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1. Introduction 

This paper gives an efficient algorithm for 
drawing a straight line through two given points in 
a digitized picture, where the picture is stored one 
pixel per processor at the base of a pyramid cellu- 
lar automaton (PCA). Dyer [l] defines a PCA to be 
a finite-state automaton which is replicated at each 
node of a finite, complete 4-ary tree, but for our 
purposes it is easier to take the equivalent view 
that each node contains a copy of a random access 
machine with a fixed number of memory cells, 
each of which can store only a fixed amount of 
information. In unit time a processor at height k 
can send a fixed amount of information to any of 
its neighbors: four sons at height k - 1, a father at 
height k + 1, or four adjacent processors at height 
k. (The base is at height 0, and there are obvious 
communication restrictions for processors along 
the sides, see Dyer [ 11.) All nine communication 
links can be used simultaneously independent of 
each other. An input to a PCA consists of initializ- 
ing the, memory of the base processors, setting all 
processors except the apex into a quiescent state, 
-and putting the apex into a start state. PCAs have 
appeared in [ 1,3,4,5,6] and elsewhere. 

nates y. Sakoda [3] recently posed the exact fine 
problem: suppose two base processors (correspond- 
ing to pixels) are initially ‘marked’, with all others 
‘unmarked’. The PCA must mark the processors 
representing the straight line between the centers 
of the two initially marked processors. There are 
various criteria used to draw a digitized line, and 
Sakoda considered the following one: in each col- 
umn between the marked processors mark the 
square containing the intersection of the column’s 
centerline with the line between the endpoints, 
using the upper square if the intersection occurs at 
a boundary. (This applies only if the difference in 
x coordinates between the marked processors 
equals or exceeds the difference in y coordinates. 
Using techniques given below, in O(log n) time it 
is possible to decide if this condition holds, and to 
rotate the entire procedure if it does not.) 

Pick coordinates for the processors in the base 
so that, when viewed from the apex, the processor 
in the lower left is at position (0,O) and the 
processor in the upper right is (n - 1, n - 1). The 
height of the PCA is lg(n), where lg is log,. We 
call the column coordinates x and the row coordi- 

Sakoda gave an algorithm which produced an 
approximatioi;l of the line in O(log(n)* * 2) rime, 
and here we give an exact solution in O(log n) 
time. Further, the solution method can be applied 
to other problems. For example, in O(log n) time 
we can solve Sakoda’s circle problem [ 31, in which 
one processor is initially red and one is black, and 
the PCA must mark the processors on the circle 
passing through the red processor with the black 
one as center. We note that if one only has an 
n x n mesh-connected computer then the exact 
line problem and circle problem each require O(n) 
time. 
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2. Overview of the algorithm 

Temporarily assume that each processor is a 
RAM of unlimited capacity, with\ all operations 
taking unit time. To draw the straight line, first 
use a top-down approach to have each base 
processor determine its x and y coordinates. Then 
have the marked processors sznd theiu coordinates 
to the apex, which sends them down to the 
processors on the base. Each base processor com- 
putes whether it lies on the line segment between 
the marked processors, and if so becomes marked. 
The initialization and broadcasting of the marked 
processors’ coordinates takes O(log n) time, and 
the final calculations take O(1) time, giving 
O(log n) total time. 

The heart of the PCA algorithm consists of 
building subunits, called clerks, that simulate the 
base processors in the above model. Each clerk lies 
in a single column of the base and consists of L 
consecutive processors, where L = 2 * + [l&k + 1 
+ k+ lg n)] ;Ind k is a constant, independent of n, 
to be dete::mined later. Each column contains n/L 
clerks in its base processors, and we consider only 
the case n ) L. In each clerk, the processor 
of lowest row index is called the controller. 
Immediately following the controller are k 
pseudo-registers, denoted PRl, . . . , PRk, each con- 

sisting of 1 + lg(n) consecutive processors. Each 
processor in a pseudo-register uses one of its msm- 
ory cells to store one bit of information for the 
pseudo-register. Thus a pseudo-register can store 
the binary representation of any integer from 
-(n- 1) to n - 1. The remaining processors in a 
clerk, if any, are unused during normal clerk func- 
tions (see Fig. 1). 

Each processor uses one of its memory cells to 
keep track of its type, which determines its be- 
haviour during the algorithm. There are a fixed 
number of types, representing the fact that the 
processor is a controller, the apex, part of PRl, 
etc. Processors at height 1 through lg(L) are of 
type supervisor, and higher processors are of type 
boss. (The apex is a special type.) In each column 
each supervisor is above only one clerk or part of 
one clerk, but each boss is above two or more. 
When information is being sent from the apex to 
the clerks, each boss passes it to all of its sons, 
while each supervisor passes it only to its lower 
two sons. This protocol insures that information 
enters each clerk through its controller. 

A clerk has a fixed set of instructions which it 
can execute. These include copying, addition, sub- 
traction, multiplication (prctiucing a double-word 
result), division and comparisons. To illustrate how 
instructions are executed, suppose the next in- 

function 

extra 

PRk 

PR2 

PRl 

controller 

b 
Fig. 1. Clerks. (a) Clerks on the base; (b) Pwcessors within a clerk. 
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struction is to copy PR2 to PR4. The controller 
passes this instruction to its neighbor, which passes 
it to its neighbor, and so on. When the first 
processor in PR2 receives it, it passes it along, then 
sends a COPY of the bit it is storing, and then sends 
an end-of-message (EOM) indicator. As this mes- 
sage passes along, when each processor in PR2 
receives the EOM it adds its bit and the,; sends the 
EOM. When the stream reaches the first processor 
in PR4, it passes along the instruction, and then 
stores the next bit received (without passing it 
along). Each processor in PR4 acts similarly, later 
processors having to wait longer between the arrival 
of the instruction and their bit. We call this pro- 
cess rolling a number into PR4. When the last 
processor in PR4 receives EOM it sends back a 
signal that the instruction is completed. (This 
processor ‘knows’ that it is last because the next 
processor is of type PR5.) The signal reaches the 
controller in O(log n) time from the start of the 
execution. 

To illustrate arithmetic instructions, suppose 
the instruction is to add PRS to PR3. First a copy 
of the contents of PR8 is moved to PR3, using a 
second bit in each processor of PR3 to store this 
new number as well as the old. Then the first 
processor in PR3 checks the signs of the two 
numbers. If they are the same, then a signal is sent 
towards the last processor in PR3 to start a simple 
bit by bit addition, while if the signs differ then a 
comparison of the magnitude of the addends is 
started, with the result determining the sign of the 
answer and which addend is to be subtracted from 
the other. A suitable multiplication algorithm is in 
(2, p. 2761, and with some effort the division 
algorithm in [2, p. 2751 can be adapted to clerks, 
with each operation finishing in O(log n) time. 

The algorithm consists of three parts: typing 
each processor, initializing pseudo-registers and 
performing calculations. 

3. Setting the type of each processor 

We first identify the supervisors and bosses, 
which requires us to determine lg(L). TO do this, 
the apex sends a message of k l’s, one at a time, 
followed by EOM. This message is sent to its 

loweI- left son, which passes it on to its lower left 
son, and so on. Whenever a processor receives the 
EOM it adds k l’s before sending the EOM alriilg. 
When this reaches base processor (0,O) it is passed 
to processor (0, I), which starts rolling the l’s onto 
the first row. When processor (0,O) receives the 
EOM it adds its k l’s and then the EOM. The last 
processur to have a 1 rolled onto it is at (0, 
1 + k + k * log n). This is the only processor not 
having other l’s pass over, and when it receives the 
E(3M it starts it upwards. The first processor to 
receive the EOM which also participated in send- 
ing the original message downwards is at height 
lg(L). This, is the highest level of a supervisor, and 
we use this processor to identify the other super- 
visors and bosses, It starts this process by sending 
up a 3. Each processor adds a 2 when the 3 is 
received, and then passes the 3, A stream of lg(n) 
- lg(L) - 1 2’s, followed by a 3, arrive at the apex. 
The apex sends this message down to all its 
children. Each processor receiving a downward 
message starting with 2 becomes a boss type, and 
sends down the rest of the message to all of its 
sons. Each processor receiving a downward mes- 
sage starting with 3 becomes a supervisor (unless it 
is on the base) and sends down the 3 to all of its 
sons. When the 3’s reach the base (all simulta- 
neously) a message is sent upward to start the next 
step. 

Since the bosses and supervisors have been set, 
from now on, unless otherwise specified, all mes- 
sages from the apex will enter a clerk only through 
the controller, and all -messages are sent to all 
clerks. First the apex sends a 4, which when re- 
ceived by a base processor tells it that it is of type 
controller. To identify the processors in each clerk’s 
PRI, the apex sends a 5 followed by EOM. This is 
passed on, each processor adding a 1 when the 
EOM is received. When it reaches the controller it 
is passed to the next processor and rolled onto the 
clerk, and when the controller receives EOM a 
final 5 is added and a message is sent upward to 
start the next step. Each previously untyped 
processor receiving a 5 is of type PRI. Each 
pseudo-register is built in similar fashion, finishing 
the typing of all processors in O(log n) time. 
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4. Initializing pseudo-registers 

Into PRl we put the x coordinates of the clerk, 
into PB2 the ‘y coordinates of the controller, and 
into PR3 we put L. These are similar, so we 
describe only initializing P,Rl. The apex first sends 
a 0 sign bit to all children, then a 10 to its two left 
children and a 1 to its two right c’hildren, simulta- 
neously, followed by EOM. Each boss and super- 
visor passes this along, similarly adding a 0 for 

left-hand children and 1 for right-hand, with the 
number being rolled into PRl . (‘To initialize PR3, 
each boss only adds O’s, while the supervisor re- 
ceiving only O’s adds a 1, with all other supervisors 
adding 0’s.) After each pseudo,-register is initial- 
ized a signal is sent upward to start the next step. 
Into PR4 and PRS we put the x and y coordinates 
of one of the marked points, with PR6 and PR7 
containing the coordinates of th,e other. To do this, 
the apex sends a signal which is passed to all base 
processors (not just controllcers), causing each 
marked processor to send an ‘EOM to its parent. 
The parent passes along an ordered pair of bits 
giving the relative x and y position of the son, 
followed by EOM. E.g., if the message came from 
the lower right son, a (0,l) is sent up. As this 
moves up eat? t -d essor adds on the relative 
position of ae .I 1 l Jding the message. Eventu- 
ally a procesr :” IS reached where two of its sons 
are sending up a message, at which point it sends 
up an ordered quadruple with the first two compo- 
nents representing one point and the next two 
components representing the other. When this 
reaches the apex it is sent to all clerks, with the 
apex adding the sign bit. These numbers arrive at 
the pseudo-register low-order bit first, so each 
processor keeps the first bit it receives, and if a 
later bit arrives it passes the old one and keeps the 
new. After O(log n) time the registers are ready. 

5. Calculatisns 

Finally, the apex sends down a signal ordering 
the clerks to start calculating. Let (xl, yl) be the 
coordinates of one marked prmessor, (x2, y2) the 
coordinates of the other, and (xc, yc) the coordi- 
nates of the controller. We first compute an ap- 

proximation to the slope of the line, which by 
assumption is between - 1 and 1. Each clerk com- 
putes y 1 - y2 in PR8 and places zero in PR9. It 
computes xl - x2 in PRlO and divides this into 
the double word in PRS - PR9, with the single 
word result in PR8. This value, denoted m, is 
exactly n times the (approximation of the) slope, 
that is, if we imagine PRS as having a binary point 
before the initial bit then PR9 contains the slope. 

Next each clerk sees if it is in a column between 
the marked points. It checks if 

min(x1, x2) I xc 5 max{x 1, x2), 

and if not signals the controller’s parent that it is 
done. Otherwise, m * (xc - xl) is computed in 
PR? - PRlO. Let V be the contents of PR9. It is 
approximately the processor in row V + yl which 
should be marked in this column, but because 
m/n only approximates the slope it may be that 
the processor in row V + yl - 1 or V + yl + 1 
should be marked. To see which is correct, com- 
pute 

E(v) = (y2 - yl) * (xc - xl) - v * (x2 - xl) 

forv=V,V+ 1 andV- 1, 

and let Y be the value of v that minimizes abs(E(v)). 
(In case of a tie, let Y be the larger value.) Y + y 1 

is the correct row to mark. If Y + y 1 < yc cr 
Y + yl 2 yc + L, then the (Y + yl);t processor is 
in another clerk, in which case the clew’ signals 
that it is done. Otherwise it computes :+ - Y + yl 
- yc, for it is the (y + 1)st processor .r &s clerk 
which should be marked. Convert, a’ unary 
notation (e.g., 3 becomes 11 l), jus ‘f I . start at 
the controller. This uses th: -atit s L , net just 
the registers, and can be done i r = a(log n) 
time. The first processor not cc 1 s I 1 &g a 1 of this 
unary notation is the one whi AS marked, and 
then the clerk is done. 

Whenever the lower two sons of a rsupervisor, or 
all four sons of a boss, signal that they are done, 
t!- & ;. processor in turn t&s its parent that it is 
done. Th-s algorit?un is finished, in Otbg n) time, 
when th;_ c -: .$.s~p sons oi thy apex signal that they are 
dorm. Finally, we need KJ choose k large enou@ to 
give enou$ pseudo-registers to perfolm all tire 
calculatQ5 ‘ihe value k = 1.5 suffices. 
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6. Conchsions 

The idea of automata self-organizing to form 
more complex units is biologically motivated and 
quite old (e.g., von Neumann [7]), but does not 
seem to have been used in the manner given here. 
Basically, the use of clerks allows a PCA to behave 
as if it were composed of processors with registers 
of lg n bits, where each operation takes Ojlog n) 
time. This technique converts simple algorithms 
for powerful machines into fast algorithms for 
simple machines. Clerks can be used with other 
configurations, and forthcoming papers will use 
them to solve some open problems concerning 
mesh-connected computers. 
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