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Abstract: To estimate a success probabilitytwo experiments are available: individual Bernowljifrials or the

product ofr individual Bernoullip) trials. This problem has its roots in reliability where either single components
can be tested or a system ofdentical components can be tested. A totalNofexperiments can be performed,

and the problem is to sequentially select some combination (allocation) of these two experiments, along with an
estimator ofp, to achieve low mean square error of the final estimate. This scenario is similar to that of the better-
known group testing problem, but here the goal is to estimate failure rates rather than to identify defective units. The
problem also arises in epidemiological applications such as estimating disease prevalence.

Information maximization considerations, and analysis of the asymptotic mean square error of several estimators,
lead to the following adaptive procedure: use the maximum likelihood estimator to estinzate if this estimator
is below (above) the cut-poift., then observe an individual (product) trial at the next stage. In a Bayesian setting
with squared error estimation loss and suitable regularity conditions on the prior distribution, this adaptive procedure,
replacing the maximum likelihood estimator with the Bayes estimator, will be asymptotically Bayes.

Exact computational evaluations of the adaptive procedure for fixed sample sizes show that it behaves roughly as
the asymptotics predict. The exact analyses also show parameter regions for which the adaptive procedure achieves
negative regret, as well as regions for which it achieves normalized mean squared error superior to that asymptotically
possible.

An example and a discussion of extensions conclude the work.
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1 Introduction

Consider a sequence of Bernoulli trials with success probabilify estimate, two experiments can be performed:

either an individual trial outcome can be observed {thexperimenit or the product of- individual trial outcomes

can be observed (th€-experiment wherer is an integee> 2. A total of N experiments (tests) can be performed,

and the problem is to select some combination (allocation) of these two experiments along with an estigator of

to achieve low mean square error of the terminal estimator. The experiments can be selected sequentially, so that at
each stage, information available at that stage can be used to determine which experiment to carry out at the next
stage.

Before continuing, some comments on the origin and application of this problem are in ordef-&meriment
is a slightly disguised version of the well-studied grouped data experiment with groups ef dizéhe grouped
data setting, the goal is to estimate the failure probabilitys 1 — p, and using groups of sizes other than 1 can
reduce the cost of testing (Sobel and Elashoff, 1975) and can lower the variance of the resulting estimator (Chen
and Swallow, 1990). Reliability settings, in which components can be tested either individually or as a system of
identical components in series, are prime examples of situations in which group testing can be useful (Easterling and
Prairie, 1971). Other group testing scenarios arise in environmental monitoring where sample units of soil or plant
matter are combined and tested for toxins. In these settings, the term “group testing” is often replaced by “composite
sampling”. See Lancaster and Keller-McNulty (1996) for a review of composite sampling methods.

A further application, examined in some detail in Section 9, is that of estimating prevalence. Gastwirth and
Hammick (1989), for example, apply group testing methods to estimate the prevalence of HIV antibodies among
subpopulations. In screening scenarios of this sort, group testing is particularly desirable because it provides for
donor privacy, an issue of serious concern among individuals at risk for HIV. The “pooled testing” of Tu, Litvak and
Pagano (1995) is another example in which group testing is used to estimate HIV prevalence.

In the problem considered here, it is assumed that a “naturists for the grouping of items. In this case, the
sampling options are restricted to only the two experimentsp-#geriment and thg”-experiment. The reliability
setting, in which a system requires thrainits in series be tested, represents a scenario in which such an assumption
is clearly viable. Note, however, that it is sometimes useful to seek the optifoala specific application. This
point is discussed briefly in Section 9 and addressed more thoroughly via the two-stage sampling procedures of
Hughes-Oliver and Swallow (1994).

In Section 2, notation is given and the problem is precisely defined. In Section 3, allocation that maximizes
information is derived, and in Section 4, pooling data across experiments is discussed and several estimators are
analyzed. In Section 5, allocation that minimizes asymptotic mean square error is derived for each of the estimators.
In Section 6, an ad-hoc adaptive allocation procedure is proposed, and it is shown that not all of the estimators
are consistent when combined with an arbitrary allocation procedure. In Section 7, the problem is placed in a
Bayesian framework with squared error estimation loss. Then, under regularity conditions, the adaptive allocation
of Section 6, replacing the maximum likelihood estimator with the Bayes estimator, is shown to be asymptotically
Bayes. In Section 8, an exact approach is taken to evaluating and optimizing allocation policies for fixed values of
N. Here it is shown that the ad-hoc adaptive rule of Section 6 has negative regret with respect to the optimal best
fixed sample size rule that can be generated when the parameter is known. It is also shown that, for some values of
the parameter, the ad-hoc adaptive rule achieves a normalized mean squared error that is smaller than the asymptotic



limit. For comparison purposes, the optimal adaptive allocation rule is also computed, assuming that the parameter
is known. In Section 9, an application of the methods in Section 6 is discussed. There, the group testing approach of
Gastwirth and Hammick (1989) is compared with the individual testing approach of Nusbacher et al. (1986) and with
the methods proposed in the present article. Finally, in Section 10 the extension from 2 experiments to arbitrarily
many is briefly examined.

2 Notation and Problem Statement

The problem is set up in its fully sequential form although much of the development in the next sections will not
use all of this notation. LeX;;, X;9,... be a sequence of independent and identically distributed Berfguiin-
dom variables that are independentXf;, X,o, ..., independent and identically distributed Berndwll) random
variables. The success probabilitys restricted to (0,1) throughout the paper.

A total of NV tests (experiments) will be done, where at each stage the decision to obsefyeoaan X, can
be made based on past observations. More precisely, an allocation rule is a setjuer(de, ..., dy) such that
fork = 1,..., N, di takes values O or 1, and is measuraplf, ..., Z; 1}, whereZ; = d; X1; + (1 — d;) X,.
Thus, d; indicates the population from which thg" observation or test is sampled, with “1” indicating &R -
observation or the-experiment, and “0” indicating & .-observation or the"-experiment. Aterminal estimator of
p must be measurableZ,, ..., Zy}. Finally, letm; = Zle d; be the total number of observations taken from the
p-experiments at stage and letn, = k& — my, be the total number of observations taken fromghexperiment at
stagek, wherek = 1,2,..., N. Sometimes thé subscript will be dropped.

Since the final goal is estimation pfan allocation scheme and estimator will be evaluated as a pair by the mean
square error of the terminal estimator. That is, the mean square error of using alletatiohestimatop is given
by MSE,(d,p) = E,(p — p)?. In the Bayesian framework, the problem of selecting both the allocation rule and the
estimator reduces to selecting only the allocation rule and using the Bayes estimator. However, in the non-Bayesian
framework, the choice of estimator is not so obvious, and as will be noted in Section 6, the allocation rule and the
estimator can interact.

3 Maximum Information Allocation

In this section, the problem of selecting an estimatags isfignored, and only allocation is considered. The criterion
used for allocation will be maximizing the Fisher information, and the best nonrandom allocation will be found.
As is typical with such optimal nhonrandom allocations, the rule will depend on the unknown paramaemvill

suggest the form of an adaptive rule, and the relationship between the MSE’s of estimators and Fisher information
will make the adaptive rule efficient.

In typical sequential allocation problems, the different experiments give information about different parameters.
However, in this problem both experiments give information about the same parameter, although one experiment
will give more information depending on the actual value of the parameter. In particular, the Fisher information
aboutp contained in a single observation of thexperiment is

1
IX1 (p) = where q = 1 - D,
pq



r 2 5 10 20 50 100
ar | 0.333| 0.536| 0.679| 0.792| 0.892| 0.937

Table 1: Cut-point Values

and the Fisher information aboptcontained in a single observation of tfeexperiment is

2, r—2

rp

It is easy to show thafx, (p) > Zx, (p) if and only if p < a,, wherea, is the unique root in (0,1) of the equation in
D,

pr(l o ’I“Z) + ,r2pr71 —1=0.
Note thata, is a function only of-, which is known, and henag. can be determined explicitly.

Proposition 3.1 If N tests are available, then the allocation that maximizes the information ahbisut

N (observe allXy’s) if p < a,
mpy = < 0 (observe allX,’s) ifp>a,
arbitrary if p=a,

(The informations are equal at= a,). O

Thus, the maximum information allocation is to observe aklys (the p-experiment) ifp < a,., or only X,’s
(the p"-experiment) ifp > a,. This will be denoted as,-cut allocation and recall that:, depends only om.
However, the region where one experiment is better than the other depends on the unknown pardrhaterthe
obvious adaptive rule is suggested wheig estimated at each stage, and the next observation is allocated depending
the relationship between the estimatednd the cut,..
Some of the values af,. (first reported in Loyer, 1983) are noted in Table 1. /Agcreases to infinity, the
cut-pointa, tends to 1, and the region over which fifeexperiment is better shrinks.
This section is concluded by evaluating the need for sequential allocation. This is done by comparing the
information in each experiment. Consider the ratio
min{Zx, (p), Zx, (p)}
max{Zx, (p), Zx,(p)}
over the range gb. Were this ratio bounded below by, say, .98, then using the nonoptimal experiment would never
result in more than a 2% loss of information, greatly limiting the worth of adaptive allocation. Since adaptive
allocation is somewhat more complicated than fixed allocation, there needs to be sufficient benefit to justify its
utilization.

Proposition 3.2

Tx, (p) B 1 for p < a,
max{Zx, (p),Zx,(p)} (1 —p")/r2qp"" (which is> 1/r) forp > a,
Zx,(p) _ r2qp"~1/(1 —p") (which tendsto O aptendsto 0) for p < a,
max{Zx, (p),Zx,(p)} 1 forp > a,



Proof. This is simply algebra™

Proposition 3.2 indicates that if thé-experiment is used, then fprsufficiently small, the information obtained
can be arbitrarily close to 0% of that possible whenttexperiment is used. On the other hand, ifghexperiment is
used, then the information obtained never falls below (100/r)% of the maximal information obtainable, approaching
this bound whem tends to 1. Thus, adaptive allocation can be worthwhile for increasing information. Also, using
thep-experiment would be the more conservative approach since one never loses more than (100/r)% of the maximal
information obtainable. Note that the bound decreasesiasreases, so that at= 2, no more than 50% of the
optimal can be lost, but at= 10, one might get only 10% of the optimal.

4 Estimators ofp

Since both experiments give information abputind an adaptive allocation procedure would typically allocate to
both experiments, there is the question of how to combine or pool data across experiments. Several estimators are
presented here and their properties are derived.

Throughout this sectiony is the number of observations from thexperimenty is the number of observations
from thep”-experiment, angh + n = N is the fixed total number of experiments.

If m observations from only the-experiment are used to estimatehen the best estimator (uniform minimum
variance unbiased and the maximum likelihood) is the sample fNgaa % Yiv, X1, and its mean square error
is equal to its varianceyg/m. Letp,, denote this estimator.

If n observations from only thg"-experiment are used to estimatethen there is no unbiased estimator. How-
ever, the maximum likelihood estimator J&./", the rth root of the sample mea, = %2?21 X, which is
equivalent to the usual estimatorin grouped data experiments using groups of sizeet p,,. denote this estima-
tor. The MSE ofp,, can be computed for different valuespéndn using binomial probabilities, and astends to
infinity, nMSE, (p,, ) tends tol /Zx, (p) = (1 —p")/r?p" 2. This has been noted and studied by Sobel and Elashoff
(1975). Some comparisons of the exact mean square and this asymptotic form are made in Loyer (1983).

Next, the maximum likelihood estimator is derived for the general situation with observations of both experi-
ments.

Theorem 4.1 Givenm observations of th@-experiment and. observations of the”-experiment, the maximum
likelihood estimator of, denotedy,,,;, is the unique root iff0, 1] of the equation

prrn+m)+ (m—z)(P " +...+p)— (z; +1y) =0,
wherez; = Y%, Xy; andz, = Z?:l Xrj.

Proof. Differentiating the logarithm of the joint likelihood function with respecttgives the equation above. It is
then straightforward to show the existence and uniqueness of a root inf0,1].

For the case of = 2, the maximum likelihood estimator can be given in closed form:

Va2 (1= pu,)? + dapy, + 41— a)ps, — a(l — pyy)
2 ?

pml =



wherea = m/(2n + m).
Other natural estimators gfare weighted averages pf, andp,,., where the weights could depend on n,
and N. Two particular weight choices are considered below:

e Theconstant weights estimatop,, = (@)py, + (1 — @)ps, .
e Theweight proportional to sample size estimatgt: = (m/N)pz, + (n/N)py,.

Finally, we mention briefly that ratio estimators suctpas= (X, /X) = have been considered for estimating
p, in the context of model validation (Chen and Swallow, 1990). However, these estimators are neither efficient nor
consistent (in the allocation sense), and thus, are not included in this work. Details on the properties of such ratio
estimators in this setting can be found in Hardwick, Page, and Stout (1996).

To determine the MSE’s of the estimators, note that for the weighted average estimatorg, siscebiased for
p, MSE, (o) = a?pg/m + (1 — a)?MSE,(p,, ). For the other estimators, their MSE’s can be computed exactly for
any values otn, n, andp, but there is no apparent closed form for them. However, their asymptotic expressions are
very tractable. Define thesymptotic mean square error of estimagiaas AMSE, (p) = MSE,(p)+o(1/n)+o(1/m)
forpin (0,1).

Theorem 4.2 The asymptotic MSE’s of the estimators are as follows:

pq

AMSE,(p,,) = = MSE,(ps,)
AMSE, (i) = -l

AMSE ) =
ase ) = S L=l
AMSE,(p,) = P94+ n(l]\—ﬂp’")/7”210’"‘2

Proof: This is straightforwardO

To illustrate the relative performance of the estimators when either degenerate or balanced allocations are used,
the values of the limit ofV+xAMSE asN tends to infinity are plotted in Figure 1 for= 2 and 10. Note that, = N
allocation is used fop,, , n = N is used forp,, , andm = n = 0.5N is used forp,,; andp,, .

5 Allocation Minimizing Asymptotic Mean Square Error

While fixed allocations performance of different estimators may be important in some instances, the problem of
interest here is the pairing of an estimator and an allocation rule to lower the MSE of the “terminal” estimator of
p. In this section, the estimators proposed in Section 4 are considered. Since their exact MSE’s are analytically
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Figure 1: NormalizedV-AMSE’s of Estimatorsr = 2,10. Note change in vertical scales.

intractable while their first order asymptotic forms are simple, allocation rules that minimize the asymptotic MSE
among nonrandom allocations are considered for each estimator. As is typical with optimal nonrandom rules, the
allocation will depend on the unknown but will suggest an adaptive rule.

For each estimator in Section 4, the following theorem gives a nonrandom allocation, as a fungtidhadf
minimizes the AMSE.

Theorem 5.1 The AMSE's of estimators are minimized as follows:

1. AMSE,(pmi) and AMSE, (p;) are minimized by the,-cut allocation described in Section 3.

2. AMSE,(p,) is minimized by allocating:/n in proportion {ra/(1 — «)}/p"tq/(1 —p").
Proof: This is straightforward algebra, from Theorem 4.2.

For each estimator considered, the allocations reported in Theorem 5.1 will give the lowest AMSE for that
estimator. These are referred to @s/mptotic omniscient fixed allocationsrresponding to the estimators. To
compare the estimators based on the omniscient fixed allocations, the minimum AMSE'’s are needéanlibe’

AMSE denote the minimum asymptotic mean square error when the allocations of Theorem 5.1 are used.
Corollary 5.2 The normalizedAMSE,, values are as follows:
N - AMSE;(p) = N -AMSE;(ps) = min{pg, (1 —p")/r*p"~?}

2
ay/pa+ (1= a)y/(1 - pr)/(r2p7=2)

N -AMSE;(pa) =



Hence, forp in (0, 1), for any weighi in (0, 1),
AMSE; (pmi1) = AMSE; (p,;) < AMSE}(pa),
with equality occurring only ap = a,-.

Proof. This follows easily from Theorem 5.10

Corollary 5.2 shows that the AMSEor the maximum likelihood and weighted average estimators is the lowest
among those considered. Thus, according to the asymptotic MSE criterian,-the allocation, along with either
the maximum likelihood estimator or the sample size weighted average estimator, should be used.

Note that caution should be exercised when using the AMSE formulas. These are first order approximations,
ignoring termso(1/m) + o(1/n), and thus are valid when both andn tend to infinity. However, the point of
allocation here is to eventually end up on the better experiment. As will be seen in Section 6, the AMSE for the
maximum likelihood estimator and the sample size weighted average estimator remains valid if one sample size does
not tend to infinity. However, the constant weighted average is not even consistent if one of the sample sizes does
not tend to infinity.

6 Adaptive Allocation

As mentioned, the allocation rules considered thus far are motivated by the nonrandom “optimal” allocations of
Sections 3 and 5. In Section 3, the maximum information rule was,#wit rule. In Section 5, this same allocation
rule came out of minimizing the asymptotic MSE. Thus, dhecut allocation rule is a natural choice for an adaptive
rule, where an estimator gfis inserted in the:,.-cut form, and that estimator is updated at each stage for sequential
allocation. Other results in Section 5 indicated that the estimatpaofl the allocation should be compatible in the
sense that the,-cut allocation should minimize the asymptotic MSE of the estimator in use.

To define an adaptive,-cut allocation, consider an estimatormfHere, the ternestimatordenotes a sequence
of estimators{p; }?° ,, wherep;, is measurablg Z,,...,Z;}. Fork = 1,...,N, my + n, = k, where, at stage
k, my andny are the number of observations on thexperiment and on thg"-experiment, respectively. The
estimators suggested in Section 4 fill this requirement since they are defined for egeh,pgirOnce an estimator
is selected, the ad-hag-cut allocation is defined in the obvious way:

Thea,-cut allocation with estimateg: At stage 1, take an observation from ghtexperiment. At stage
k,1 < k < N, observe from the-experiment if and only if, 1 < a,.

The tie ata, has been decided in favor of theexperiment because the worst of the consequences of a wrong
decision is less (see Proposition 3.2).

The a,-cut allocation aims eventually to allocate to the better experiment depending on the valuf ok
requires that the estimator pfused with the allocation be consistent even if the number of observations on one of
the experiments does not tend to infinity. This consistency is called “allocation” consistency:

Estimator{p; } is (strongly) allocation consistetitt p; tends top a.s. ass tends to infinity, for allp in
(0,1).



Theorem 6.1 Estimatorsp,,,; andp, are allocation consistent, while gll, estimators are not.

Proof. See the Appendix-

The estimator used with thg -cut should be allocation consistent. However, while use of a consistent estimator
is prudent, it does not guarantee low MSE of the terminal estimator. That requires efficiency of an estimator, as
described below.

Ideally, an adaptive allocation should select the better experiment quickly (high precision of the estimator),
and once the better experiment is being used, the estimator should approximate the individual maximum likelihood
estimator for that experiment. That is, the goal is to use an estimatdh the property that

MSE, (p) ~ min{MSE, (s, ), MSE, (pz, ) }-

Thus,p should approximatg,, over the range where theexperiment is better, and should approximage over
the range where the.-experiment is better. Of course, adaptive allocation requires that some fdbservations
be used to identify the better experiment. Thus, the desired MSE would not be attained. However, the l&fger the
the smaller the proportion expected on the inferior experiment, and the MSE would tend to be nearer to the desired
MSE.

Asymptotically, (asN tends to infinity), MSE(p,,) can be replaced byl — p")/Nr?p"—2, and the desired
limiting MSE can be given as

. min{pg, (1 —p")/r*p"~?
MSE, (5) ~ P L= PO/ ) W
Define H,.(p) = min{pq, (1 — p")/r?p" 2}, and note that the MSE should approximatg(p) /N for N large. In
Section 8 the normalized MSE will be comparedHp(p). Before this comparison is mad#,.(p) is shown in
Section 7 to arise as the limit of normalized posterior expected loss in a Bayesian setting.

7 Asymptotic Bayes Properties

The focus of this work is frequentist, and both estimators and allocations are evaluated by MSE. However, the major
roles of the Fisher information and the maximum likelihood estimator lead to asymptotic Bayes properties.of the
cut rule (when used with the Bayes estimator), and to a limiting normalized Bayes risk ediidpto

We set up the present estimation problem in a Bayesian framework by assuming a prior distifiifpl}ion p,
squared error estimation loggp,p) = (p — p)?, and likelihood function to match the previous woﬁ?}/‘;l(l —
p) A (1 — pT)

Let Ey L denote the posterior expected loss givén... Zy whereZ; = d;Xy; + (1 — d;)X,; as defined
in Section 2. Under sufficient regularity conditions on the prior (Kass, Tierney, and Kadane, 1990), the posterior
expected loss is approximated by the reciprocal of the Fisher information evaluated at the maximum likelihood
estimator:

n—nXr

ExL = Iy (pn) {1+ O(1/N)},

whereZy (p) denotes the Fisher information aftdf observations ang,,; is the maximum likelihood estimator
defined in Section 4. Note that whem X;’s andn X,’s are observed, theby (p) = mZx, (p) + nZx, (p), where
Zx, andZy, are given in Section 3.



Recall from Section 6 thall,.(p) = min{pq, (1 — p")/r*p"~2}, and note that
He(p) = p(1=p)p<a,y+ 10 =0")/r*p" *psay
= Ix, (p)ill{pgar} +1x, (p)ill{p>ar}7
wherel., is the set indicator functioni,.(p) is a continuous bounded function@bn [0,1], and thus is uniformly

continuous. Also, for any,

In(p) = mIx,(p)+nIx,(p)
< N[IXl (p)I{pgar} + I/\'r (p)I{p>ar}]'

This implies that

]\/vZ.N(p)i1 > [IXl (p)I{pgar} +IXT (p)I{p>aT}]_1'
But this last term is equal t@x, (p) 'I{p<q,} + Zx, (P) Ijpse,} = Hr(p) since set indicators are used. This
proves the following lemma.

Lemma 7.1 NZx (i)t > Hp(Ppr). O

Theorem 7.2 Under sufficient regularity conditions giving the approximation of the posterior variance in terms of
Fisher information,

i. liminfy_,oo NExL > H,(p) a.s.
i. iminfy_,oo NEL > EH,(p).
Proof. For (i), note that by the approximation and by Lemma 7.1,
NENL = NIy (pm)~ {1 + O(1/N)} > H; () {1 + O(1/N)} .

But p,,,; converges tep a.s. andH, is a uniformly continuous function, so thus the lower bound tends af, tp).
For (ii), use the inequality above to déi inf NEL > lim inf EH,.(p,,,;). Then note thatf, is bounded and apply
the bounded convergence theorem to deduce the limit Bigp). O

This theorem along with sufficient conditions to insure uniform integrability imply thattheut rule used with
the Bayes estimator will have limiting Bayes rid&H,.(p), and thus, be asymptotically Bayes.

8 Fixed Sample Size Behavior

Up to this point, the development and evaluation of allocation rules and estimators has been based solely on asymp-
totic arguments. In this section, the estimators and allocation rules are examined for their behavior based on fixed
sample sizes. For moderate sample sizes, some of the estimators do not behave as expected, and there are sever
adjustments that need to be made when implementing the estimators and allocation rules. Despite these problems, it
will be shown that thes,.-cut allocation rule using the MLE estimator does very well.



8.1 Adjusting Cut-points

Thea, value was derived from asymptotic considerations. If the exact MSE for the estifpatisrcompared with

the exact MSE for,, using the same number of tests, the cut-point below whiclptbeperiment does better
depends oV as well ag-. Determining the cut-point is a straightforward computation, but it does not have a simple
closed form. This cut-point differs from., and N may need to be quite large (say100) before it is approximately
equal to its asymptotic value af.. For example, Loyer (1983) showed that foe= 2 the value ofay is 1/3, but

for N = 20, the p-experiment is better whem < 0.445. Forr = 5, the value ofas is 0.536, but forN = 20,

the p-experiment is better whem < 0.729. Thus, if the total sample size is moderate, thendheut should be
modified to account for the lack of asymptotic fit. This adjustment is more pronounced therl@&ger

8.2 Exact Mean Squared Errors of Estimators Using Fixed Allocations

As noted earlier, the MSE’s of most of the estimators under consideration don’t have convenient analytic forms.
However, givenp and NV, the MSE’s can be calculated for each estimator. In this section, performance of the
estimators based on fixed allocations are reviewed. Representative behavior is illustrated in Figuke =2 ¥

andN = 100, for r = 2.

The labels and relative sample sizes used for the different estimators are the same as in Figure 1. The values
in Figure 2 have been scaled by a factor/df so they can be compared across sample sizes as well as between
estimators. It seems clear from both figures that the best estimators for small and large vaJuespctively, are
Pz, andp,, . As noted, as the total sample size increases, the point at whidbegins to improve om,, moves
towards the valuey = 1/3.

Note that, even with predetermined allocations\of2 observations from each experiment, the maximum like-
lihood estimatorp,,;, does very well across the entire range of parameter values regardless of the total sample size.
Also, while it may seem odd that the MSE @£ or p, could be larger than the MSE’s of either of the two com-
ponents that comprise the estimators, the plots indicate that this is true. However, there is no contradiction here
because the MSE's faé,, andp,, are each based aN observations while thg,, andp,, components of the
averaged estimators are each based on fraction, @nd thus are not averages of thig and X,. values shown in
the plots.

Comparing Figure 2 to Figure 1, one sees a decrease in the MBE ahd the estimators that depend on it as
N goes to infinity. Unfortunately, the MSE’s of these estimators don’t converge very rapidly to the AMSE’s. We
examined MSE's fotN = 200 and they were not much closer to the AMSE’s than are the MSE’s$Vice 100.

On the positive side, the MSE of the maximum likelihood estimator rapidly converges to its AMSE. The MSE’s and
AMSE's for p,,, are, of course, the same.

8.3 MSE’s of Adaptive Procedures

The performance of the sequentigatcut allocation rule is illustrated in Figure 3 fof = 100, » = 2, anday, = 1/3.
In this figure,C denotes the exact MSE of the adaptiyecut rule ance represents the normalized lower envelope
from Equation (1) of Section 6, namel, (p).

Note that the cut-point rule has essentially the same MSE as the lower envelope of the AMSE's, except for the

10
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Figure 2: ExactV+MSE Values Using Fixed Allocations.

region of approximately).3 < p < 0.4, as shown in the enlargement on the right. In this interval, the MSE of

pmy actually improves upon the best values gotten using the AMSE’s. This behavior leads to questions about the

comparison of the exact MSE of the cut-point adaptive rule with other lower envelopes derived faY fiked fixed

N, theMSE, (p,,,;) can be computed as a functiorvafandp, then minimized as a function ai. Call the allocation

thus obtained “omniscient fixed”. This minimizer is dependent on the unknovoat gives a lower envelope for

this MSE. It also is interesting to note that the minimizings not necessarily degenerate, i.e., equaVtor 0. For

example, atV = 100, » = 2, andp = 0.35, the omniscient fixed allocation to theexperiment isn = 57.
In Figure 3, forN = 100 andr = 2, the values of normalized MSE for the omniscient fixed allocation are

denoted byF. The plot on the left provides normalized MSE’s over the entire rangeaosfd the plot on the right

is a blow-up of the parameter region in which the MSE of the omniscient fixed rule is better than the asymptotic

lower envelope. The region in which the omniscient fixed rule improves on the asymptotic lower E)usdite

small and shrinks to zero width & — oo. Also note that the cut-point adaptive rulg)(performs better than the

omniscient fixed rule in the area of the cut-point. This is a region of negative regret, as discussed for example in

Woodroofe (1977) and Martinsek (1983), where the ability to adapt is so beneficial that it overtakes allocation that

has advanced knowledge of the parameter but which must be fixed in advance of any experiments.
For fixed N, the true lower bound for the MSE of all rules using the maximum likelihood estimator as terminal

estimator can be computed as a functiop ahdN. This fully sequential rule, which we call “omniscient adaptive”,
assumes knowledge of the parameteits normalized MSE, denoted by is shown in Figure 3. Apparently the
only way to obtain the omniscient adaptive rule is through dynamic programming calculations.
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Figure 3: Adaptive Allocation using the MLEY = 100, r = 2, cut-point = 1/3.

Finally, computations similar to Figure 3 are shown in Figure 4/foe= 10 and N = 100. The cut-point
used was 0.76, rather than, = 0.679, because this is the point at which th€-experiment is superior to the
p-experiment whernV = 100. The basic behavior is similar to that seen foe 2, but many of the differences
between asymptotic behavior and that for modefétare more pronounced. For example, for smpathe extent to
which thep”-experiment is worse than tleexperiment is far more extreme. For the same valul¥ gthe region in
which the omniscient fixed allocation rule is a mixturepefandp”-experiments is far larger than it was for= 2,
and the ability of the omniscient adaptive rule to improve upon the omniscient fixed rule is greatly enhanced. The
MSE of the omniscient adaptive rule is a more irregular functiop, @nd, though not evident in Figure 4, it is no
longer unimodal.

9 Example: Estimating Prevalence

To provide some insight as to how the adaptive group testing methods presented in Section 6 may be used, we apply
them to the Gastwirth and Hammick (1989) reanalysis of a blood screening study of Nusbacher et al. (1986). The
authors of the latter work examined whether one could effectively inhibit HIV carriers from donating to a transfusion
blood pool. In their study, blood donors who participated in high risk activities were asked to designate their donation
to a “research” blood pool rather than to the usual transfusion blood pool. Of the 627 donations to the research blood
pool, 11 were found to carry HIV antibodies.

The problem of estimating the prevalence of HIV antibodies motivated Gastwirth and Hammick (1989) to utilize
group testing methods on the research blood pool data. However, since screening tests tend to cost considerably
less than confirmatory tests, these authors incorporated the sensitivity and specificity of the screening test into their
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Figure 4: Adaptive Allocation using the MLEY = 100, » = 10, cut-point = 0.76.

estimators. In this way, they were able to do realistic cost analyses of the group testing approach and the individual
testing method. Further, while one of their aims was to provide an accurate prevalence estimator, they also sought
a testing method that would preserve the anonymity of the donors. Note that this latter goal is in opposition to the
one that motivated Dorfman (1943) to propose group testing methods in the first place. Dorfman’s objective was to
reduce the cost of detecting all positive cases (see also Hwang (1972)).

Our goal here is to compare the accuracy of the adaptive cut-point estimator for prevalence with those obtained
from individual testing and fixed group size testing. To simplify comparisons, the strong assumption that the sen-
sitivity and specificity of the screening test are one is made, although adaptive cut-point methods can be optimized
for more general settings. It is also assumed that, for each method examined, the observations are sampled from a
large population in which the underlying prevalence ratelj%27 = 0.0175, the rate observed by Nusbacher et al.
(1986).

Gastwirth and Hammick (1989) used batches of size 10, but there seems to be no particular reason to believe that
10 is better than some other group size. We consider what would happen if the adaptive cut-point method is applied
for group sizes ofr = 10 ands = 20, assuming, as did Gastwirth and Hammick (1989), that there is no dilution
effect. Note that this is equivalent to the= 1 versuss = 2 problem considered earlier, in the sense thatthel
observations are sampled from a Bernoulli population with succesg fatdaking a sample size df = 63, as
in Gastwirth and Hammick (1989), we obtain a MSElof6 - 10-%. To achieve the same MSE using only batches
of size 10, one would need a sample of sike= 110; and, using batches of size 1 would require a sample size of
N = 1020. These results are summarized in Figure 5.

As noted in Gastwirth and Hammick (1989), there are significant advantages to using groups larger than 1,
and an adaptive grouped allocation provides yet further advantages. However, there is the consideration that the
number of individual samples required increases slightly. Gastwirth and Hammick (1989) addressed this concern

13



Batch Sizes | No. Sampleg E(No. Individuals) Cost Advantage
1 1020 1020 11.4C5 < Cy

10 110 1100 03C; <Cy<114C;
Adapt. 10, 20 63 1250 Cy <0.3C;

Figure 5: 3 Methods for Achieving MSEE46 - 10~

via cost analyses, and here cost analyses are carried out using a model consisting of two compor@énte thet
cost of one screening test and (€} be the cost of abtaining a single blood donation. Then the cost of achieving
of an MSE of1.46 - 10~% using only batches of size 1 1$20(C, + C,); the cost using only batches of size 10 is
110 Cs 4+ 1100 Cy4; and the expected cost using the adaptive meth68id& + 1250 C,;. The final column of Figure 5
shows the ranges of relative; andC); values for which each method is the most cost-effective.

Typically it happens tha€; <« Cj, and in these situations, adaptive group testing appears to be significantly
superior. If total cost is the appropriate consideration, it can be directly incorporated into the adaptive cut-point
method. For example, one could compare the asymptotic cost per unit of information ugiredberiment, versus
the cost using thg"-experiment, to decide which to perform. That is, one would determine the cut-point by solving

Ix,(p) _ Ix,(p)
Cs+Cy Cs +1rCy

Finally, one may wonder why = 10 ands = 20 were selected for the adaptive version of this example. The
only reason for this is that it corresponds well to the main cpseersusp?, studied in this paper. The present
problem was also solved wherands were taken to be 10 and 100 respectively (which corresponds jowbiesus
p'% case). In this latter case, 63 samples result in a significantly smaller M$E of 07 for . The fact that the
p'0 versusp!'®® experiment provides an even greater reduction in MSE for this problem leads one to wonder what
the optimal group sizes are for specific problems. As mentioned earlier, Hughs-Oliver and Swallow (1994) consider
this question using a two-stage approach. One can extend the present work to include the fully sequential case in
which one seeks to estimate not oplybut also the value of that will optimize a group testing scenario.

10 Extensions

The problem considered in the previous sections was to choose from 2 experimeptexffe@iment and the"-
experiment, and was motivated by reliability applications. The results can be extenHergderiments and need not
necessarily include the-experiment. Let the available experiments be defined by integéysr(2),...,r(J) such
thatl < (1) < r(2)... < r(J), where the''* experiment is @"(")-experiment. As before, the Fisher information
aboutp contained in @"-experiment is

Ix, =rp"2/(L=9p").

14



Now, defineG, s(p) = Ix, (p) — Ix, (p), and note tha€, ;(p) > 0 ifand only if Zx, (p) > Zx, (p), i.e., if and only
if the p”-experiment has more information abouihan does the®-experiment.

p27r

(1—p")(1 —p%)
so forpin (0,1), the sign of7, ,(p) is determined by the first factor. Using derivatives, one can shov@thgip) = 0
has a unique root,. ,, in (0,1), and, for- < s, Zx, (p) > Zx,(p) if and onlyp < a,,.

Cut the unit interval inta/ parts using cuts

G, s(p) = [(s* = r*)p° — *p* " +17]

0=ar0),r1) < r)r@2) <-- <10 < G+ =1,

where for notational convenience we introdu¢@) = 0 andr(.J + 1) = oco. Notice that these cuts are defined using

the (i) in increasing order. Then it can be shown that #hé&-experiment has maximum information wheris
in thes'" interval (@r(i=1),r(i)s Or(i)r(i+1)), fOré =1,2,..., J. This motivates the very simple adaptive rule which
allocates to the"(")-experiment at stagk + 1 if the estimator ofp based on the data up to and including stage

is in thei'" interval. As before, this can also be modified by noting thaiathevalues are based on an asymptotic

analysis and can be adjusted for given sample sizes.

There are other useful extensions of the problem examined in this paper. One is to allow the sample size to be a
random variable which depends on some stopping criterion. Another is to incorporate unequal costs when sampling
from the different experiments. Yet another is to take the Bayesian perspective when sample sizes are fixed. This

latter problem requires a significantly different approach than the one taken here.
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Appendix: Proof of Theorem 6.1

The lack of consistency gb, occurs when one of the sample sizes does not tend to infinity. That is, if, say,
1<n<n, < oo, thenX,«l/’" does not converge in probability or a.s., and the welghta does not tend to zero.
On the other hand, thg, estimator has weights:/N andn/N and if either sample size is bounded¥dends to
infinity, the weight tends to zero, implying consistency.

The consistency of,,; requires more work. Let; = >7i"; Xy, andz, = 3°7_; X;;. Then the logarithm of

the joint likelihood function is equal to
hinn(p) = fm(p) + gn(p), Where
fm(p) = z11og(p) + (m — @1)log(1 —p) and gn(p) = @, log(p") + (n — z,) log(1 — p").
The derivative with respect fois

P (P) = fr(P) + g5, (p), Where

Jinlp) = 5 = H=2 and g (p) = rt — P —

The maximum likelihood estimator is the unique root in [0,1]9f ,, (p) = 0, and becausg;, andg,, are both
decreasing im, it follows that the root of;,, ,, is between the roots qf;, andg;,. Thus,min{p;,,ps, } < Pm <
max{py,, Pz, }. Therefore, if bothm andn tend to infinity, then botlp,, andp,, tend top a.s., and thug,,,; tends
topa.s.

Now, suppose that < n, < co. Thens= < g'n(p) < 22, which in turn boundsy,, ,, by

1 m — 1+ TNy , r1+rn, m—x

A_ p)=———"— S h P S — =A p).
(p) ) . mn (D) . . +(p)
ButA_(p) = 0atp_ = - andA,(p) =0atpy = % Then,p_ < p,u < p+. Butp_ andp, both tend

to p a.s. agn tends to infinity, and thug,,,; tends top a.s. asn tends to infinity even though < n,. A similar
argument holds fom < m, < co. O
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