
Volume 15, Number 5 INFORMATION PROCESSING LET-I-ERS IO December f 982

DRAWING STRAIGHT LINES WITH A PYRAMID CELLULAR AUTOMATON

Quentin F. STOUT

Mathematical Sciences, State University of New York, Binghamton, NY 13901, U.S.A.

Received 15 March 1982; revised version received 6 June 1982

Keywords: Pyramid cellular automaton, parallel computing, picture processing, exact line problem, self-organizing automata

1. Introduction

This paper gives an efficient algorithm for
drawing a straight line through two given points in
a digitized picture, where the picture is stored one
pixel per processor at the base of a pyramid cellu-
lar automaton (PCA). Dyer [l] defines a PCA to be
a finite-state automaton which is replicated at each
node of a finite, complete 4-ary tree, but for our
purposes it is easier to take the equivalent view
that each node contains a copy of a random access
machine with a fixed number of memory cells,
each of which can store only a fixed amount of
information. In unit time a processor at height k
can send a fixed amount of information to any of
its neighbors: four sons at height k - 1, a father at
height k + 1, or four adjacent processors at height
k. (The base is at height 0, and there are obvious
communication restrictions for processors along
the sides, see Dyer [11.) All nine communication
links can be used simultaneously independent of
each other. An input to a PCA consists of initializ-
ing the, memory of the base processors, setting all
processors except the apex into a quiescent state,
-and putting the apex into a start state. PCAs have
appeared in [1,3,4,5,6] and elsewhere.

nates y. Sakoda [3] recently posed the exact fine
problem: suppose two base processors (correspond-
ing to pixels) are initially ‘marked’, with all others
‘unmarked’. The PCA must mark the processors
representing the straight line between the centers
of the two initially marked processors. There are
various criteria used to draw a digitized line, and
Sakoda considered the following one: in each col-
umn between the marked processors mark the
square containing the intersection of the column’s
centerline with the line between the endpoints,
using the upper square if the intersection occurs at
a boundary. (This applies only if the difference in
x coordinates between the marked processors
equals or exceeds the difference in y coordinates.
Using techniques given below, in O(log n) time it
is possible to decide if this condition holds, and to
rotate the entire procedure if it does not.)

Pick coordinates for the processors in the base
so that, when viewed from the apex, the processor
in the lower left is at position (0,O) and the
processor in the upper right is (n - 1, n - 1). The
height of the PCA is lg(n), where lg is log,. We
call the column coordinates x and the row coordi-

Sakoda gave an algorithm which produced an
approximatioi;l of the line in O(log(n)* * 2) rime,
and here we give an exact solution in O(log n)
time. Further, the solution method can be applied
to other problems. For example, in O(log n) time
we can solve Sakoda’s circle problem [31, in which
one processor is initially red and one is black, and
the PCA must mark the processors on the circle
passing through the red processor with the black
one as center. We note that if one only has an
n x n mesh-connected computer then the exact
line problem and circle problem each require O(n)
time.

0020-O 190/82/0000-0000/$02,75 0 1982 North-Holland :33

Volume 15, Nuimber 5 INFORMATION PROCESSING LETTERS 10 December 1982

2. Overview of the algorithm

Temporarily assume that each processor is a
RAM of unlimited capacity, with\ all operations
taking unit time. To draw the straight line, first
use a top-down approach to have each base
processor determine its x and y coordinates. Then
have the marked processors sznd theiu coordinates
to the apex, which sends them down to the
processors on the base. Each base processor com-
putes whether it lies on the line segment between
the marked processors, and if so becomes marked.
The initialization and broadcasting of the marked
processors’ coordinates takes O(log n) time, and
the final calculations take O(1) time, giving
O(log n) total time.

The heart of the PCA algorithm consists of
building subunits, called clerks, that simulate the
base processors in the above model. Each clerk lies
in a single column of the base and consists of L
consecutive processors, where L = 2 * + [l&k + 1
+ k+ lg n)] ;Ind k is a constant, independent of n,
to be dete::mined later. Each column contains n/L
clerks in its base processors, and we consider only
the case n) L. In each clerk, the processor
of lowest row index is called the controller.
Immediately following the controller are k
pseudo-registers, denoted PRl, . . . , PRk, each con-

sisting of 1 + lg(n) consecutive processors. Each
processor in a pseudo-register uses one of its msm-
ory cells to store one bit of information for the
pseudo-register. Thus a pseudo-register can store
the binary representation of any integer from
-(n- 1) to n - 1. The remaining processors in a
clerk, if any, are unused during normal clerk func-
tions (see Fig. 1).

Each processor uses one of its memory cells to
keep track of its type, which determines its be-
haviour during the algorithm. There are a fixed
number of types, representing the fact that the
processor is a controller, the apex, part of PRl,
etc. Processors at height 1 through lg(L) are of
type supervisor, and higher processors are of type
boss. (The apex is a special type.) In each column
each supervisor is above only one clerk or part of
one clerk, but each boss is above two or more.
When information is being sent from the apex to
the clerks, each boss passes it to all of its sons,
while each supervisor passes it only to its lower
two sons. This protocol insures that information
enters each clerk through its controller.

A clerk has a fixed set of instructions which it
can execute. These include copying, addition, sub-
traction, multiplication (prctiucing a double-word
result), division and comparisons. To illustrate how
instructions are executed, suppose the next in-

function

extra

PRk

PR2

PRl

controller

b
Fig. 1. Clerks. (a) Clerks on the base; (b) Pwcessors within a clerk.

234

Volume 15, N?lmber 5 INFORMATION PROCESSING LETTERS 10 December 1982

struction is to copy PR2 to PR4. The controller
passes this instruction to its neighbor, which passes
it to its neighbor, and so on. When the first
processor in PR2 receives it, it passes it along, then
sends a COPY of the bit it is storing, and then sends
an end-of-message (EOM) indicator. As this mes-
sage passes along, when each processor in PR2
receives the EOM it adds its bit and the,; sends the
EOM. When the stream reaches the first processor
in PR4, it passes along the instruction, and then
stores the next bit received (without passing it
along). Each processor in PR4 acts similarly, later
processors having to wait longer between the arrival
of the instruction and their bit. We call this pro-
cess rolling a number into PR4. When the last
processor in PR4 receives EOM it sends back a
signal that the instruction is completed. (This
processor ‘knows’ that it is last because the next
processor is of type PR5.) The signal reaches the
controller in O(log n) time from the start of the
execution.

To illustrate arithmetic instructions, suppose
the instruction is to add PRS to PR3. First a copy
of the contents of PR8 is moved to PR3, using a
second bit in each processor of PR3 to store this
new number as well as the old. Then the first
processor in PR3 checks the signs of the two
numbers. If they are the same, then a signal is sent
towards the last processor in PR3 to start a simple
bit by bit addition, while if the signs differ then a
comparison of the magnitude of the addends is
started, with the result determining the sign of the
answer and which addend is to be subtracted from
the other. A suitable multiplication algorithm is in
(2, p. 2761, and with some effort the division
algorithm in [2, p. 2751 can be adapted to clerks,
with each operation finishing in O(log n) time.

The algorithm consists of three parts: typing
each processor, initializing pseudo-registers and
performing calculations.

3. Setting the type of each processor

We first identify the supervisors and bosses,
which requires us to determine lg(L). TO do this,
the apex sends a message of k l’s, one at a time,
followed by EOM. This message is sent to its

loweI- left son, which passes it on to its lower left
son, and so on. Whenever a processor receives the
EOM it adds k l’s before sending the EOM alriilg.
When this reaches base processor (0,O) it is passed
to processor (0, I), which starts rolling the l’s onto
the first row. When processor (0,O) receives the
EOM it adds its k l’s and then the EOM. The last
processur to have a 1 rolled onto it is at (0,
1 + k + k * log n). This is the only processor not
having other l’s pass over, and when it receives the
E(3M it starts it upwards. The first processor to
receive the EOM which also participated in send-
ing the original message downwards is at height
lg(L). This, is the highest level of a supervisor, and
we use this processor to identify the other super-
visors and bosses, It starts this process by sending
up a 3. Each processor adds a 2 when the 3 is
received, and then passes the 3, A stream of lg(n)
- lg(L) - 1 2’s, followed by a 3, arrive at the apex.
The apex sends this message down to all its
children. Each processor receiving a downward
message starting with 2 becomes a boss type, and
sends down the rest of the message to all of its
sons. Each processor receiving a downward mes-
sage starting with 3 becomes a supervisor (unless it
is on the base) and sends down the 3 to all of its
sons. When the 3’s reach the base (all simulta-
neously) a message is sent upward to start the next
step.

Since the bosses and supervisors have been set,
from now on, unless otherwise specified, all mes-
sages from the apex will enter a clerk only through
the controller, and all -messages are sent to all
clerks. First the apex sends a 4, which when re-
ceived by a base processor tells it that it is of type
controller. To identify the processors in each clerk’s
PRI, the apex sends a 5 followed by EOM. This is
passed on, each processor adding a 1 when the
EOM is received. When it reaches the controller it
is passed to the next processor and rolled onto the
clerk, and when the controller receives EOM a
final 5 is added and a message is sent upward to
start the next step. Each previously untyped
processor receiving a 5 is of type PRI. Each
pseudo-register is built in similar fashion, finishing
the typing of all processors in O(log n) time.

235

Volume 15. Number 5 INFORMATION PROCESSING LETTERS 10 December 1982

4. Initializing pseudo-registers

Into PRl we put the x coordinates of the clerk,
into PB2 the ‘y coordinates of the controller, and
into PR3 we put L. These are similar, so we
describe only initializing P,Rl. The apex first sends
a 0 sign bit to all children, then a 10 to its two left
children and a 1 to its two right c’hildren, simulta-
neously, followed by EOM. Each boss and super-
visor passes this along, similarly adding a 0 for

left-hand children and 1 for right-hand, with the
number being rolled into PRl . (‘To initialize PR3,
each boss only adds O’s, while the supervisor re-
ceiving only O’s adds a 1, with all other supervisors
adding 0’s.) After each pseudo,-register is initial-
ized a signal is sent upward to start the next step.
Into PR4 and PRS we put the x and y coordinates
of one of the marked points, with PR6 and PR7
containing the coordinates of th,e other. To do this,
the apex sends a signal which is passed to all base
processors (not just controllcers), causing each
marked processor to send an ‘EOM to its parent.
The parent passes along an ordered pair of bits
giving the relative x and y position of the son,
followed by EOM. E.g., if the message came from
the lower right son, a (0,l) is sent up. As this
moves up eat? t -d essor adds on the relative
position of ae .I 1 l Jding the message. Eventu-
ally a procesr :” IS reached where two of its sons
are sending up a message, at which point it sends
up an ordered quadruple with the first two compo-
nents representing one point and the next two
components representing the other. When this
reaches the apex it is sent to all clerks, with the
apex adding the sign bit. These numbers arrive at
the pseudo-register low-order bit first, so each
processor keeps the first bit it receives, and if a
later bit arrives it passes the old one and keeps the
new. After O(log n) time the registers are ready.

5. Calculatisns

Finally, the apex sends down a signal ordering
the clerks to start calculating. Let (xl, yl) be the
coordinates of one marked prmessor, (x2, y2) the
coordinates of the other, and (xc, yc) the coordi-
nates of the controller. We first compute an ap-

proximation to the slope of the line, which by
assumption is between - 1 and 1. Each clerk com-
putes y 1 - y2 in PR8 and places zero in PR9. It
computes xl - x2 in PRlO and divides this into
the double word in PRS - PR9, with the single
word result in PR8. This value, denoted m, is
exactly n times the (approximation of the) slope,
that is, if we imagine PRS as having a binary point
before the initial bit then PR9 contains the slope.

Next each clerk sees if it is in a column between
the marked points. It checks if

min(x1, x2) I xc 5 max{x 1, x2),

and if not signals the controller’s parent that it is
done. Otherwise, m * (xc - xl) is computed in
PR? - PRlO. Let V be the contents of PR9. It is
approximately the processor in row V + yl which
should be marked in this column, but because
m/n only approximates the slope it may be that
the processor in row V + yl - 1 or V + yl + 1
should be marked. To see which is correct, com-
pute

E(v) = (y2 - yl) * (xc - xl) - v * (x2 - xl)

forv=V,V+ 1 andV- 1,

and let Y be the value of v that minimizes abs(E(v)).
(In case of a tie, let Y be the larger value.) Y + y 1

is the correct row to mark. If Y + y 1 < yc cr
Y + yl 2 yc + L, then the (Y + yl);t processor is
in another clerk, in which case the clew’ signals
that it is done. Otherwise it computes :+ - Y + yl
- yc, for it is the (y + 1)st processor .r &s clerk
which should be marked. Convert, a’ unary
notation (e.g., 3 becomes 11 l), jus ‘f I . start at
the controller. This uses th: -atit s L , net just
the registers, and can be done i r = a(log n)
time. The first processor not cc 1 s I 1 &g a 1 of this
unary notation is the one whi AS marked, and
then the clerk is done.

Whenever the lower two sons of a rsupervisor, or
all four sons of a boss, signal that they are done,
t!- & ;. processor in turn t&s its parent that it is
done. Th-s algorit?un is finished, in Otbg n) time,
when th;_ c -: .$.s~p sons oi thy apex signal that they are
dorm. Finally, we need KJ choose k large enou@ to
give enou$ pseudo-registers to perfolm all tire
calculatQ5 ‘ihe value k = 1.5 suffices.

236

Volume 15, Number 5 INFORMATION PROCESSING LETTERS

6. Conchsions

The idea of automata self-organizing to form
more complex units is biologically motivated and
quite old (e.g., von Neumann [7]), but does not
seem to have been used in the manner given here.
Basically, the use of clerks allows a PCA to behave
as if it were composed of processors with registers
of lg n bits, where each operation takes Ojlog n)
time. This technique converts simple algorithms
for powerful machines into fast algorithms for
simple machines. Clerks can be used with other
configurations, and forthcoming papers will use
them to solve some open problems concerning
mesh-connected computers.

References

10 December 1982

[1] C.R. Dyer, A fast parallel algorithm for the closest pair
problem, Inform. Process. Lett. 1 I (1980) 49-52.

[2] D.E. Knuth, The Art of Computer Programming Vol. 2:
Seminumerical Algorithms (Addison-Wesley, Reading, MA,
1969).

[3] B. Sakoda, Parallel construction of polygonal boundaries
from given vertices on a raster, Tech. Rept. CSBl-21, Penn.
State Univ., Computer Sci. Dept.

141 O.F. Stout, Pyramid computer solutions of the closest pair
problem, to appear.

[S] S.L. Tanimoto, Towards hierarchical cellular logic: design
considerations for pyramid machines, Tech. Rept. 8 l-02-01,
Univ. of Wash., Dept. of Computer Sci.

[6] S.L. Tanimoto and A. Klinger, eds., Structured Computer
Vision: Machine Perception Through Hierarchical Compu-
tation Structures (Academic Press, New York, 1980).

[7] 9. von Neumann, The Theory of Actomata: Construction,
Reproduction, and Homogeneity, A. Aurks, ed. (Univ. of
Illinois Press, Urbana, 1966).

237

