure 2e) is a model that has been considerably
studied in the past. However, no previous work on pyramid
computer algorithms considered energy usage, that is, there
was no penalty for having all processors running all the time.
Algorithms for a standard pyramid can be run on the mesh with
an optical pyramid using stepwise simulation with a constant
factor overhead, though such simple usage in general has a
linear tradeoff of time vs. peak power and is of less interest
here. Further, for communication-intensive problems suchas
sorting, the pyramid with all processors active is no fasterthan
the base mesh. Our power aware algorithms achieve a sublinear
increase in time as the peak power decreases, a property
unachievable if only the base mesh is utilized. However, this
requires pyramid algorithms quite different from previousones.

III. L OWER BOUNDS

In the mesh model, there are two fundamental properties
that provide lower bounds. The first is communication diam-
eter, which is relevant when data needs to be moved from
one side of the mesh to the other. On a standard mesh of
sizeN , the diameter isΘ(

√
N). If a problem requires global

communication, that is, at least one processor may receive
information originated by any processor, then any algorithm
that solves the problem takesΩ(

√
N) time. The other property

is the bisection bandwidth, relevant when the problem requires
moving all of the data in one half of the mesh to the other
half. For the mesh, the bisection bandwidth isΘ(

√
N), and

any algorithm which moves all the data from one half to the
other takesΩ(

√
N) time.

The benefit of optical connections on meshes is the ability
to decrease the diameter, effectively lowering the communi-
cation lower bound and reducing the total energy required to
move data across the mesh. Unfortunately, they do not change
the bisection bandwidth lower bound. Thus they can reduce
energy usage but cannot reduce running time of problems
that require significant bandwidth. As will be shown, adding
optical connections allows sorting and permutation to be
solved in o(N3/2) total energy, surpassing the lower bound
for permutation in a standard mesh. The algorithms in this
paper run at peak power most of the time, so total energy will
be Θ(time× peak power).

In addition to the bisection bandwidth, there are some

important lower bounds on meshes with optical connections.
These include:

Diameter: no matter how optics are added, the diameter
of the mesh isΩ(log N). Since each processor is adjacent to
only a constant number of processors, the number of reachable
processors is at most exponential in the number of time steps.

Permutation Energy: no matter how optics are added, the
total energy to permute isΩ(N log N). To see this, note that
the comments above about the number of reachable processors
shows that if processors are connected to at mostt others, then
in r = (logt N)/2 − 1 steps, no processor can communicate
with more than

∑r
i=0 ti < tr+1 =

√
N processors. Given an

optical layout, construct the following permutation: go through
the processors in row-major order. For each processor, set its
destination to be the first processor which is not reachable in r
or fewer steps and which is not already the destination of some
other processor. It is possible that the final

√
N processors

have no such destination, in which case choose the destination
arbitrarily from the processors that are not yet destinations.
Thus at leastΘ(N) processors are sending to a destination
requiring at leastΘ(log N) steps.

Sorting Energy: there is the obviousΩ(N log N) lower
bound on energy due to the number of comparisons required.
This is also a lower bound on the energy needed for data
movement. This follows from the permutation bound since
a permutation can always be achieved by sorting, using the
destination as the key.

Note that while all parallel computers have theΩ(N log N)
lower bound for sorting comparisons, they do not all share this
lower bound for permutation. In standard models of shared-
memory machines, permutation takes onlyΘ(N) operations,
while the above proof shows that for distributed-memory
machines with bounded degree, the lower bound on data
movement isΘ(N log N).

IV. BASIC ALGORITHMS

The following operations on the mesh with an optical
pyramid are frequently used operations in algorithms. We
denote peak power byS (which is equal torN , wherer is
the fraction of total processors that are active,1/N ≤ r ≤ 1).
For convenience, lets =

√
S and assume thats is a power of

2. This simplifies notation as we will frequently refer to the
s× s optical mesh.

Our analyses in the following sections will be given in
terms of the available peak powerS. However, running times
will often be expressed in terms ofr, in order to emphasize
the relationship between the amount of slowdown and fraction
of processors active.

A. Routing

On the standard mesh, given two arbitrary processors in
which one sends a word of data to the other, routing the data
between the processors takesΘ(

√
N) time, with the lower

bound set by the communication diameter. On the pyramid,
data can be communicated inO(log N) time by using the tree
structure of the pyramid. If

√
S processors have data that needs

to be sent to other processors, the values at those processors

are first moved to thes × s optical mesh inO(
√

S + log N)
time using the tree structure of the pyramid. Then all values
can be routed on the optical mesh to theirn/s×n/s submesh
destination. Using pipelining, this can all be accomplished in
O(
√

S + log N) time. More generally,S processors can send
data to other processors inO(

√
S + log N) time using the

s × s optical mesh as long as the bandwidth on the optical
mesh between processors and their destinations isΩ(

√
S).

B. Broadcast and Reduction

On the standard mesh, it is possible to broadcast inΘ(1
r +√

N) time. The lower bound comes from the communication
diameter and evenly dividing the peak power of the optimal
algorithm, and it is easy to achieve this bound. On the pyramid,
this can be reduced toΘ(1

r + log N). To do this, the value to
be broadcast is moved to processorP (n/2, n/2) in O(log N)
time. Then, using the tree network embedded in the pyramid,
the value is broadcast to eachn/s×n/s submesh inO(log N)
time. In each submesh, one unit of energy per time step is used
to broadcast to all processors in the submesh, takingΘ(1

r)
time.

The data movement in a reduction operation is the reverse
of broadcast, where values are combined using a semigroup
operator. This can also be accomplished inΘ(1

r +log N) time.

C. Scan

Given valuesa0, · · · , aN−1 stored one value per processor
on the mesh, and given a semigroup operation⊗, a scan oper-
ation results in processori having the valuea0⊗a1⊗· · ·⊗ai,
for 0 ≤ i ≤ N − 1. We assume that⊗ can be computed in
constant time.

If the values are ordered by a Hilbert or z-order curve in
the mesh with an optical pyramid, a scan can be computed
in Θ(1

r + log N) time using the tree network embedded in
the optical pyramid. If the values are in row-major order, the
4
√

N × 4
√

N optical mesh can be used to compute the scan in
Θ(1

r + 4
√

N) time.

V. SORTING

In this section, we show that, givenrN peak power,
permutation and sorting can be accomplished inΘ(1√

r

√
N)

time using the optical pyramid, as opposed to theΘ(1
r

√
N)

time required on a standard mesh, forr ∈ Ω(log2 N
N). We

first give an algorithm for permutation and then use it within
the sorting algorithm. Note that, due to bandwidth limits,
the algorithm is not as simple as movingrN items at a
time to their destinations. To simplify notation, algorithms are
presented in terms of peak powerS.

Lemma 5.1: On a mesh of sizeN with an optical pyramid,
N items can be permuted inΘ

(

1√
r

√
N + 1

r log N
)

time
usingrN peak power.

Proof: Our algorithm uses thes × s optical mesh to
move data across the mesh. We conceptually partition the mesh
horizontally inton/s×n submeshes, referred to asoptic rows,
labeledA0, . . . , As−1 and also partition the mesh vertically
into n× n/s submeshes, referred to asoptic columns, labeled

for all items;S at a time,s per optic columndo
iint ← index of optic column of origin
idest← index of optic row of destination
for i, j ← 0, s parallel do

count(i, j)← number of items fromBj

with i = idest
x(i, j)←∑j−1

j′=0 count(i, j′)

y(i)←
∑s−1

j′=0 count(i, j′)
z ← index within items moved to(Aidest, Bj)

jint ←
⌊

x(i,j)+z
y(i) · s

⌋

end for
Move item toAiint

Move item toBjint

Move item toAidest

end for
for i← 0, s parallel do

for all items inAi; s at a timedo
Move item to destination

end for
end for

Fig. 3: Permutation algorithm

B0, . . . , Bs−1. Every Ai contains a single row of thes × s
optical mesh, and everyBi contains a single column, for
0 ≤ i ≤ s− 1. Each processor on the optical mesh belongs to
a unique pair(Ai, Bj) of submeshes.

Figure 3 is an outline of the algorithm. In more detail, the
following is repeatedN/S times:

• Within eachBj , s items that have not yet been moved
are chosen. A copy of each of theses items is moved
along the vertical optical connections inBj to the
processor on the optical mesh inAidest, the optic row
with the item’s destination. Each processor on the
optical mesh has a counter that keeps track of the
number of items that were moved to it. Every time an
item is moved to a processor on the optical mesh,
the counter is incremented by one and the item is
discarded. The result of this is that each processor on
the optical mesh in(Ai, Bj) knows count(i, j), the
number of items inBj that have a destination inAi.

• A scan operation is performed on the counters on the
optical mesh that determines the number of items at
processors in columns numbered less than each pro-
cessor’s column number in the same row. A reduction
is also performed in eachAi to determine the number
of items in that row. With this information, each item
is tagged with the column number,jint, of the optical
connections it must use in order for items to be dis-
tributed as evenly as possible among thes processors
on the optical mesh in each submeshAi. That is, each
item is assigned ann/s× n/s submesh, inAidest and
Bjint , as an intermediate location. Specifically, for an
item starting inBj with a destination inAidest, if x is
the number of items with a destination in the same
submeshAidest and in a submeshBj′ , j′ < j, y is
the number of items with a destination in the same
submeshAidest and z is the index of the item out of

those fromBj with destinationAidest, then the item has
an intermediate location in columnjint = ⌊x+z

y · s⌋
of optics. To tag each item, the items move to the
processors on the optical mesh as in the previous step,
but instead of being discarded once it reaches the
optical mesh processor, it gets tagged and reverses its
movement and returns to its original location.

• Items are moved to the diagonal of the mesh, that
is, row iint = j of the optical mesh, which is the
intermediate row items move in before moving to
their destination row. Then, each item moves to its
intermediate columnjint, then to its destination row
idest. Once each item is moved to its destination row,
it is spread out so that eachn/s × n/s submesh in
the row has an equal number of items that have been
moved to that row so far.

Now eachAi contains only items that have destinations
within Ai. For eachAi, s active processors are used to move
s items at a time to their correct destinations.

At each iteration, there are never more thans items moving
at a time in eachAi or Bj , so there is enough bandwidth
to accomplish each iteration inO(

√
S) time. Since it takes

O(log N) time to reach a processor on the optical mesh and
there areN/S iterations, the running time isΘ(N/

√
S +

N log N
S) = Θ(1√

r

√
N + 1

r log N).

A generalization of the permutation algorithm is needed
for the sorting algorithm. We will call itredistribution. Instead
of a unique destination processor for each item, the mesh is
partitioned into approximately square contiguous blocks and
each item has a destination block. Within its destination block
an item can be assigned to an arbitrary processor as long as
each processor ends up with a single item. Within a block, the
processor of smallest index is designated as the representative
destination location of the block. For simplicity, we assume
block sizes are a multiple ofN/S. For block sizes less than or
equal toN/S, items moving to these blocks use the same data
movement as in the permutation algorithm. For blocks of size
N/S, there is no change to the permutation algorithm except
items designate their destination as the representative processor
of their destination block and, in the last step, items just fill
in eachn/s× n/s submesh as they arrive by moving the first
processor in row-major order of the block without an item yet.
For blocks of size greater thanN/S, each processor on thes×s
optical mesh has to keep track of whether all the processors
in its n/s × n/s submesh has received an item yet. Before
each iteration of the first loop in the permutation algorithm,
theS items being moved are moved on thes×s optical mesh.
Each processor on the optical mesh determines how many of
the S items will be moved to its submesh, and if it is full, it
changes the item’s destination to the next available submesh.
This takesΘ(N/

√
S + N log N

S) = Θ(1√
r

√
N + 1

r log N) time.

Theorem 5.2: On a mesh of sizeN with an optical pyra-
mid, N items can be sorted inΘ

(

1√
r

√
N + 1

r log N
)

using
rN peak power.

Proof: The following algorithm sorts items into a Hilbert
space-filling curve order. All sorting in any submesh using
the standard mesh algorithm or a recursive call is in terms of

procedure SORT(M, S)
if SIZE(M) = S then

Standard sortM
else

PartitionM into
√

N/S submeshes of size
√

NS
for all submeshesM ′ do ⊲ step 1

SORT(M ′, S)
end for
Select everyS th item as splitter
Standard sort theN/S splitters ⊲ step 2
Redistribute intoN/S submeshes ⊲ step 3
for all submeshesM ′ do ⊲ step 4

SORT(M ′, S)
end for

end if
end procedure

Fig. 4: Sorting algorithm for meshM of size N with peak
powerS, for N1/4 ≤ S ≤ N

a Hilbert space-filling curve. If another order is desired, one
can switch to any other sorted order by a simple permutation.
Figure 4 gives an outline of the recursive algorithm that sorts
N items withS peak power, forN1/4 ≤ S ≤ N .

The base case of the algorithm occurs when the submesh
is of sizeS, when a standard mesh algorithm [22] can sort the
s×s mesh inO(

√
S) time using peak powerS. WhenS = N

this is just the standard mesh sorting algorithm that sorts in
Θ(
√

N) time. There are four steps:

Step 1: the mesh is partitioned into
√

N/S submeshes of
size

√
NS, and each submesh is individually sorted one at

a time with S peak power inO(
√

N) time, for a total of
O(N/

√
S) time.

Step 2: everyS th item in each of the submeshes sorted in
step 1 is designated as a splitter and moved to then/s× n/s
optical mesh, where they are sorted using a standard mesh
sorting algorithm. SinceS ≥ N1/4, this takesO(N/

√
S) time.

Step 3: the data is partitioned along a Hilbert curve. Each
splitter must determine its correct position in the Hilbertcurve
ordering, and each item must determine which part it belongs
in. To do this,S copies of the splitters in parallel are distributed
so that each submesh of sizeN/S has a copy of the splitters. In
each submesh, there is one active processor at any given time
and the splitters are merged with the items to determine which
part each item belongs in and the number of items from that
submesh that belong in each part. WhenS > N1/3, the number
of splitters,N/S, is less than the size of an individual submesh,√

NS, so there are extra copies of the splitters that can be
disregarded. Each item individually can determine its partin
O(log N) time by just searching the copy of the splitters.
Then a reverse movement happens so that the total number
of items in each part for the whole mesh is determined. This
data is sent to all the items in the mesh so each item knows the
location of the part it needs to move to. Then, the redistribution
algorithm is used to move each item in its correct part. This
takesΘ(N/

√
S) time.

Step 4: in the worst case, the size of each part isO(
√

NS),
but each part of sizeO(

√
NS) takesO(

√
N) time to sort, so

this step is accomplished inO(N/
√

S) time.

In the case whereS < N1/4, a few modifications to
the algorithm must be made. For steps 1 and 2, the sorting
algorithm using peak power

√
N is simulated. Therefore, in

step 1, the items are partitioned intoN1/4 submeshes of size
N3/4 and each is recursively sorted withS power. For step 2,
the simulation of sorting the

√
N splitters is run on thes× s

optical mesh, that is, the wire
√

n/s×√n/s mesh around each
processor in the optical mesh that acts as a submesh of size√

N/S part of the
√

N splitters. Since the total energy required
to sort

√
N items on a mesh isN3/4, step 2 takesO(N3/4/S)

time, which is within the required time. No other changes
are required for the remaining steps, where the redistribution
algorithm and recursive calls withS peak power are used,
which takesΘ(N/

√
S + N log N

S) = Θ(1√
r

√
N + 1

r log N)
time.

Given this algorithm for sorting, algorithms that also use
sorting or routing can have similar time-power tradeoffs. We
will only consider peak powerN δ, for 0 < δ ≤ 1, because
when peak power is close to 1, algorithms are more serial in
nature and are less interesting.

VI. A LL -NEAREST-NEIGHBORS

Given a setA of points in d-dimensional space, the all-
nearest-neighbors problem is to determine, for every point
p ∈ A, the closest point inA − {p}, where distance is
measured via anLp metric, 1 ≤ p ≤ ∞. It is well known
that this fundamental problem can be solved inΘ(N log N)
time serially [25].

Theorem 6.1: Given N or fewer points ind-dimensional
space, distributed one per processor on a mesh of sizeN with
an optical pyramid, the all-nearest-neighbors problem canbe
solved in Θ(1√

r

√
N) time using rN peak power, forr =

1/N1−δ, 0 < δ ≤ 1, where the implied constants depend
upond.

Proof: We present the algorithm ford = 2. The algorithm
for higher dimensions is the same, with only the various
constants changing (e.g., number of slabs at each step, number
of points that need to be broadcast) as functions ofd. The
algorithm follows the outline of solving all-nearest-neighbors
on the mesh in [26].

The points are first partitioned into five disjoint, linearly
separable vertical slabs, with each slab containingN/5 points.
The all-nearest-neighbors problem is solved within each ver-
tical slab. Likewise, the points are divided into five horizontal
slabs and the problem is recursively solved in each slab. By
a lemma proven in [26], there are at most 8 points in each
rectangular region determined by the intersection of a vertical
slab and a horizontal slab that has not determined its true
closest neighbor. A broadcast of these 8 points from each of
the 25 rectangular regions is then used to determine the true
nearest neighbors of these points.

In order for the problem to be recursively solved in a
square submesh for each of the slabs, the points are sorted
using Hilbert curve ordering. Points are sorted byx-coordinate

for vertical slabs and byy-coordinate for horizontal slabs.
Determining the 8 points in each rectangular region that may
not know their true nearest neighbor can be accomplished by
sorting the points in each region and performing a reduction
operation. In our algorithm, the available power is divided
evenly among the recursive calls so that recursive calls can
be executed in parallel. Therefore, the running time obeys the
recurrenceT (N ′) = Tsort(N

′) + 2T (N ′

5), whereTsort(N
′) is

the time to sortN ′ items with S
/

N
N ′

power.

We define the base case of our algorithm to occur when
the power islog2 N . At this point, there are S

log2 N
submeshes

running in parallel, each of sizeN log2 N
S , with log2 N available

peak power per submesh. Now, a serial algorithm is simulated
to solve the all-nearest-neighbors problem. Since the optical
pyramid reduces the communication diameter of the mesh to
the logarithm of the size of the mesh, a serial algorithm on
an input of sizeM can be simulated on a mesh of sizeM

with O(log M) overhead. Thus the base case isT (N log2 N
S) ∈

O
(

N log2 N
S log2(N log2 N

S)
)

.

Since peak powerS = N δ, Tsort(N
′) ∈ Θ

(
√

N ′N
S

)

and

the total running time isΘ(N/
√

S) = Θ(1√
r

√
N).

VII. M INIMUM SPANNING FOREST

Often parallel algorithms for a graph given as an adjacency
matrix are faster than those for when they are given as a set
of edges, and this holds true for finding a minimal spanning
forest on the mesh with optics. However, for large graphs, a
more natural input format is to be given the graph as a set
of edges. Here we only give an algorithm for the harder case.
For adjacency matrix input it can be shown that a minimal
spanning forest can be found inΘ(1

r log N) time, for r ∈
O(log N

N1/4
).

Theorem 7.1: Given N weighted edges of an undirected
graph arbitrarily distributed one edge per processor on a mesh
of sizeN with an optical pyramid, a minimum spanning forest
can be determined inΘ(1√

r

√
N) time usingrN peak power,

for r = 1/N1−δ, 0 < δ ≤ 1.

Proof: For simplicity, each edge is represented twice so
that an edge between verticesu andv is stored in one processor
as(u, v) and in another as(v, u). Also assume that every vertex
has an edge to itself as a way of ensuring it is represented.

The algorithm uses a recursive approach where for each
vertex an incident edge of smallest weight is selected. The
resulting subgraph consists of edges in the minimum spanning
forest, and they form trees which aresupervertices, i.e., ver-
tices for the following stages. For each tree, one of the vertices
is chosen and its label becomes the label for the supervertex.
Then some of the original edges in the graph become edges
between supervertices, where the edge between supervertices
U and V is the one having minimal weight among all edges
connecting a vertex inU with one in V . This is known as
vertex reduction.

1) Do vertex reduction five times. The number of ver-
tices is now no more than1/32 of the original
number.

2) In each quadrant of the mesh, recursively solve
the problem using only edges in the quadrant. The
number of edges selected in each quadrant is propor-
tional to the number of supervertices, so for all the
quadrants combined, the number of edges is at most
4 ∗ (1/32) = 1/8 the number of original vertices.

3) Move these edges to a submesh of sizeN/8, and
recursively solve the problem in this submesh. This
uses the fact that a minimum spanning forest of the
entire graph is a minimum spanning forest of the
union of the subgraphs.

Power is divided evenly among the parallel recursive calls.
If TMSF is the time to find a minimum spanning forest,TVR is
the time to do a vertex reduction andTsort is the time to sort
(to move edges to a submesh of sizeN/8), then

TMSF(N, S) = 5TVR(N, S) + TMSF(N/4, S/4)

+ TMSF(N/8, S) + Tsort(N, S)

Vertex reductions are done recursively, using upward tree
reductions at each step, which are themselves done recursively.
In an upward tree reduction, there is a directed tree with edges
pointing toward the root. Each vertex has a value, and the result
of the value is a semigroup operation applied to all of these
values. See [22], [27], [28] for an explanation of how these
operations are used. IfTUT is the time for doing upward tree
reduction, then

TVR(N, S) = TUT(N, S) + TVR(N/2, S) + Tsort(N, S)

where

TUT(N, S) = Tsort(N, S) + TUT(N/4, S/4)

Similar to the all-nearest-neighbors algorithm, before the
power available to a recursive call becomes too small (less than
the square of the logarithm of the size of mesh), a serial algo-
rithm is simulated to solve the lowest levels of recursion. Since
a minimum spanning forest can be computed inO(N log N)
time serially,TMSF(N, S) ∈ Θ(N/

√
S) = Θ(1√

r

√
N).

Finding the minimum spanning forest of a graph is often a
key step in many other graph algorithms. Algorithms for find-
ing connected components, biconnected components, bridge
edges, and articulation points follow almost immediately [22],
[27], [29].

Corollary 7.2: The connected components, biconnected
components, bridge edges, and articulation points of a graph
with N edges can be found inΘ(1√

r

√
N) time usingrN peak

power, forr = 1/N1−δ, 0 < δ ≤ 1, on a mesh of sizeN with
an optical pyramid.

VIII. C ONCLUSION

Energy and peak power are becoming are increasingly
important in parallel computing. E.g., the DOE reportArchi-
tectures and Technology for Extreme Scale Computing [30]
states:

The primary design constraint for future HPC sys-
tems will be power consumption. . . . Data move-
ment will be a bigger factor for system energy
consumption and cost than FLOP/s. . . . Energy and
performance costs should be reflected in abstract
machine model.

Unfortunately few parallel algorithms address the energy con-
sumption problem. It is addressed in some algorithms for
sensor networks, but they are limited by the total energy
available in their batteries, while parallel computers arelimited
by peak power which is supplied externally.

Our power aware algorithms address these issues, con-
sidering fundamental tradeoffs of time versus peak power
for communication intensive problems. Our abstract model
is based on ideas first expressed in von Neumann’s finite
autamata model which addressed physical locality and data
movement. To this we added a model of on-chip optical
connections, a capability which is rapidly becoming available
and which offers the possibility of reducing time and/or energy.
As the number of processors greatly increases, the asymptotic
bounds of our algorithms are descriptive of the behavior of
their running times.

The optical interconnects form a pyramid which we use for
problems quite unlike its previous roles in parallel computing.
It is a fundamental layout appearing in VLSI design as well as
being a model of parallelism studied for problems involving
images, adjacency matrices, etc. [22], [31]–[35]. However,
simple bandwidth arguments show that it cannot sort faster
than the base mesh; therefore, the pyramid has no advantages
for problems which require sorting. This suddenly changes
when peak power is limited, though new approaches are
needed.

Using the pyramid, we achieved a non-linear time/peak
energy tradeoff, where if the peak power is cut in half then
the time increases by only a factor of

√
2, instead of the factor

of 2 that occurs with stepwise simulation. Similar results were
obtained for problems where the input was an unstructured set
of edges or points. The algorithms presented combine parallel
divide-and-conquer approaches with stepwise simulation of
serial algorithms when there is only one active processor per
submesh.

These results explore a new perspective for modeling
energy usage on massively parallel architectures and emerging
capabilities. The actual implementations of these algorithms
and realization of the model in hardware is another area of
research, but it is abstract enough to be applied to moderately
different computer architectures. For example, dependingon
the physical properties of the interconnection technology, it
may be the case that the communication over some of the
shorter optics in our model are more efficiently implemented
using standard electrical wires. Nevertheless, the basic prin-
ciples of routing data with numerous processors and power
constraints shown in this work still hold. Further, they hold for
any technology which can supply a layer of interconnections
which can transmit information long distances with low power
relative to standard wire interconnections.

Note that one energy-reducing hardware option, reducing
the clock as the voltage is decreased, can be utilized in

conjunction with our algorithms. Since the algorithms almost
always haveS = rN processors active at any one time, one
merely needs to introduce a multiplicative factor for a tradeoff
of increasing peak power versus decreasing clock speed.

Future work will study how optics can reduce time and/or
energy usage for other problems, particularly ones involving
graphs or geometric objects. In [36] it is shown that, for
some problems, peak power usage can be reduced, without
increasing the time, on the standard mesh with no optics.
Depending on advancements of computer architecture and
fabrication technology, we will continue to need the develop-
ment of theory and models of computation. Extensions include
analyzing algorithms on models with more than one layer
of optics or 3-dimensional meshes. It can be shown that for
2-dimensional meshes, two layers of noncrossing optics are
asymptotically as powerful as any constant number of layers
of noncrossing optics. In 3-dimensional meshes the problem
of optical pathways crossing is eliminated, which allows for
more optical connections and bandwidth on them. Further,
the underlying 3-D mesh has a smaller diameter and larger
bisection bandwidth than the 2-D mesh.

Acknowledgements: Research partially supported by NSF
grant CDI-1027192 and DOE grant DE-FC52-08NA28616

REFERENCES

[1] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” inProceedings of the Fifteenth
Edition on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’10. New York, NY, USA: ACM,
2010, pp. 205–218.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
365–376.

[3] J. von Neumann and A. W. Burks, Eds.,Theory of Self-Reproducing
Automata. Urbana, IL, USA: University of Illinois Press, 1966.

[4] T. Toffoli and N. Margolus, Cellular Automata Machines: A new
environment for modeling. MIT Press, 1987.

[5] S. Wolfram,A New Kind of Science. Wolfram Media, 2002.

[6] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida,
S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki,
A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa,
T. Watanabe, K. Yamada, S.-i. Itabashi, and J. Akedo, “On-chip optical
interconnect,”Proc. IEEE, vol. 97, no. 7, pp. 1186–1198, Jul. 2009.

[7] A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic,
and V. Stojanovic, “Silicon-photonic clos networks for global on-chip
communication,” inNOCS ’09: Proceedings of the 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 124–133.

[8] Y. A. Vlasov, “Silicon photonics for next generation computing sys-
tems,” in 34th European Conference on Optical Communication, 2008,
ECOC 2008, Sep. 2008, pp. 1–2.

[9] J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural
exploration of chip-scale photonic interconnection network designs
using physical-layer analysis,”J. Lightw. Technol., vol. 28, no. 9, pp.
1305–1315, May 2010.

[10] I. O’Connor and F. Gaffiot, “On-chip optical interconnect for low-
power,” in Ultra Low-Power Electronics and Design, E. Macii, Ed.
Springer US, 2004, pp. 21–39.

[11] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimer-
ling, and A. Agarwal, “ATAC: a 1000-core cache-coherent processor
with on-chip optical network,” inProceedings of the 19th international

conference on Parallel architectures and compilation techniques, ser.
PACT ’10. New York, NY, USA: ACM, 2010, pp. 477–488.

[12] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel,
“Ge-on-Si laser operating at room temperature,”Opt. Lett., vol. 35,
no. 5, pp. 679–681, 2010.

[13] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson,W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, and Others, “ExaScale
Computing Study: Technology Challenges in Achieving Exascale Sys-
tems,” University of Notre Dame, CSE Dept., Tech. Rep., 2008.

[14] J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and
P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM
Journal of Research and Development, vol. 46, no. 2.3, pp. 245–263,
Mar. 2002.

[15] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technol-
ogy challenges,” inHigh Performance Computing for Computational
Science - VECPAR 2010, ser. Lecture Notes in Computer Science,
J. Palma, M. Daydé, O. Marques, and J. a. Lopes, Eds. Springer
Berlin / Heidelberg, 2011, vol. 6449, pp. 1–25.

[16] C. D. Thompson and H. T. Kung, “Sorting on a mesh-connected parallel
computer,”Commun. ACM, vol. 20, pp. 263–271, Apr. 1977.

[17] D. Nassimi and S. Sahni, “Bitonic sort on a mesh-connected parallel
computer,”IEEE Trans. Comput., vol. 28, pp. 2–7, 1979.

[18] M. Kumar and D. S. Hirschberg, “An efficient implementation of
batcher’s odd-even merge algorithm and its application in parallel
sorting schemes,”IEEE Trans. Comput., vol. 32, pp. 254–264, 1983.

[19] Y. Ma, S. Sen, and I. D. Scherson, “The distance bound forsorting on
mesh-connected processor arrays is tight,” in27th Annual Symposium
on Foundations of Computer Science, 1986, Oct. 1986, pp. 255–263.

[20] I. D. Scherson and S. Sen, “Parallel sorting in two-dimensional VLSI
models of computation,”IEEE Trans. Comput., vol. 38, no. 2, pp. 238–
249, Feb. 1989.

[21] I. D. Scherson, S. Sen, and Y. Ma, “Two nearly optimal sorting algo-
rithms for mesh-connected processor arrays using shear-sort,” Journal
of Parallel and Distributed Computing, vol. 6, no. 1, pp. 151–165, 1989.

[22] R. Miller and Q. F. Stout,Parallel Algorithms for Regular Architectures:
Meshes and Pyramids. The MIT Press, 1996.

[23] C. P. Schnorr and A. Shamir, “An optimal sorting algorithm for mesh
connected computers,” inProceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’86. New York, NY,
USA: ACM, 1986, pp. 255–263.

[24] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, and J. F. Sibeyn, “Packet
routing in fixed-connection networks: A survey,”Journal of Parallel
and Distributed Computing, vol. 54, no. 2, pp. 77–132, 1998.

[25] P. Vaidya, “An O(n log n) algorithm for the all-nearest-neighbors
problem,” Discrete & Computational Geometry, vol. 4, pp. 101–115,
1989.

[26] R. Miller and Q. F. Stout, “Mesh computer algorithms forcomputational
geometry,” IEEE Trans. Comput., vol. 38, no. 3, pp. 321–340, Mar.
1989.

[27] M. J. Atallah and S. R. Kosaraju, “Graph problems on a mesh-connected
processor array,”J. ACM, vol. 31, no. 3, pp. 649–667, 1984.

[28] Q. F. Stout, “Tree-based graph algorithms for some parallel computers,”
in Proc. 1985 Int.’l Conf. Parallel Processing. CRC Press, 1985, pp.
727–730.

[29] M. J. Atallah and S. E. Hambrusch, “Solving tree problems on a mesh-
connected processor array,”Information and Control, vol. 69, no. 1-3,
pp. 168–187, 1986.

[30] R. Stevens, A. White, and et al. (2009) Scientific grand
challenges: Architectures and technology for extreme scale
computing. [Online]. Available: http://science.energy.gov/∼ /media/ascr/
pdf/program-documents/docs/Archtech grand challengesreport.pdf

[31] T. Yamada, N. Fujii, and S. Ueno, “On three-dimensionallayout of
pyramid networks,” inAPCCAS, 2002, pp. 159–164.

[32] G. E. Jan, S.-W. Leu, and C.-H. Li, “On the array embeddings
and layouts of quadtrees and pyramids,”J. Information Science and
Engineering, vol. 20, no. 1, pp. 127–141, 2004.

[33] L. Uhr, Ed.,Parallel Computer Vision. Academic Press, 1987.

[34] C. Cantoni and S. Levialdi, Eds.,Pyramidal Systems for Computer
Vision, ser. NATO ASI Series F: Computer and Systems Sciences.
Springer-Verlag, 1986, vol. 25.

[35] R. I. Greenberg, “The fat-pyramid and universal parallel computation
independent of wire delay,”IEEE Trans. Comput., vol. 43, no. 12, pp.
1358–1364, 1994.

[36] Q. F. Stout, “Minimizing peak energy on mesh-connectedsystems,” in
SPAA ’06: Proceedings of the Eighteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures. New York, NY, USA:
ACM, 2006, pp. 331–331.

