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SCHUR MULTIPLICATION ON (¢, ¢,)

QUENTIN F. STOUT

1. INTRODUCTION

In 1911 Schur [17] proved that if (a;;) and (b,;) are bounded matrix operators
on #, then so is (a;;b;;), and [[(a;;b:)] < l[(@;pl - 1(b:)Il. We call this termwise
product Schur multiplication, although it is more often called “Hadamard multi-
plication”. (This term apparently originated in Halmos [4] as a parallel to the Hada-
mard product of series.) Recently Bennett [2] extended Schur’s result to show that,
for 1 € p, g < oo, Schur multiplication gives a commutative Banach algebra struc-
ture to the bounded matrix operators from ¢, to £,. This paper studies these Banach
algebras, exhibiting their maximal ideal spaces and some of their properties.

If p = ¢ the Schur-Bennett results are startling, for they have taken a highly
noncommutative Banach algebra and given it a nontrivial commutative multipli-
cation consistant with the original norm and linear structure. Varopoulos [24] is
interested in such compatible Banach algebras and has asked if Schur multipli-
cation on £, is a Q-algebra. If p # ¢ Schur multiplication accomplishes even more
by supplying a multiplication to a collection of operators on which there is no na-
tural product. For these reasons alone it is an interesting subject of study, but there
is more. Schur multiplication is useful in many areas of linear algebra, analysis,
and statistics, and there is an increasing awareness of its role. It has been used in
operator theory (Halmos and Sunder [5], Johnson and Williams [7], Shields and
Wallen [20]), complex analysis (FitzGerald and Horn [3], Pommerenke [14], Shapiro
and Shields [18], [19]), Banach spaces (Bennett [1], Kwapien and Pelczyriski [9]),
and combinatorics (Ryser [16]). Further, Styan [23] has a survey article outlining
its uses in multivariate analysis, Bennett [2] uses it to unify and improve results on
absolutely summing operators, and Stout [21], [22] explores connections with the
essential numerical range and interpolating ideals.

We begin in Section 2 by introducing some notation and giving basic results
on Schur products. In Section 3 we use these to determine the various maximal
ideal spaces, allowing us to derive several properties. In Section 4 we concentrate on
certain ideals and their hulls. This is of interest because the compact operators from
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£, to £, are an ideal in Schur multiplication, and on Hilbert space the trace class is
also a Schur ideal. In Section 5 we outline several open areas and pose some questions.

Portions of this material (for the case p = ¢ = 2) appeared in the author’s
Ph. D. thesis written at Indiana University under the supervision of Professor
John B. Conway.

2. PRELIMINARIES

If T = (t;;) and § = (s,;) are matrices then T'% S denotes their Schur product,
i.e., the matrix (¢;;5;;). In all matrices the indices range through N = {1,2, ...}. All
Banach spaces are complex. Throughout we assume 1 < p, ¢ < co. Using the stan-
dard bases, %#(/,, /,) denotes the matrices which are bounded linear operators from
£, to £, (If p = oo this omits some of the bounded linear operators.) We use || [, , to
denote the operator norm in #(/,, £,).

We will use extensively the following matrix facts:

1) Let Te #(£,,/,) with 1 < p and ¢ < co. Then for any ¢ > O there is an n
such that no row or column of T has more than » entries with absolute value greater
than e. _

2) Let Te #(¢,,¢,) with g < co. Then for any & > 0 there is an » such that
no column of T has more than n entries with absolute value greater than e.

3) Let T'e #({,,{s) with p > 1. Then for any ¢ > O there is an n such that
no row of T has more than n entries with absolute value greater than e.

4) (1) e B4, 0oy T 1= sup\t,ﬂ < 00, in which case = {|(¢;)]1 -

5) Let Te B(,,¢(,) with p > g. Then for any & > 0 there are only finitely
many entries of T with absolute value greater than e.
6) Let (¢;;) have no more than n nonzero entries in any row or column and
suppose ¢ = suplt;;| < oo. Then for | <p <g<oo, (1;))e€B(yl,) and
iJ

/ < ”([ij)!]p,q < n
7) Let (¢;;) have no more than n nonzero catries in any row and suppose
t= §uplr | < oco. Then (t;)) € B, /s) and t < (1) p00 <1 L.

8) Let (f;) have no more than n nonzero entries in any column and
suppose f = sup]t "< oo. Then (t;)) e B(/,, /) and ¢ < (1), < n-t.

All of these facts are easy to establish, except perhaps fact 6, which needs the
decomposition result stated in the following lemma. The lemma is well-known for
finite sets, and the infinite version follows from the finite version by a use of Konig’s
lemama of infinity.

LEMMA 2.1, Let neN and A = N x N such that A contains at most n ele-
ments in any row or column of N X N. Then A= A, U ... U A,, where each A;
has at most one element in any row or column, and A; 0 A; = @ when i # j.
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“The next theorem is the foundation of this area. The case p = g = 2 is due
to Schur and the others are Bennett's.

THEOREM 2.2, (Schur [17, Satz IHI], Bennett [2, Proposition 2.1]) Let
(@), (b)) e Bl ). Then (la by e B, 0,) and
“([aubu\)“p q \ H(aij)“p,q " H(bij)“p,q .
COROLLARY 2.3. (Bennett [2, Theorem 2.21) Let A, Bc #(¢, ). Then
AxBeB(,l) and || A% Bll, , < 1Al , - 1B,
Proof. For any matrix (a;;), [(a;)l,q < 1€, 2

We use #,(¢,,7,) to denote the Banach algebra of Schur multiplication on
£

P q

LemMa 2.4, Let A, Be By(/,, ). Then rank(4 % B) < rank(4) rank(B).

B

Proof. Let Al, denote the operator on C" which is the restriction of A to its
upper 1 X n corner. Then rank(4|,) < rank(4) and lim rank(A4|,) = rank(4).

n—-00

Khan and Marcus [8} noted that A|,= Bj, is a principle submatrix of the tensor
product A4, ® B|,, and hence rank(A4|,* B|,) < rank(4|, ® B|,) < rank(4!,).
.rank (B),).

ProposiTION 2.5. a) The finite rank opelarors are a subalgebra of B.((,, (),
but not an ideal.

b) The compact operators are an ideal in B (L,, ), except when p = | and
q= 0 ‘

Proof. a) Lemma 2.4 showed that the finite ranks are a subalgebra. Let
a;; = 1/(i%?) and b;; = 6;;/i*. Then (a;;), (b;;) € #(£,,¢,), the rank of (a;;) is one,
but the rank of (a;;b;;) is infinite.

b) In #(¢,,/,) the compact operators are the closure of the finite rank opera-
tors. It suffices to show that if (a;)), (b;;) € #(Z,, ¢,) and (a;;) has rank one then
(a;;b;)) is in the closure of the finite rank operators. Since («;;) is rank one there is a
(¢;)in £, and (d;) in £, such that a;; = c;d;. Assume g < co. (If g = oo then the
restriction on p insures that p* < co, in which case the following argument will
work by interchanging the roles of rows and columns.) Let B = (b;)) € #(¢,, /)
and define 4, € #(7,,£,) to be the restriction of A4 to the first n rows. Then A, — A,
so A,* B— Ax B, and rank(4,* B) < n

Finally, in #({,, £) the compact operators are not an ideal because the matrix
of all ones is a rank one operators, and hence compact, but not all operators are
compact. %

Let #(p, q) denote the closure, in #(£,,¢,), of the matrices with only finitely
many nonzero entries. #(p, q) is an ideal for any values of p and ¢. If | < p and
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g < oo then F(p, q) is the compact operators, while if p = 1 or ¢ = co then it is
strictly smaller. Notice that #(p, q) = F(p, q) is dense in F(p, q).
A few more characteristics of #,(Z,, £,) can be obtained easily.

PROPOSITION 2.6. By (£, £,) is semisimple.

Proof. Let T = (t;;) € B(£,,£)\0, and let i and j be such that ¢, # 0.
Then [T, ,>> f;;I", so the spectral radius is at least |r;;|. 7

ProOPOSITION 2.7. Let p < q. Then Byl £)5B((, £,) Is not dense in
Bo(ly €y) unless p =1 and g = oo.

Proof. Assume g < co. (If g = oo then p > 1 and the following argument
applies with the roles of rows and columns interchanged.) Let » = —1/g and let
T e B(/,, £;) be defined by

1 0 0

0 2

0 ar
I'=50 3r
3r
3}’

The #, norms of the columns of any element of #(¢,.¢,) are uniformly bounded
and hence the 7, norms of any element of B,(¢,,7,) % By(£,¢,) are uniformly
bounded. If (a;;) is any matrix with columns with uniformly bounded £,, norms
then |7 — (a;)l, = 1. Therefore the distance from I' to the closure of
Bo(lpsCy) % By(lp,l,) Is one.

REMARKS. 1) B,(£1, L)t Boll1, foo) = B(£4, £oo) Since B, (€1, £o) has an iden-
tity.

2) Theorem 2.2 showed that each element of B.(Z,, £ )+ B.(¢,, £,) is an absolute
matrix, i.e., the entries can be replaced by their absolute values and still give a
bounded operator. Since T in the proof is also an absolute matrix, if p < ¢q then
Bl ) €)% Byl L) is not even dense in the absolute matrices, except when p = 1
and ¢ = co.

3) Proposition 4.4 will show that Z.(Z,, £,)® is dense in B4(Z,, £,)*.

4) A modification of the proof shows that #,(¢,, /))* is nowhere dense in
Bl £g).

5) If p >q then B,(£,, £,)? is densc in B,(4,, /) because B (7, £,) = F(p, 9).
See Pitt {13] and Littlewood [10].

An approximate identity of a Banach algebra & isanet {a,} in & such that
a,x - x for all x in &.
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CoRrOLLARY 2.8. If p < q then B,(¢,,/,) has no approximate identity unless
p =1 and g = oo, in which case it has an identity.

Proof. If a Banach algebra & has an approximate identity then &2 is densc
in o. B4

For p > q, #4(/,,7,) has an approximate identity, but no bounded approxi-
mate identity.

3. THE MAXIMAL IDEAL SPACE OF #.(/,,¢,)

The primary purpose of this section is the construction of the space of maximal
ideals of #,(¢,, £,). To do this some standard terminology must be introduced (see
Hoffman [6] or Loomis [11]). Let & denote a commutative Banach algebra without
unit. An element x of &/ has an adverse y if xy — x — y = 0. The spectrum of x
in &, denoted o(x), is the spectrum of the image of x in the algebra obtained by ad-
joining a unit to &/. For every x in &, 0 € g(x). For any scalar 1 # 0, A€ a(x) if
and only if x/A has no adverse.

The maximal ideal space of & will be denoted A(«¥), and A(p, q) will denote
A( By, ¢,)). Elements of A(«Z) will be thought of both as regular maximal ideals
or multiplicative linear functions. (An ideal £ is regular if there is an e in & such
that ex — x e # for all x in &7.) The former creates a hudl-kernel topology on A(Sf):
for any D < A(&f), kernel(D) = n {M: M € D, M being viewed as an ideal}, and
for any 4o @/, hull(4) = {M: MeA(A), A< M}. For any D < A(H),
hull(kernel(D)) is the closure of D in the hull-kernel topology. The latter characteri-
zation implies that 4(&/) has a natural weak s-topology. If this topology equals the
hull-kernel topology then & is said to be regular.

For any ain &, a” will denote its Gelfand transform, i.c., that continuous func-
tion on A(&f) defined by a”(p) == p(a), where here A(&) is viewed as multiplicative
functionals.

If X is a locally compact Hausdorf space then C(X) denotes the bounded con-
tinuous C-valued functions on X, and B(X) denotes the Stone-Cech compactifica-
tion of X. If 4 « NxN and there is an » such that 4 has no more than n ele-
ments in any row or column, then fact 6 showed that for p < ¢, there is an isomor-
phism from the closed ideal {(7;;) € B4(/,,£,): t;; == 0 if (i, j) ¢ A} onto C(4), and
hence A({(t;;) € By (£ps £9): ti;=01f (i, )) ¢ A}) is homeomorphicto 4(C(A)) ~pdAd~ 4~
in B(NxN). This result holds for any p and g if 4 is finite. Further, if
p = 1 it holds if 4 has no more than s entries in any column, and if ¢ = oo it holds
if A has no more than » entries in any row.

The following lemma was essentially proved by Schur [17, Satz1V]. He proved
a slightly restricted version for #(£,,,), but his method of proof, combined with
Theorem 2.2, yields this lemma.
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LemMA 3.1, Let (a;)) € By({,, £) and let f be a complex-valued function defined
on a set V< C such that
a) Vo {ayl}
b) There is a neighborhood U of O contained in V such that f is analytic on U.
¢) f(0) = 0.
d) f is uniformly bounded on V.
Then (f(a;) € By (£,.,).

PROPOSITION 3.2. If T == (t,;)) € B({,, () then o(T) = {t,;} .

»

Proof. If p = 1 and ¢ = oo then this is well known. Otherwise 0 is in both
o(T)and {r;;}~. For 4 # 0, 2eo(T) ifl T/2 has no adverse, i.e., iff there is no
S=(s5;;) € By(l,, () such that T *S/A—T/.— S = 0. This requires s;; = t;/(t;;—4).
If 2e{t,;}” then the 5,; would be unbounded or undefined, so 2 e a(T). If 2 ¢ {r;;}"
then f(x) = x/(x — A) satisfies Lemma 3.1, so S = f(T) is in B,(/,,7,) and 4 is
not in a(T).

PROPOSITION 3.3. B,((,, £,)" (the Gelfand transforms of clements of By(7,, 1))
is dense in C(d(p, q)).

Proof. From Loomis [11, p. 89], it suffices to show that #,(/,, £,) has an invo-
lution — satisfying:

) T=T

iy (r+8=7+S5

iii) (AT) = AT for 2 e C

iv) (SxT)= S*T

V) —T# T has no adverse.
B¢, £,) has such an involution, namely (I:J): (t;;). for then —7 » T has as ad-
verse f(—T « T), where f(x) = x/(x — 1). &

For a bounded function f in C(N x N) let f~ denote its extension to
BN «N). Any T in HA.(¢p,/,) can be viewed as a bounded function on N X N

and hence has an extension 7. For any p in (N X N) the map T - T (p) is
a multiplicative linear functional (perhaps trivial).

THEOREM 3.4. A(p, q) is regular, and the map j from PN x N) to (perhaps
trivial) multiplicative linear functionals on B/, (,) given by j(p)(T) = T (p)
is a homeomorphism of 9D(p, q) onto A(p, q), where

1) 2(1, 00) = BN x N);
i) 2(p, ) = N X Nif p>gq;
ili) 2(p, ) = U{D: D = N xX N such that D has no more than one ele-

ment in any row or column}
ifl<p<g< oo;
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V) @(p,00) = y{D":D < N x N such that D has no more than one ele-
ment in any row)
if 1 <p;

V) 2(1,9) = u{D": D c N x N such that D has no more than one ele-

ment in any column}
if ¢ < oco.

Proof. We give only the proof for | < p < g < co, the other cases being
similar. First it will be shown that j is a4 homeomorphism when A(p, ¢) has the
weak #-topology, and then it will be shown that A(p, ¢) is regular.

To show that j is an injection, let » and s be distinct elements of 2(p, g). There
isaDacNXNwith reD, s¢ D, and such that D has no more than one
element in any row or column of N x N. If ¥, is the characteristic function of D
then, interpreted as a matrix, x,c #.(/,,7,). Then r(xp) =1, s(ip) =0, so
J(r) # j(s) and j(r) is a nonzero functional.

To show that j is onto, let b € A(p, q) and let T € B,(7,, /,) withT"(b) = I.
Define S = (s;))
if T3, ) >1/2

.
’ 10 otherwise.

Then S € B4(/,, £,) by facts  and 6. Since S« S = S, for any r in d(p, ¢), S*(r) = 0
or S*(r)=1. If §7(b) =0 then (S+«T)"(b)=0, so (T— S=T)"(b)=1.
However, no entry of T — S=7 has absolute value greater than 1/2,
contradicting Proposition 3.2. Therefore S"(b)=1. Let V be the open
and closed set S™Y(1). 774V 1j(Z2(p,q))) contains at most n elements in any row
or column of N X N. The comments prececeding Lemma 3.1 showed that j is a
homeomorphism from ;7 (V| (2(p, q))) onto V. In particular, b € ¥, so j is onto.
Further we have shown that for every b in A(p, ¢) there is an open and closed neigh-
borhood ¥ of b such that j7(¥) is open and closed in 2(p, ¢) and j™* is a homeomor-
phism of ¥ onto its image. Therefore j is a homeomorphism of 9(p, ¢) onto 4(p, ¢)
with its weak =-topology.

To show that A(p, ¢) is regular it is sufficient to show that for every weak
#-closed set C < 4 and every point p ¢ C there is an element T of #,(/,, £,) such
that 7" (p) # 0 and T (C) = 0. (See [L1, p. 83].) Since we have already shown that
B, (£y ()" 1s locally isomorphic to C(A(p, ¢)), this has been done.

COROLLARY 3.5. ZB.(£,, /)" # C(A(p, q)) unless p = 1 and q = co.

Proof. Let a(i) be a sequence of positive numbers converging to 0 but which

is not in 7, for any p < oco. Define f on 4(p, q) by
a(i +j) if (i, j))eN X N
0 otherwise.

G ) = {

Then f'e C(A(p, ¢)) for all p and g but /¢ B.(£,./) unless p=1and g = c0. &
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COROLLARY 3.6. B.(£,,¢,) is not isomorphic to a C*-algebra unless p =1
and q = oo,

Proof. If o is a commutative C*-algebra then &~ = C(A(sF)).

This is related to Varopoulos’ question [24] of whether B.(¢s, /) is a Q-algebra;
that is, a uniform algebra divided by one of its closed ideals. The question is an
initial attempt to determine how the linear and norm structures of %#(¢», ¢») influence
the Banach algebras compatible with them. Further, it is natural to ask which,
if any, of the #,(¢,, £,) spaces are Q-algebras.

4. HULLS AND KERNELS

ProrosiTiON 4.1, For 1 <p < g < o0, B.(l,,£,) # closure of elements
whose Gelfand transforms have compact support in A(p, q), except when p = 1 and
g = 00.

Proof. Facts 1 and 6, coupled with Theorem 3.4 show that every element
with compact support has a square root in %.(/,, £,). Proposition 2.7 showed
that B.(Z,, £,)* is not dense in B,(£,, £,).

COROLLARY 4.2. For 1 <p < q < oo, except when p =1 and q = ©0, not
every proper closed ideal of #,(¢,, ¢,) is contained in a regular maximal ideal.

Proof. Let # be the ideal of all elements with compact support. For the
given values of p and ¢, 4~ is not dense. For any r in 4(p, q) the proof of Theo-
rem 3.4 showed that there is an S in # with r(S) # 0. Then #~ is a proper
closed ideal contained in no regular maximal ideal. %

COROLLARY 4.3. For 1 < p < g < oo, except when p =1 and g = oo, not
every closed ideal of B.(£,,¢,) is equal to the kernel of its hull.

Proof. Again let £ be the ideal of elements with compact support. Then
kernel(hull(F~)) = B, (£,, ) # 9. Y

In the theory of commutative Banach algebras the closure of the elements
with compact support is an important ideal, while in operator theory the compact
operators are usually very important. If 1 < p, g <oo these sets coincide in B (£, £,).
In particular, for 1 < p < ¢ < o0, Corollary 4.3 shows that the compact operators
are not equal to the kernel of their hull. This raises the question of characterizing
kernel(hull(compact operators in ZBy(£,, 4,)). Stout [22] solved this problem for
operators on a Hilbert space in the sense that he characterized the union, over all
orthonormal bases, of the kernel of the hull. Since the answer there has interesting
connections to operator theory, it seems useful to investigate this in other £, spaces.
To do so it is necessary to know what happens when different bases are used.
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QussTioN. Pick bases (e,) of Z,» and (f,) of £, with |le,] = [f,] =1 for
all n. In these bases does Schur multiplication make %(/,,/,) a Banach algebra?

Let Te%(¢,,¢;) be the operator

| A TS T |
L/ Ly —1 ! 1

— @®-— ®....
V2 (1 —1) 201 1 =1 -1
1 —1 =1 1

If S is an element of B({y, £;) with compact support then it can be shown that
|\ T*T — Slls 2> 1, which shows that the elements with compact support are not
even dense in By (s, £3)% They are, however, dense in B (£,, £5)?, a fact obtained
from the following result.

PROPOSITION 4.4. Let ¥ be a closed ideal of By, and let
F = kernelthull(#)). Then

(FrFrd)y =(FxFx f).

Proof. Let A denote the ideal of elements of # with compact support.
Then A < £, and also A2 = A", so it will be enough to show that " is dense
in #3 Forany 4 = (a;;) in # and any ¢ > 0 let 4, = (v;;) € B(£,, £,) be given by

o = a,-j ]f laijl> &
i .
! 0 otherwise

and let |4] denote the matrix |A|(/, /) = |A(i, j)|. Notice 4, A",
Tet B,Ce fand let D=A+ B+ C. A, (B* C)e X, and

|D — A+ (B* C)l = [I(A — A) = (B* O)f <
<ef |B«Cl | < | Bl | CI,

where one goes from the first to second lines by noticing that B+C is an absolute
operator, by Theorem 2.2, and so for any matrix M,

[MxB«Cll,, <IIMlo:|B*Cll,,

where | M| denotes the supremum of the entries of M.

If D is a closed subset of A(&Z) such that hull(#) = D = hull(#) implies
J~ = ¢~ for all ideals .# and #, then D is said to be a set of spectral synthesis.
Corollary 4.3 showed that if 1 < p < g < oo, except when p =1 and ¢ = oo,
then @ is not a set of spectral synthesis. On the other hand, if p > ¢ then every
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subset of 4(p, q) is a set of spectral synthesis, and every closed subset of A(l, o0)
is a set of spectral synthesis. Let 4 « N X N. Then A4 is a (p, g)-line if

i) p > g and 4 is arbitrary.

ii) p=1, ¢ == 00, and A is arbitrary.

iii) 1 < p <€ ¢ < oo and A4 is contained in one row, or one column, or contains
no more than one element of any row or column,

iv) 1 =p < ¢ < oo and A4 is contained in one column, or contains no more
than one element of any column.

v) 1 <p <qg=o00 and A4 is contained in one row, or contains no more
than one element of any row.

THEOREM 4.5. Let 5 be an ideal of B/, 7,). The following conditions
are equivalent:

1) hull(#) is a set of spectral synthesis.

1) There are (p, q)-lines Ly, ..., L, of N N such that hull(F) =
=A(p, )\(U Ly .

i) £« I+ F(I) =5, where F(F) is all finite rank operators in 5.

Proof. We will prove this for | < p < ¢ < oo, the other cases being similar.
Suppose that condition ii) holds, and let the L; be chosen so that they are disjoint.
Let #/L denote those elements T of # such that the support (™) n N X N<L. *
If some L; is finite then #/L; is isomorphic to /(L;). If some L; is infinite and is
not contained in a single row or column then Z(#,, 7 )/L;is {(L;), #/L;isjust an
ideal of £,(L;), and #/L, is isomorphic to C(L;7 \hull(.#/L,)). If some L, is infinite
and contained in a single row (column) then F/L; is just /(L)) (£,(L}). In all
cases, i) implies i) and iii) since these properties remain true under finite unions.

If ii) is false then the support of # contains a set like

XY

XXX

or its transpose. (This uses Lemma 2.1.) Then

l
OOO
lip=1 lip=1

T = 0O0
31/p~1 31/p~~1 3I/p—10
O0
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is in kernel(hull(.#)). (For the transpose case use —1/q¢ instead of 1/p—1.) However,
T is not in the closure of the elements with compact support. Let # = those ele-
ments in # in the closure of the elements with compact support. Then hull(#) =
= hull(S) but .# # kernel(hull(-#)). To show that iii) must also be false let r be
such that 2(1/p — 1) < r < 1l/p — 1, and define the compact operator S by

S, being compact, is in .#. In an operator of the form A=*B the rows must have
uniformly bounded p*/2 norm. Using this fact it is easy to show that AxB — S
cannot be finite rank for any 4 and B in #.(/,./,). and therefore iii) is false. %

5. FURTHER REMARKS

Despite its many uses, the systematic study of Schur multiplication has only
recently begun. Because of this there are many fundamental questions which are
unanswered, a few of which will be outlined here. An immediate question is to
determine which Banach spaces X and Y have a Schur multiplication in Z(X, Y).
To even make sense X and Y must have bases, but what additional conditions
are required? Ruckle [15] has worked some with such questions.

Proposition 2.5 showed that the compact operators in #,(¢,, /,) are a Schur
ideal, except when p = | and g = oo. In general, if (X, Y) has a Schur product
when do the compact operators form a Schur ideal? In %B(¢,, £,) use of duality
shows that the trace class is also a Schur ideal (see Johnson and Williams [7]), and
interpolation shows that, for 1 < r < oo, the Schatten r-class ideal is also a Schur
ideal. (Stout [22] characterized those ideals of #(/,, ¢,) which are also Schur
ideals.) A trace class can be defined in #(¢,, £,) by using the s-numbers of Pietsch
[12]. When is the trace class in %#(/,, £,) a Schur ideal? Actually, there are many
different s-numbers, so there may be many different trace classes.

A Schur multiplier on B(£,, £,) is a matrix (m;;) such that if (a;;) € (¢, ¢,)
then (m;a;;) € B((,, ¢,). Schur multipliers are important members of ZB(Z(¢,, £,))s
and many deep results in analysis are expressible in terms of them. This point is
forcefully demonstrated in Bennett [2], who gives precise norm bounds and lists
some open questions. Results on multipliers are generally difficult and rarer than
results on Schur products. For example, there is no characterization of the spectrum
of a multiplier. Each element of S(N x N) is a nontrivial multiplicative functional
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on the multipliers but it can be shown that they are not all unique for the multi-
pliers on B(/,, £5). A characterization of the equivalence classes has not been com-
pleted, nor is it known that all maximal ideals correspond to points of S(N x N).
A problem whose solution may help with these questions is to give a useful charac-
terization of the multipliers which have only 0’s and 1’s as entries. It is a well-
known result that, on B(4,, £,), the matrix of 0’s above the diagonal and 1’s on
and below it is not a multiplier (see Kwapien and Pelczyriski [9] for a proof
and its connections with several areas of analysis). To date, every 0-1 matrix which
is known not to be a multiplier on #(/s, £,) contains arbitrarily large upper left
corners of this matrix, perhaps rearranged. Bennett [2] has given some characteri-
zations of multipliers, but they are difficult to apply to specific matrices.
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