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Abstract. Techniques that have become common in aero-aw, respetively:
dynamics codes have recently begun to be implemented in

space-physic codes, which solve the governing equations fof = —V x B (2)
a compressible plasma. These techniques include high-reso- o
lution upwind schemes, block-based solution-adaptive grid@ =-uxB @)

and domain decomposition for parallelization. While some k4 gne popular class of schemes, the equations are writ-

of these techniques carry over relatively straightforwardly iaq, in a form in which the gasdynamic terms are put in diver-

from aerodynamics to space physics, space physics simulgjence form, and the electromagnetic terms in the momentum
tions pose some new challenges. This paper gives a bri

. i ] nd energy equations are treated as source terms. This gives:
review of the state-of-the-art in modern space-physics codes,

including a validation study of several of the techniques in 9p _
. X — +V-(pu)=0

common use. A remaining challenge is that of flows that ot

include regions in which relativistic effects are important; 9 (pu)

some background and preliminary results for these problems gt

+V- (puu+pl)=jxB

are given. a—B+V><E:0
ot
OFE .
5tV (u(Bu+p) =) B )

1 Governing Equations ) ) )
whereE, is the gasdynamic total energy, given by

The governing equations for an ideal, non-relativistic, com- P u-u

pressible plasma may be written in a number of different™9¢ — y—1 + P ®)
forms. In primitive variables, the governing equations, which
represent a combination of the Euler equations of gasdynam-
ics and the Maxwell equations of electromagnetics, may begyu

written as: 5t (V-F)" =0, (6)

The fully conservative form of the equations is

0 whereU is the vector of conserved quantities
a—f+u-Vp+pV~u:0 d

ou p

pgp Vi X B u=| % 0
0B
E—’_VXE:O Emha
0 : .
% L w-Vp+pV-u=0 (1) andF is a flux diad,
ot T
ou
where the current densifyand the electric field vectdt are puu + <p + B~B) I—- LBB
related to the magnetic fieB by Ampere’s lawandOhm's F= uBZﬁOBu Ko ®)
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whereFE,, 4 is the magnetohydrodynamic energy, given by and kinetic. Thus, as in gasdynamics, flows with substan-
tially more kinetic energy than internal energy can lead to

P u-u B-B L . .
+p + 9) positivity problems when computing the pressure. Also, in
v—1 2 240 contrast to gasdynamics, regions in which the magnetic field
Godunov(1972) showed that the fully conservative form, is large can yield similar problems. Conservative and pos-
Equation 6, is not symmetrizable. The symmetrizable formitive HLL-type schemes for MHD have been described by

Enhd =

may be written as Janhunen(2000). Another alternative, due falsara and
Spicer(1999b), is to use a hybrid scheme: both the conser-
8_U +(V-F)'=Q, (10) vative energy equation and the entropy equations are solved.
ot Close to shock waves the energy equation is used to obtain
where the correct weak solution, at other places the more robust and
0 positive entropy equation can be used. A variant of this tech-
B nigue has been implemented in our code.
Q=-V'B ’ﬁ) (11)
uB 3 Controlling V- B

Ho

Vinokur (1996) separately showed that Equation 10 can beAnother way in which the numerical solution of the MHD
derived starting from the primitive form, if no stipulation is equations differs from that of the gasdynamic equations is
made abou¥ - B in the derivation.Powell (1994) showed the constraint tha¥/ - B = 0. Enforcing this constraint nu-
that this symmetrizable form can be used to derive a Roemerically, particularly in shock-capturing codes, can be done
type approximate Riemann solver for solving the MHD equa-in a number of ways, but each way has its particular strengths
tions in multiple dimensions. and weaknesses. Only a brief overview is given below; each
The MHD eigensystem arising from Equation 6 or Equa- of the schemes discussed below is explained more fully in the
tion 10 leads to eight eigenvalue/eigenvector pairs. The eigemeferences cited, andsth has published a numerical compar-
values and associated eigenvectors correspond to an entrojigon of many of the approaches for a suite of test caieth,(
wave, two Alfven waves, two magnetofast waves, two mag-2000).
netoslow waves, and an eighth eigenvalue/eigenvector pair Brackbill and Barne¢1980) first proposed using a Hodge-
that depends on which form of the equations is being solvedtype projection to the magnetic field. This approach leads to
This last pair has a zero eigenvalue in the fully conserva-a Poisson equation that must be solved each time the projec-
tive case, and an eigenvalue equal to that associated with th@on takes place:
entropy wave, in the symmetrizable case. The expressions ,
for the eigenvectors, and the scaling of the eigenvectors, ard =V B (12)
more intricate than in gasdynamid®de and Balsaral996).  Byrojecteca = B — V¢ (13)

The resulting projected magnetic field is divergence-free on
2 Solution Techniques a particular numerical stencil, to the level of error of the so-

lution of the Poisson equation. While it is not immediately
Because the MHD equations are a system of hyperbolic conebvious that the use of the projection scheme in conjunction
servation laws, many of the techniques that have been develwith the fully conservative form of the MHD equations gives
oped for the Euler equations can be applied relatively straighthe correct weak solutions,6th has proven this to be the
forwardly. In particular, the high-resolution finite-volume case Toth, 2000). The projection scheme has several ad-
approachyan Leer 1979) (i.e. approximate Riemann solver vantages, including the ability to used standard software li-
+ limited interpolation scheme + multi-stage time-stepping braries for the Poisson solution, its relatively straightforward
scheme) is perfectly valid. The Rusanov/Lax-Friedrichs ap-extension to general unstructured grids, and its robustness.
proximate Riemann solver can be applied directly; no knowl-It does, however, require solution of an elliptic equation at
edge of the eigensystem of the MHD equations is requiredgach projection step; this can be expensive, particularly on
other than the fastest wave speed in the system. A Roe-typdistributed-memory machines.
scheme can be constructed, but requires more work, because Powell Powell, 1994; Powell et al,, 1999) first proposed
of the complexity of the eigensystem. In addition, an HLLE- an approach based on the symmetrizable form of the MHD
type Riemann solver has been derivedliyde (1998); itis  equations, Equation 10. In this approach, the source term on
less dissipative than the Rusanov/Lax-Friedrichs scheme, buhe right-hand side of Equation 10 is computed at each time
more robust and less computationally intensive than the Rostep, and included in the update scheme. Discretizing this
scheme. Whichever approximate Riemann solver is choseform of the equations leads to enhanced stability and accu-
to serve as the flux function, standard interpolation schemesacy, however, there is no stencil on which the divergence
and limiters can be used to construct a finite-volume schemeis identically zero. In most regions of the flow, the diver-

One added difficulty in solving the MHD equations is that gence source term is small. However, near discontinuities, it

the MHD energy has three components: internal, magnetids not guaranteed to be small. In essence, the inclusion of the
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source term changes what would be a zero eigenvalue of the,
system to one whose valueig, the component of velocity
normal to the interface through which the flux is computed.
The scheme is typically referred to as the eight-wave scheme;04
the eighth wave is corresponds to propagation of jumps in
the normal component of the magnetic field. The eight-wave °*
scheme can be thought of as a hyperbolic or advective ap-°°
proach to controlling’ - B; symmetrizable form of the equa-
tions, Equation 10, are consistent with the passive advectionwo
of V - B/p. The eight-wave scheme is computationally in- os
expensive, easy to add to an existing code, and quite robust.
However, if there are regions in the flow in which the B 04
source term (Equation 11) is large, the conservation errors o
can create problems.

Recently, several approaches have been developed that hav&; e 0 s 00 0 200 400 600 800 0 200 400 600 800
combined a Riemann-solver-based scheme with constrainegsig. 1. comparison of eight-wavePowell, 1994) and conserva-
transport approach. The constrained-transport approach afve constrained transporBélsara and Spicer1999b) schemes
Evans and Hawley1988) treated the MHD equations in the (solid line) with non-conservative constrained transpBuzns and
gasdynamics/electromagnetic-split form of Equation 4. The Hawley, 1988) scheme (dotted line) for Brio-Wu plasma-shock-tube
grid used was a staggered one, and the B = 0 con-  problem
straint was met identically, on a particular numerical stencil.

Dai and Woodward1998) andBalsara and Spice(1999a)

modified the constrained-transport approach by coupling ghe level ofV - B lower than the eight-wave approach does.
Riemann-solver-based scheme for the conservative form ofn other recent work bybedner et al(2001), a generalized
the MHD equations, Equation 6 with a constrained-transport-agrange-multiplier method has been proposed, incorporat-
approach for the representation of the magnetic field. Ining the projection approach, the eight-wave approach, and
their formulations, this required two representations of thethe diffusive-control approach into a single framework.
magnetic field: a cell-centered one for the Godunov scheme,

and a face-centered one to enforce ¥ie B = 0 condi-

tion. Toth (2000) subsequently showed that these formula-4 Validation Studies

tions could be recast in terms of a single cell-centered rep-

resentation for the magnetic field, through a modificationIn this section, validation studies are presented that compare
to the flux function used. Advantages of the conservativethe solution methods ar\d- B control techiques cited above.
constrained-transport schemes include the fact that they are The first test cases are plasma-shock-tube problems. In
strictly conservative and that they meet fie B = 0 con- Figure 1, the results of a one-dimensional plasma-shock-tube
straint to machine accuracy, on a particular stencil. Theirproblem known as thBrio and Wu(1988) problem are pre-
primary disadvantage is the difficulty in extending them to sented for three schemes: the eight-wave scheme, based on
general gridsToth and Rog2000) made some progress on the symmetrizable form of the equations, the conservative
this front; they developed divergence-preserving prolonga-<constrained transport scheme, based on the fully conservative
tion and restriction operators, allowing the use of conser-form of the equations, and the non-conservative constrained
vative constrained-transport schemes on h-refined meshetransport scheme, based on the gasdynamic/electromagnetic
However, they also showed that the conservative constrainedsplit form of the equations. For this problem, the results of
transport technigques lose th&ir- B-preserving properties if  the eight-wave schemégwell, 1994) and the conservative
different cells are advanced at different physical time ratesconstrained transport schemafsara and Spicer1999b)

This rules out the use of local time-stepping. Thus, while forare indistinguishable, and are shown by the solid line. The
unsteady calculations the cost of the conservative constraineden-conservative constrained transport scheieai(s and
transport approach is comparable to the eight-wave scheméjawley, 1988) results, shown by the dotted line, display er-
for steady-state calculations (where one would typically userors as large as 20%, particularly in the velocity. This is not
local time-stepping), the cost can be prohibitive. surprising, of course; the various jumps in the Brio-Wu prob-

Some of the most recent work on the B = 0 constraint  lem correspond to the Rankine-Hugoniot conditidas a
has been related to modifying the eight-wave approach bylasma which differ from those of a gasdynamic shock. Be-
adding a source term proportionalV - B) so that the the ~ cause the equations are not discretized in a divergence form,
divergence satisfies an advection-diffusion equation, rathesubstantial errors are expected in the presence of non-zero
than a pure advection equation. This technique, dugnde ~ magnetic fields.
and Malagoli(2000) referred to as diffusive control ®f- B, One-dimensional plasma-shock-tube problems such as the
has the same advantages and disadvantages as the eight-wa@r-Wu problem are popular validation cases for base schemes,
approach. It is not strictly conservative, but appears to keegput donot test thevV - B = 0 constraint techniques. This is
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TVDMU + 8-wave TVDLF + 8—wave

[=}

rotating magnetic dipole. These conditions are a simplifi-
cation of the real situation, in which the flow from the Sun
would be unsteady, and the Earth’s intrinsic magnetic field
more complicated. The calculation is carried out on a three-
e dimensional, solution-adaptive grid, on a parallel machine.
Details of the approach are given I6yroth et al. (1999).
TVDMU + diff. div B TVOMU + CD/CT The code can be run first-order or as a second-order MUSCL
scheme, using any combination of the solvers ¥nd con-

ﬂ trol techniques mentioned above.

AVAVM% M"”"’“\)N"”“‘"WW’WW e Figure 3 shows the effect &f - B control technique. Four
v methods — the eight-wave, diffusive control, projection and
conservative constrained transport techniques — are com-
00 02 04 06 08 10 0o 02 04 06 08 10 pared, using a second-order MUSCL scheme with a Rusanov
solver, and a grid with a smallest cell size of a quaRey.
Fig. 2. Comparison of Variou¥ -B Control Techniques on Rotated Although the grid for this case is relatively coarse, the vari-
Plasma-Shock-Tube Problem ousV - B control technigques lead to results that differ by only
1-2%. The relative cost depends on implementation, but the
eight-wave and diffusive-control techniques are the least ex-
) _ ) ) pensive, the projection scheme somewhat more (because of
because, in one dimension, the constrainthaB = 0 de-  the elliptic step each time the magnetic field is projected) and
generates to the constraint thdf = constant. However,  he constrained transport is substantially more expensive (ap-
rotating a one-dimensional problem so that the discontin“'proximately a factor seven over the eight-wave scheme) be-

ities run oblique to the grid yields a problem that can testcayse of the inability to use local time-stepping in this steady
the V- B constraint technique. In Figure 2, results are pre-propjem,

sented for the component of the magnetic field parallel to
the direction of motion of the waves (i.e. the analoghAg

in the one-dimensional case). The exact solution for this
quantity is a constantl; = V/2); the numerical results
differ depending on thé&/ - B constraint technique. The
largest error, on the order of 10%, comes from using th
eight-wave scheme in conjunction with the Roe approximat
Riemann solver. This is due to tRé- B source term, which
is not small in the region of the fast magnetosonic shoc
in this case, and leads to conservation errors. Surprisingly,

the eight-wave scheme in conjunction with the Rusanov/Lax- B-B
Friedrichs approximate Riemann solver yields errors that are’ 4 — Lop
an order of magnitude smaller. The diffusi¥&- B con-

trol technique, used in conjunction with the Roe approximatecan reach appreciable fractions of the speed of light. In the
Riemann solver, yields errors on the order of 2%; the consergase of Jupiter, the Alen speed in the vicinity of the poles
vative constrained-transport technique, yields results that argy of order ten! Even Earth has a strong enough intrinsic

should be noted that onli is shown here, in part because of ight in Earth’s near-auroral regions.

the errors in other variables are much smaller: the differences For these vicinities, solving the non-relativistic ideal MHD

in B, pressure, density, ang among the schemes are tWo g ations does not make sense. Having waves in the system
orders of magnitude smaller than thosedift thedifferences .05 yating faster than the speed of light, besides being non-
in u, among the schemes are more than one order of magniysical, causes a number of numerical difficulties. How-
tude smaller than those . ever, soving the fully relativistic MHD equations is overkill.
The third validation case is one that is more representativeyhat is called for is a semi-relativistic form of the equa-
of space-physics calculations. It represents a quasi-steady ifions, in which the flow speed and acoustic speed are non-
teraction of the solar wind with Earth’s magnetic field. The relativistic, but the Alfien speed can be relativistic. A deriva-
boundary condition upstream of Earth is a steady plasmajon of these semi-relativistic equations from the fully rela-
flow, with: a density of 5 molecules per cubic centimeter, tivistic equations is given iGombosi et al(2001); the final
atemperature of 180,000 K, a velocity of 400 kilometers per result is presented here.
second, pointed directly outward from the Sun, and a mag- The semi-relativistic ideal MHD equations are of the form
netic field of 5 nanoTesla, pointed northward. Earth (includ-
ing its atmosphere through the ionosphere) is represente@Usr .
as a conducting sphere with an embedded, non-tilted, non= ot +(V-Fg) =0 (15)
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5 Sem-Relativistic Plasmas

eWhile the solar-wind speed remains non-relativistic in the
eSolar system, the intrinsic magnetic fields of several planets

in the solar system are high enough, and the density of the
ksolar wind low enough, that the Alén speed,

(14)
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8 wave Diffusive control

Fig. 3. Comparison oV - B Control Techniques for Earth’'s Magnetosphere Simulation

where the state vectd,,., and the flx diad,F';,., are asymptote toc. The nodified magnetoslow speed asymp-
totes toa, the acoustic speed. This property offers the possi-
Pl bility of a rather tricky convergence-acceleration technique,
U,, = pu+ 5 Sa (16) first suggested bioris (1970); the wave speeds can be low-
pau Bp ered, and the stable time-step thereby raised, by artificially
ooty tea lowering the value taken for the speed of light.
. The equations above are valide in physical situations in
pu which V4 > ¢. A slight modification yields a set of equa-
puu+pl+ P, tions, the steady-state solutions of which are independent of
For = uB-Bu (17) the value taken for the speed of light. Defining the true value
(% T %) u+S, of the speed of light to bey, to distinguish it from the artifi-
cially lowered speed of light;, the ejuations are:
In the above, oU
ST T
1 +(V-Fs) =Q (18)
S, = — (ExB) ot ¢
Ho
1 , 1, where the state vectol],,, and the flx diad,F,,, are as
€ax = 2ty (B + c_gE ) defined above, and the new source term is
P, = eAI—iBB— 12EE 1 /1 1
T Q= (5 5)EVE (19
Mo \Cy C

are the Poynting vector, the electromagnetic energy density,

and the electromagnetic pressure tensor, respectively. The An implementation of the semi-relativistic equations has

electric fieldE is related to the magnetic fieB by Ohm’s  been made. It is based on the Rusanov/Lax-Friedrichs ap-

law, Equation 3. proximate Riemann solver; the Roe scheme for the semi-
This new system of equations has wave speeds that anelativistic equations would be quite a mess, due to the com-

limited by the speed of light; for strong magnetic fields, the plicated expressions for the eigenvalues and eigenvectors.

modified Alfvéen speed (and the modified magnetofast speedhe eight-wave scheme is used to con¥ol B.
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BATS-R-US Code Scaling
on Different Architectures
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Fig. 4. Adapted grid in the simulation of a coronal mass ejection.
The Figure shows a 2D cross section of the 3D grid structure (cut-
ting through the CME).

Parallel Performance (GFLOPS)

6 Block-Based AMR on Cartesian Mesh

Keeping in mind the desire for high performance on mas-
sively parallel computer architectures, a block-based adap-
tive mesh refinement (AMR) technique is used in our code Number of Processors

(called BATS-R-US). The governing equations are Int‘E’Qrateci:ig. 5. Paallel scaling of BATS-R-US on various architectures.

to obtain voIgme-average_d solution quantities within rectan-gjack dashed lines represent perfect scaling from single node per-
gular Cartesian computational cells. The cells are embeddeghrmance.

in regular structured blocks of equal sized cells. The blocks

are all self-similar. Although each block occupies the same

amount of space in memory, the blocks may occupy different7  parallel Implementation
sized volumes in physical space.

The computational grid is composed of many self-similar The parallel block-based AMR solver was designed from the

blocks. In regions that require increased resolution, a bIockground up with a view to gch|evmg very high pe.rforman.ce
is refined by dividing it into eight identical octants. In re- " massively parallel architectures. The underlying upwind
ite-volume solution algorithm, with explicit time stepping,

gions that are deemed over-resolved, the refinement process' X K . .
s a very compact stencil and is therefore highly local in na-

is reversed and eight blocks are coarsened and coalesced i he hi hical d d self-similar block
a dngle block. Multiple physics-based refinement criteria areture. The \erarchica ai"’.l structure and self-similar OCKS
make domain decomposition of the problem almost trivial

used to direct the coarsening and division of blocks. A hierar- d readil bl d load-balanci lel ¢
chical tree-like data structure is used to keep track of mesh re&nd readily enable good load-balancing, a crucial element for

finement and the connectivity between solution blo&te(t m_“y scalabl_e comp_uting. A natural load balancing is accom-
et al, 1997;Powell et al, 1999). plished by simply distributing the blocks equally amongst the

processors. The self-similar nature of the solution blocks

An example of a 2-D cut through a 3-D grid, taken from a @lso means that serial performance enhancements apply to
calculation of a coronal mass eiection’ is shown in Figure 43” blocks and that fine grain parallelization of the algorithm
(Groth et al, 2000). Grids like those shown in Figure 4 go is possible. The parallel implementation of the algorithm has
a |ong way towards resolving the disparate scales in a probbeen carried out to such an extent, that even the grld adapta-
lem. Each level of refinement in the grid introduces cellstion is performed in parallel.
that are smaller by a factor two in each dimension from those Other features of the parallel implementation include the
one level higher in the grid. Typical calculations have 10-15use of FORTRAN 90 as the programming language and the
levels of refinement; some calculations have more than 20nessage passing interface (MPI) library for performing the
levels of refinement. In the case of 20 levels of refinement,interprocessor communication. Use of these standards greatly
the finest cells on the mesh are more than one million timesnhances the portability of the code and leads to very good
smaller in each dimension than the coarsest cells on a mestserial and parallel performance. The message passing is per-
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formed in an asynchronous fashion with gathered wait stateson iteration is applied to the non-linear equations; a paral-
and message consolidation such that it typically accounts fotel Krylov type iterative scheme is used to solve the linear
less than 3-5% of processor time. systems; the convergence of the Krylov solver is accelerated
Implementation of the algorithm has been carried out onwith a Schwarz type preconditioning. In our implementation
Cray T3E supercomputers, SGI and Sun workstations, orihe Krylov solver is BICGSTAB, and a modified block in-
Beowulf type PC clusters, on SGI shared-memory machinesgomplete LU (MBILU) preconditioner is applied on a block
on a Cray T3D, and on several IBM SP2s. BATS-R-US by block basis. Since every block has a simple Cartesian
nearly perfectly scales to 1,500 processors and a sustainegeometry, the preconditioner can be implemented very effi-
speed of 342 GFlops has been attained on a Cray T3E-120€iently. The resulting implicit scheme requires about 20-30
using 1,490 PEs. For each target architecture, simple singleimes more CPU time per time step than the explicit method,
processor measurements are used to set the size of the addpit the physical time step can be 1000 to 10000 times larger.
tive blocks. The scaling of BATS-R-US on various architec- This implicit algorithm has a very good parallel scaling due
tures is shown in Figure 5. to the matrix free evaluation of the Jacobian and the block by
block application of the preconditioner.
In BATS-R-US, we combine explicit and implicit time step-
8 Time to Solution ping. Magnetosphere simulations include large volumes where
the Alfvén speed is quite low (tens of km/s) and the local
Since a major goal of global space plasma simulations is thecFL number allows large explicit time steps (tens of seconds
creation of a predictive space weather tool, wallclock timeto several minutes). In these regions implicit time stepping
to solution is a paramount issue. In particular, a predictivejs a waste of computational resources. Since the parallel im-
model must run substantially faster than real time. From thepjicit technique we use is fundamentally block based we only
starting point — the observation of a solar event, to the endingreat those blocks implicitly where the CFL condition would
point — post-processing the data from a simulation based ofimit the explicit time step to less than the selected time step
the initial conditions derived from the observations, a simu-(typically ~ 10 s). Needless to say, this combined explicit-
lation must be accomplished rapidly to be of use. implicit time stepping represents more computational chal-
The main limitation of the present generation of global |enges (such as separate balancing of explicit and implicit
space plasma codes is the explicit time stepping algorithmplocks). Overall, this solution seems to be a very promis-
Explicit time steps are limited by the Courant-Friedrichs- ing option, but other potential avenues need to explored be-
Lewy (CFL) condition, which essentially ensures that no in- fore one makes a final decision about the most efficient time-
formation travels more than a cell size during a time step.stepping algorithm for space MHD simulations.
This condition represents a non-linear penalty for highly re-
solved calculations, since finer grid resolution not only re- o
sults in more computational cells, but also in smaller time® Applications
steps. . .
In global MHD simulations of space plasmas the CFL con- BATS-R-US has been extensively applied to global numer-

dition is controlled by two factors: (1) the smallest cell size ical simulations of the Sun-Earth syste@qmbos et al.,

. . . : . . 2000; Groth et al, 2000), the coupled terrestrial magneto-
in the simulation, and (2) the fast magnetosonic speed in h|g|% . . .
magnetic field, low plasma density regions. In a typical mag_sphere-lonospherﬁ()mboset al, 1998;Song et al. 1999,

netosphere simulation with a smallest cell size of about 0.252000)’ and_the Interaction of the hellosph_gre V\."th the inter-
R, the CFL condition limits the time step to aboli~2 s. stellar medium I(inde et_al, 1998). In addition, it has also
This small step is primarily controlled by the high fast mag- been successfully applied to a host of planetary problems

: : . : ranging from cometsGombosi et al.1996; Haberli et al,
Eetosonlg speed (due to the high /fvspeed) in the near- 1997), to Mercury Kabin et al, 2000), VenusBauske et aJ.
arth region. ;
There are several ways to increase the time step in an MH 998), Mars (iu et' al, 19.99)’ Saturnifansen et al.2000),
simulation and thus decrease the time to solution. Here we® planetary satellitesdabin et al, 1999, 2001).
discuss only two of the potential solutions: the so-called acknowledgementsThis work was supported by DoD MURI grant
“Boris correction” (discussed in section 5), and implicit time F49620-01-1-0359, NSF KDI grant NSF ATM-9980078, NSF CISE
stepping. grant ACI-9876943, and NASA IASRP grant NAG5-9406. Gt
In BATSRUS we have a number of time stepping algo- is partially supported by a postdoctoral fellowship (D 25519) from
rithms implemented. The simplest and least expensive scherti® Hungarian Science Foundation (OTKA).
is a multistage explicit time stepping, for which the time step
is limited by the CFL stability condition. We have also im-
plemented an unconditionally stable fully implicit time step-

ping scheme based of%). The second order implicit time  gajsara, D. S., and D. S. Spicer, A staggered mesh algorithm us-
discretization (BDF2) requires the solution of a non-linear ing high order Godunov fluxes to ensure solenoidal magnetic
system of equations for all the flow variables. This can be fields in magnetohydrodynamic simulationk,Comput. Phys.
achived by the Newton-Krylov-Schwarz approach: a New- 149 270-292, 1999a.
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