
This paper appears inJ. of Parallel and Distributed Computing10 (1990), pp. 167–181.

Intensive Hypercube Communication:
Prearranged Communication in Link-Bound Machines1 2

Quentin F. Stout and Bruce Wagar

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2121 USA

September 7, 1988

1A preliminary condensed version of this paper appeared as “Passing messages in link-bound hyper-
cubes”,Hypercube Mutiprocessors 1987,M. Heath, ed., pp. 251-257.

2This research was partially supported by National Science Foundation grant DCR-8507851 and an In-
centives for Excellence award from Digital Equipment Corp.

Abstract

Hypercube algorithms are developed for a variety of communication-intensive tasks such as trans-
posing a matrix, histogramming, one node sending a (long) message to another, broadcasting a
message from one node to all others, each node broadcasting amessage to all others, and nodes
exchanging messages via a fixed permutation. The algorithm for exchanging via a fixed permuta-
tion can be viewed as a deterministic analogue of Valiant’s randomized routing. The algorithms
are for link-bound hypercubes in which local processing time is ignored, communication time pre-
dominates, message headers are not needed because all nodesknow the task being performed, and
all nodes can use all communication links simultaneously. Through systematic use of techniques
such as pipelining, batching, variable packet sizes, symmetrizing, and completing, for all problems
algorithms are obtained which achieve a time with an optimalhighest-order term.

1 Introduction

This paper gives efficient hypercube algorithms for a variety of communication-intensive tasks. The
emphasis is on problems where the communication pattern (i.e., which nodes are sending informa-
tion and where it is going) is known in advance by all processors, and all messages are of the same
size. This situation is common in SIMD (Single Instruction Multiple Data) or SCMD (Single Code
Multiple Data) applications such as matrix multiplicationor inversion, some database operations,
solving PDEs on a regular grid, image manipulation, and histogramming. By systematic use of a
few basic techniques, algorithms are developed which are significantly faster than the simplest or
most common ones, and faster than those published previously. Our algorithms show that these
techniques are quite powerful, and also show that it is advantageous to be able to use all communi-
cation links simultaneously when communication becomes a bottleneck.

1.1 Definition of a Hypercube

A d-dimensional hypercubecomputer is a distributed-memory multiprocessor consisting of2d sep-
arate processing elements (ornodes), linked together in ad-dimensional binary cube network (see
Figure 1). Each node is given a uniqued-bit identification number (henceforth referred to as the
node i.d.) and two nodes linked if and only if their node i.d.’s differ in exactly one bit position. Two
nodes in a hypercube are said to beadjacentor neighboringif they share a link.

Hypercube networks have some useful properties such as a logarithmic communication diameter
and a totally symmetric layout. Because the number of links per node grows only linearly with the
dimension, reasonably-sized hypercubes (of say, dimension 10 or 12) can be practically built with
current technology. NCUBE, Intel, Floating Point Systems,Ametek, and Thinking Machines have
already introduced hypercube computers on the commercial market.

1.2 The Link-Bound Model

This paper uses a model of hypercubes in which communicationtime is assumed to predominate,
and local processing time by the nodes can be ignored. We are interested in problems where ex-
tensive communication is required because very long messages are being sent, and where all nodes
are available to participate in the task and know the communication task being performed. This
latter point helps reduce the communication time by insuring that messages do not need to include
header information such as message destination, message route, packet sequence number, etc. Fur-
ther, we assume that each node can utilize all of its communication links simultaneously, where the
links between neighboring nodes can be used in both directions simultaneously. Thus, a node in
a d-dimensional hypercube may be handling2d messages simultaneously, receivingd and sending
d. This property we calllink-bound, as opposed to other possibilities such as processor-bound(in
which each node can do only one operation at a time) or DMA-bound (in which there is an upper
bound on the number of messages which can go in and out of a nodeat one time). While no hy-
percube can currently use all of its communication links simultaneously, several manufacturers are
trying to attain such ability. The NCUBE machines apparently come the closest [4], and the FPS
T-Series machines have nodes capable of 4 bi-directional communications at the same time [3]. The
link-bound model has been studied in [1, 5, 6, 7, 8, 9, 10, 11, 12, 13].

1.3 Message-Passing Problems

Throughout the paper, various hypercube communication patterns will be looked at. Each will
involve sending messages between some known combination ofthe nodes. These messages will be
the same lengthm, but their contents may vary between different pairs of communicating nodes. It

1

��
��

d = 0

��
��

0

��
��

1

d = 1

��
��
00

��
��
01

��
��
10

��
��
11

d = 2

��
��
000

��
��
001

��
��
010

��
��
011

��
��
100

��
��
101

��
��
110

��
��
111

��

��

��

��

d = 3

Figure 1: Some Hypercubes for Smalld

will be assumed that messages may be broken down into packetsat any time, while existing packets
may be either recombined or broken down still further, in order to facilitate sending, so long as the
ultimate destination eventually receives the entire original message. Another key assumption is that
a node receiving a packet must finish receiving it before any of its contents can be utilized. This is
sometimes called thestore-and-forwardor packet-switchedmodel, as opposed to a circuit-switched
model. All existing hypercubes use store-and-forward.

We assume that it takesτm + β time for a node to send a packet of lengthm to a neighbor,
where

• τ represents the transfer rate and

• β the time for start-up and termination.

In real systems it is generally the case thatβ ≫ τ , and hence it is important to include the effect of
start-up costs. Also note that the total internal I/O bandwidth of the computer is2ddτ . In general,τ
andβ are treated as constants and the algorithms are analyzed as functions ofd andm. As in [5, 6,
7, 8, 11], we ignore the effects of rounding or truncating. Furthermore, because special cases arise
for various relative values of the parameters, the exact formulas will be given only form sufficiently
large. Because we are most interested in processing long messages, the term containing the highest
power ofm will be called thehighest-orderterm.

Some of the problems studied in this paper, such as broadcasting a message from one node
to all others, have been previously considered by [5, 9, 11].These papers use a similar model to
the link-bound model, but give slightly slower algorithms.In particular, [11] considered a model
where communication between nodes can only take place one direction at a time, so where this
made a difference, the times of their algorithms have been divided by two so that they can be fairly
compared with ours. For most of the problems, several algorithms are developed, the last being the
fastest (and most sophisticated). In all problems, simple arguments show that the best versions of
our algorithms have optimal high-order terms. In some caseswe believe that our algorithms are
completely optimal, but are unable to prove this because ourarguments can bound terms involving
τ , m, andd, or terms involvingβ andd, but not sums of terms of different types.

1.4 Notation

Several of the patterns considered here are oriented aroundone node. For such patterns, it will be
assumed without loss of generality that node 0 is the specialnode. The set of all nodes (or their
corresponding i.d.’s, depending on context) which are distancek from node 0 will be denoted by
Ck. Note that because of the symmetry of the hypercube, any algorithm written for node 0 can be

2

converted to an identical algorithm for noden ∈ {1, 2, . . . , 2d−1} by exclusive-ORing all node
i.d.’s referenced in the node 0 algorithm withn.

Some of the algorithms utilize somewhat subtle message routing schemes, for which the follow-
ing notation will be useful. Let

⊕k(n)

denote the node i.d. formed by taking the bit-wise exclusive-OR of n and2k. I.e., it is justn with
the kth bit flipped. For example, ifd = 5, then⊕1(01001) = 01011 and⊕3(01001) = 00001.
Observe then that the neighbors of noden are nodes⊕0(n),⊕1(n), . . . ,⊕d−1(n). Let

i←֓(n)

denote the left circular-shift (rotation) of thed-bit representation ofn by i bits, wherei ∈ {0, 1, . . . ,
d−1} andn ∈ {0, 1, . . . , 2d−1}. For example, ifd = 5, then

2←֓ (01001) = 00101. For each
n ∈ {1, 2, . . . , 2d−1}, let Wn denote the set of all bit positions in the binary representation of n
which are 1. That is,Wn is the unique set of integers such that

n =
∑

w∈Wn

2w.

Likewise, letZn = {0, 1, . . . , d−1} \ Wn denote the corresponding set of 0-bit positions ofn.
Define⌈n: Zn →Wn as follows:

⌈n(z) =







min Wn if z > maxWn

min{w ∈Wn : w > z} otherwise

for eachz ∈ Zn. I.e.,⌈n(z) is the bit position of the first 1 (in left circular order) after z in n. For
example, whend = 5, then⌈01001(1) = 3 and⌈01001(4) = 0.

2 Sending the Same Message From One Node to All Others

One of the fundamental hypercube communication patterns isbroadcasting, in which one node has
to send the same message to all the other nodes in the hypercube. This problem has been previously
examined in [5, 11], but our algorithms are somewhat faster.It is interesting to note that the NCUBE
machine has special hardware instructions to allow a node tosimultaneously broadcast to all of its
neighbors, though the current operating system does not make use of these instructions.

Assume node 0 is to do the broadcasting. The most common and straightforward way to broad-
cast in a hypercube is recursive doubling.

Algorithm: BROADCAST 1 (Recursive Doubling)

There ared stages, numbered0, 1, . . . , d−1. During stagek, nodes0, 1, . . . , 2k−1 send the message
to nodes⊕k(0),⊕k(1), . . . ,⊕k(2

k−1), respectively (and concurrently).

Analysis of BROADCAST 1

Each of the stages takesτm + β time, so the whole algorithm requires time

d(τm + β) = dτm + dβ .

BROADCAST 1 works on only one dimension at a time and thus fails to take advantage of
the concurrent read/write channels of the link-bound hypercube. To alleviate this, it is necessary to
symmetrizethe algorithm. That is, break up the problem intod subproblems and run them simulta-
neously along separate dimensions.

3

Algorithm: BROADCAST 2

Symmetrize BROADCAST 1. I.e., break up the message intod packetsP0, P1, . . . , Pd−1, each of

sizem/d. During stagek, nodes
i←֓(0),

i←֓(1), . . . ,
i←֓(2k−1) sendPi to nodes⊕(i+k) mod d(

i←֓(0)),

⊕(i+k) mod d(
i←֓(1)), . . . ,⊕(i+k) mod d(

i←֓(2k−1)), respectively, for eachi in {0, 1, . . . , d−1}.
Notice that packetP0 reaches each processor at the same stage as the single packetin BROAD-

CAST 1, and in general at the end of stagek each packet has been broadcast to ak-dimensional
subcube. The modular packet routing guarantees that no processor is trying to send two packets
along the same link at the same time.

Analysis of BROADCAST 2

The same as for BROADCAST 1, only now each stage takes timeτ(m/d) + β for a total time of

d

(

τ
m

d
+ β

)

= τm + dβ .

Although much improved from the previous version, BROADCAST 2 still suffers from the fact
that a large percentage of the links are idle most of the time.In fact, half of the links arenever
used (those which are directed towards 0). A better algorithm would be one in which each link is
always busy sending data to a node which has not yet seen it. This is impossible to fully achieve,
but it provides a goal to aim for. The next version attempts this in asystolicfashion, for the message
travels across the hypercube in a “wave” going from oneCk to the next, with every node actively
sending along all of its links when the “wave” hits it.

Algorithm: BROADCAST 3A

There ared+1 stages, numbered0, 1, . . . , d. Break up the message into packets as in BROADCAST
2. During stagek, only the nodes inCk actively send along their theird outgoing links, each node
sending exactly one packet along each such link. Every node in Ck receivesk distinct packets from
Ck−1 during stagek−1 and the remainingd−k packets fromCk+1 during stagek+1.

More specifically, during stagek, each noden ∈ Ck starts out withPw for everyw ∈ Wn. For
each suchw, it sendsPw to node⊕w(n) ∈ Ck−1. In addition, for eachz ∈ Zn, it sendsP⌈n(z)

to node⊕z(n) ∈ Ck+1. Figure 2 shows this process ford = 3. By induction, it is easy to verify
that during stagek−1, a noden ∈ Ck receivesPw for everyw ∈ Wn, receiving it from node
⊕v(n) ∈ Ck−1, wherev ∈Wn is such that⌈n(v) = w. During stagek+1 noden receivesPi from
⊕i(n) ∈ Ck+1 for eachi 6∈ Wn. Therefore, at the end of stagek+1, every node inCk has received
all of the packets.

Analysis of BROADCAST 3A

Similar to that of BROADCAST 2, only now there ared+1 stages and thus, a total time of

(d+1)

(

τ
m

d
+ β

)

=
d+1

d
τm + (d+1)β .

Although slower than the previous broadcast, 3A has the special property that only nodes inCk

are sending in thekth stage. This will be exploited later, but first notice that the only purpose of
the last stage is to sendP0, P1, . . . , Pd−1 from node2d−1 to nodes⊕0(2

d−1),⊕1(2
d−1), . . . ,

⊕d−1(2
d−1), respectively.

4

��
��
000

Stage 0

��
��
001

��
��
100

��
��
010

Stage 1

��
��
101

��
��
011

��
��
110

Stage 2

��
��
111

Stage 3

@
@

@
@

@
@

@
@
@

P0

@R

P0

@I

@
@

@
@

@
@

@
@
@

P2

@R

P0

@I

@
@

@
@

@
@

@
@
@

P1

@R

P0

@I

@
@

@
@

@
@

@
@
@

P1

@R

P0

@I

P2
- P2

�

P0
- P2

�

P1
- P2

�

P0
- P2

��
�

�
�

�
�

�
�
�

P1

��

P1

�	

�
�

�
�

�
�

�
�
�

P0

��

P1

�	

�
�

�
�

�
�

�
�
�

P2

��

P1

�	

�
�

�
�

�
�

�
�
�

P2

��

P1

�	

Figure 2: BROADCAST 3A ford = 3

Algorithm: BROADCAST 3B

Identical to BROADCAST 3A, but the last stage is eliminated by sending a second “wave” right
after the first. During stage 1, node 0 relabelsP0, P1, P2, . . . , Pd−1 asQd−1, Q0, Q1, . . . , Qd−2,
respectively, and starts a second BROADCAST 3A, only this time usingQ0, Q1, . . . , Qd−1 in place
of P0, P1, . . . , Pd−1, respectively. This second broadcast is run for onlyd−1 stages, after which
each node inCd−1 will have received every packet (and then some).

Analysis of BROADCAST 3B

The one stage saving results in a final time of

d

(

τ
m

d
+ β

)

= τm + dβ ,

the same as for BROADCAST 2.

BROADCAST 3 can be significantly sped up through the use ofpipelining. Basically, pipelining
consists of breaking up a problem into smaller pieces and sending these out as separate “waves”,
one after another, in order to keep more of the nodes busy at the same time. It is a useful tool for
speeding up asymmetrical communication algorithms.

Algorithm: BROADCAST 4

Pipeline BROADCAST 3. That is, divide up the message intog groups, numbered0, 1, . . . , g−1,
each of lengthm/g. Executeg−1 separate BROADCAST 3A’s, one for each of the firstg−1
groups, followed by a BROADCAST 3B for the last group. These should be done concurrently,
but staggered one stage apart so that no node is working on more than one at a time. To be more
precise, there ared+g−1 stages, numbered0, 1, . . . , d+g−2. During stagek, each node inCj,
k−g+1 ≤ j ≤ k, executes stagej of BROADCAST 3 for groupk−j.

5

Analysis of BROADCAST 4

Each of thed+g−1 stages now takesτ(m/dg) + β time, so the whole algorithm requires time

(d+g−1)

(

τ
m

dg
+ β

)

=
(d+g−1)τ

dg
m + (d+g−1)β .

By simple calculus, it can be shown that this time is minimized when

g =















1 d = 1
√

(d−1)τ

dβ
m1/2 d ≥ 2

,

which produces a final time of















τm + β d = 1

τ

d
m + 2

√

(d−1)βτ

d
m1/2 + (d−1)β d ≥ 2

.

For purposes of comparison, the best broadcast in [5] has a running time of

τ

d
m + 2

√

βτm1/2 + dβ.

One last observation. BROADCAST 4 is absolutely optimal if all sends have to use fixed-size
packets. To see this, suppose the packet size iss. Then each node will have to receive at leastm/s
of these packets and, since onlyd packets can be sent out at a time from node 0, at least one such
packet will have to wait(m/ds − 1)(τs + β) time for a free link before it can leave node 0. To
reach node2d−1, this packet will then have to traveld links, which takes timed(τs+β), for a total
minimum time of

(

d +
m

ds
− 1

)

(τs + β) .

But this is just what BROADCAST 4 takes when you letg = m/ds.

3 Sending From One Node to the Opposite Corner Node

Another important communication pattern is when some noden sends to itsopposite corner (o.c.)
node2d−1−n. Obviously, this is similar to, and could be accomplished by, broadcasting. Although
this might appear to waste time, the analysis of BROADCAST 4 shows that that algorithm already
performs an optimal o.c. send, if one is limited to fixed-sizepackets. Which is not to say that
variable-sized packets will help much, for at least(τ/d)m + β time is needed just to get all of the
data out of noden. More important, though, is to cut down all of the unnecessary communication.
Assume that node 0 wants to send to node2d−1.

Algorithm: O.C. SEND 1

There ared stages, numbered0, 1, . . . , d−1. During stagek, node2k−1 sends the message to node
⊕k(2

k−1).

6

Analysis of O.C. SEND 1

Identical to BROADCAST 1:

d(τm + β) = dτm + dβ .

Algorithm: O.C. SEND 2

Symmetrize O.C. SEND 1. I.e., break up the data intod packetsP0, P1, . . . , Pd−1, each of size

m/d. During stagek, node
i←֓ (2k−1) sendsPi to node⊕(i+k) mod d(

i←֓ (2k−1)) for eachi ∈
{0, 1, . . . , d−1}.

Analysis of O.C. SEND 2

Identical to BROADCAST 2:

d

(

τ
m

d
+ β

)

= τm + dβ .

These algorithms reduce the total communication needed in their broadcast equivalents consid-
erably. Unfortunately, they don’t save any time. In order todo that, it is necessary to speed up the
intermediate stages.

Algorithm: O.C. SEND 3

There ared stages, numbered0, 1, . . . , d−1. The packets will vary in size depending on the stage.
During stagek, only the nodes ofCk will be sending, while only nodes inCk+1 will be receiving.
At the start of stagek, the data starts out evenly distributed among each of the

(d
k

)

nodes inCk. Each
such node then breaks up its data intod−k equal-sized packets and sends a different one out along
each of itsd−k links toCk+1, at which point the message will be evenly distributed amongCk+1’s
nodes.

Analysis of O.C. SEND 3

Stagek takes time

τ
m

(d
k

)

(d−k)
+ β =

τ
(d−1

k

)

d
m + β,

so the whole algorithm requires

d−1
∑

k=0

[

τ
(d−1

k

)

d
m + β

]

=

[

d−1
∑

k=0

1
(d−1

k

)

]

τ

d
m + dβ

=
Kd−1τ

d
m + dβ ,

where

Kd =
d
∑

k=0

1
(d
k

)
.

7

To help understandKd, note that it’s first six values are1, 2, 21
2 , 22

3 , 22
3 , and23

5 . Ford ≥ 5,

2 +
2

d
≤ Kd ≤ 2 +

2

d
+

4

d(d−1)
+

6(d−5)

d(d−1)(d−2)
< 2 +

2

d
+

10

d(d−1)
,

and hence,

Kd ≈ 2 +
2

d
.

The upshot of all this is that O.C. SEND 3 is faster than BROADCAST 3 by a factor of about
d/2. Like BROADCAST 3, O.C. SEND 3 also lends itself well to pipelining.

Algorithm: O.C. SEND 4

Pipeline O.C. SEND 3. I.e., break up the message intog groups of lengthm/g and executeg
separate O.C. SEND 3’s, one for each group. These should be done concurrently, but staggered one
stage apart. Because O.C. SEND 3’s stages have varying lengths, there will be no synchronization
between the various stages of O.C. SEND 3 being worked on for each of the groups. Since O.C.
SEND 3’s first stage, which takes timeτ(m/dg) + β, is at least as long as any other of its stages,
it sets the rate at which the groups can be started. Each node will be able to complete sending the
previous group by the time it has finished receiving the next group.

Analysis of O.C. SEND 4

Due to the fact that there is no chance of conflict, the time needed for this algorithm is just the time
needed to start the firstg−1 O.C. SEND 3’s, as well as all of the time needed for the last one. This
works out to be

(g−1)

(

τ
m

dg
+ β

)

+
Kd−1τ

d

m

g
+ dβ =

g+Kd−1−1

dg
τm + (g+d−1)β ,

which is minimized when

g =















1 d = 1
√

(Kd−1−1)τ

dβ
m1/2 d ≥ 2

.

This produces a final time of















τm + β d = 1

τ

d
m + 2

√

(Kd−1−1)βτ

d
m1/2 + (d−1)β d ≥ 2

.

Notice that this is identical to the time for BROADCAST 4, except that the coefficient of them1/2

term has been reduced by a factor of approximately
√

d−1.

A final observation about the O.C. SEND algorithms: they onlyuse links in one direction (i.e.,
towards node2d−1). Consequently, another o.c. send could be done from node2d−1 to node 0
concurrently (that is, an opposite cornerexchange) since they each would use different links.

8

4 Sending Messages Between Two Arbitrary Nodes

One of the more interesting questions that can be asked is, given the full use of the link-bound
hypercube, what is the fastest possible time for one node to send to an arbitrary node distancen
away(1 ≤ n ≤ d)? For simplicity, assume node 0 is sending to node2n−1.

Algorithm: ARBITRARY SEND 1

Use O.C. SEND 4 on then-dimensional subcube containing nodes0, 1, . . . , 2n−1.

Analysis of ARBITRARY SEND 1















τm + β n = 1

τ

n
m + 2

√

(Kn−1−1)βτ

n
m1/2 + (n−1)β n ≥ 2

.

Like previous algorithms, this approach fails to make use ofthe tremendous bandwidth available
and is slower than broadcasting for alln < d.

Algorithm: ARBITRARY SEND 2

Use BROADCAST 4, deleting the lastd−2−n stages ifn < d−2. These stages were only needed
to get the message to nodes farther than distancen from node 0.

Analysis of ARBITRARY SEND 2

There are






n+g−1 0 ≤ n ≤ d−2

d+g−1 d−2 ≤ n ≤ d

stages, which produce minimum times when

g =











































1 d = 1
√

(n+1)τ

dβ
m1/2 1 ≤ n ≤ d−2

√

(d−1)τ

dβ
m1/2 0 ≤ d−2 ≤ n ≤ d

.

The corresponding times are then











































τm + β d = 1

τ

d
m + 2

√

(n+1)βτ

d
m1/2 + (n+1)β 1 ≤ n ≤ d−2

τ

d
m + 2

√

(d−1)βτ

d
m1/2 + (d−1)β 0 ≤ d−2 ≤ n ≤ d

.

9

Closer inspection of BROADCAST 3 reveals that yet another stage can be saved whend/2 ≤
n ≤ d−2 and a fraction of a stage saved when1 ≤ n < d/2, but these only reduce them1/2 and
β coefficients by negligible amounts. What’s needed is a way tocombine the link utilization of
BROADCAST 4 with the efficiency of O.C. SEND 4. With this in mind, it is necessary to look at
a new communication pattern, theextendedo.c. (x.o.c.) send. It is similar to a regular o.c. send,
except that the sending and receiving nodes are connected toopposite corners of ann-dimensional
subcubeS, and all communication must go throughS.

Algorithm: X.O.C. SEND 1

Identical to O.C. SEND 3, except two stages, numbered−1 andn, are added to get the items into
and out ofS.

Analysis of X.O.C. SEND 1

The first and last stages each take timeτm + β, so the whole algorithm requires

2(τm + β) +
Kn−1τ

n
m + nβ =

(2n + Kn−1)τ

n
m + (n+2)β .

Algorithm: X.O.C. SEND 2

Pipeline X.O.C. SEND 1 as in O.C. SEND 4. There are stillg groups ofm/g items apiece, only in
this case theτ(m/g) + β time needed to get a group out of the sending node sets the pacefor the
rest of the stages.

Analysis of X.O.C. SEND 2

Similar to O.C. SEND 2. The total time needed is

(g−1)

(

τ
m

g
+ β

)

+
(2n + Kn−1)τ

n

m

g
+ (n+2)β

=
(gn + n + Kn−1)τ

gn
m + (g+n+1)β ,

which is minimized when

g =

√

(n+Kn−1)τ

nβ
m1/2

with a resulting time of

τm + 2

√

(n+Kn−1)βτ

n
m1/2 + (n+1)β .

10

Algorithm: ARBITRARY SEND 3

Break up the data intod−n+1 packets,d−n of which containm/d apiece while the other has
the remainingnm/d items. Send the larger packet via an O.C. SEND 4 through the subcubeT
containing nodes 0 and2n−1 as opposite corners. Send each of the otherd−n packets via an
X.O.C. SEND 2 through a different one of thed−n n-dimensional subcubes which both run parallel
to T and are distance 1 fromT (i.e., the subcubes containing nodes2n+1 through2n+1+2n−1, 2n+2

through2n+2+2n−1,. . . ,2d−1 through2d−1+2n−1).

Analysis of ARBITRARY SEND 3

Thed−n+1 separate sends use different links, so they can all be done concurrently with no conflicts.
Each of the X.O.C. SEND 2’s of lengthm/d takes time

τ

d
m + 2

√

(n+Kn−1)βτ

dn
m1/2 + (n+1)β

whereas the O.C. SEND 4 of lengthnm/d requires


















τ

d
m + β n = 1

τ

d
m + 2

√

(Kn−1−1)βτ

d
m1/2 + (n−1)β 2 ≤ n ≤ d

.

Hence, the X.O.C. SEND 2’s will be slower than the O.C. SEND 4 whenever

n+Kn−1

n
≥ Kn−1−1 ,

which is true by inspection for1 ≤ n ≤ 4 and is false for biggern since

2 +
2

n
< Kn

holds for alln ≥ 4. What this all means is that the actual time for ARBITRARY SEND works out
to











































τm + β d = n = 1

τ

d
m + 2

√

(n+Kn−1)βτ

dn
m1/2 + (n+1)β 1 ≤ n ≤ 4 and n ≤ d−1

τ

d
m + 2

√

(Kn−1−1)βτ

d
m1/2 + (n−1)β 5 ≤ n ≤ d or n = d ≥ 2

.

This compares to the


























τ

d
m + 2

√

(n+1)βτ

d
m1/2 + (n+1)β n ≤ d−1

τ

d
m + 2

√

(d−1)βτ

d
m1/2 + (d−1)β n = d

needed by [11].

As was the case with O.C. SEND 4, ARBITRARY SEND 3 is only a slight improvement over
broadcasting. More importantly, it uses only one link between nodes, so an arbitrary exchange is
possible between two nodes in the same amount of time by usingthe links in the other direction.

11

5 Sending Different Messages From One Node to Every Other Node

The next communication pattern to be looked at is where one node needs to send a different message
to each of the other nodes. This operation has no standard name (it was referred to as “scatter” in
[11] and “personalized communications” in [5]), so we will call it distributing. Its dual operation,
collecting, where one node has to receive a message from each of the othernodes, is exactly the
same operation, only run in reverse. Hence, it suffices to design and analyze distributing algorithms.

Both of these operations are useful in asymmetrical situations where one node of the hypercube
acts as a master processor and the others as its slaves. The master distributes different data sets to
each of the slaves, which in turn perform computations on them. Then the master collects all of the
results.

Assume without loss of generality that node 0 is the distributing node. The following algorithm
makes use of O.C. SEND 2, which gets executed on every subcubecontaining node 0.

Algorithm: DISTRIBUTE 1

There ared stages, numbered0, 1, . . . , d−1. Each node is sent its corresponding message via a
separate O.C. SEND 2 applied to the subcube containing it andnode 0 as opposite corner nodes.
These2d−1 o.c. sends are run concurrently, with batching, and staggered so that the one toCd goes
first, followed by the ones toCd−1, thenCd−2, etc. Specifically, during stagek, the

(d
j

)

nodes inCj,

0 ≤ j ≤ k, do their share of the work for the
(d
d+j−k

)

=
(d
k−j

)

O.C. SEND 2’s whose destinations
are inCd+j−k.

Analysis of DISTRIBUTE 1

The time for each stage depends on the maximal amount of data being sent out over a single link. For
stagek, Cj contains

(d
k−j

)

messages of lengthm to be sent out evenly along its
(d
j

)

(d− j) =
(d−1

j

)

d
links toCj+1. This means that each such link sends a packet of length

(d
k−j

)

m
(d−1

j

)

d
,

which is maximized whenj = 0, for

(d
k−i

)

(d−1
i

)
>

(d
k−(i+1)

)

(d−1
i+1

)

holds for all i ∈ {0, 1, . . . , k−1}. Consequently, the time spent by node 0 during each stage is
longer than nodes in any otherCj, so the total time for the algorithm is

d−1
∑

k=0

[

τ

(d
k

)

m

d
+ β

]

=

[

d−1
∑

k=0

(

d

k

)]

τ

d
m + dβ

=
(2d−1)τ

d
m + dβ .

The distribute algorithm in [11] had a time of

(2d−1)τm + dβ

12

and [5]’s had a time strictly greater than ours. The time in [5] is dificult to represent, but has the
property that for fixedd > 1, the coefficient ofm is strictly greater than(2d−1)/d, but it tends to
(2d−1)/d asd approaches∞.

Note that, as was the case with the o.c. send algorithms, DISTRIBUTE 1 uses links in only one
direction, namely towards node2d−1. Hence, a DISTRIBUTE 1 from node2d−1 can be done
concurrently using the opposite set of links. Also, form sufficiently large (depending on the values
of τ , β, andd), it is possible to reduce theβ coefficient, which represents the number of stages or
“waves” of data leaving node 0, by grouping together some of the waves as they leave node 0 and
then breaking them apart inC1. For example, usingd = 3, first a wave containing messages forC2

andC3 is sent out, taking43τm + β time to leave node 0. When this wave arrives at the nodes of
C1, the portion destined forC3 is sent, taking1

6τm + β time, and then the portion destined forC2

is sent, taking1
2τm + β time. When the portion destined forC3 reaches the nodes ofC2, it is sent

on toC3, taking 1
3τm + β time. Meanwhile, the second wave of messages sent by node 0 are those

destined forC1, takingτm + β time. Messages forC1 finish arriving at time7
3τm + 2β, messages

for C2 finish at time2τm + 3β, and messages forC3 finish at time11
6 τm + 3β. If m/3 > β, then

all messages arrive by73τm+2β, which has improved upon the coefficient ofβ. This can be shown
to be absolutely optimal. This approach is extended in DISTRIBUTE 2.

Algorithm: DISTRIBUTE 2

Fix d, let k be the smallest integer such that

d
(d−1)k − 1

d−2
≥ 2d − 1,

let r be such that

d
rk − 1

r−1
= 2d − 1.

(Sincer may be irrational, in practice one may prefer to use some rational r′ such thatr ≤ r′ <
d−1.) There will be exactlyk waves. Wavek will be those messages destined forC1, where each
link from node 0 carries a message of sizem. Wavek − 1 starts from node 0 with packets of size
rm along each link, and will contain all of the messages forC2 and (for larged) portions of each
of the messages forC3, where the portion is chosen to fill the packet size. Wavek − 2 will start
with packets of sizer2m, containing the rest of each of the messages forC3, plus messages forC4,
plus (for sufficiently larged) portions of messages forC5. Each wave starts with packetsr times
larger than the following wave, and contains messages destined for a set of furtherCi’s. When a
wave reaches the nodes ofC1 it is broken into wavelets, one for each of the destinationCi in the
wave. These wavelets continue on to their destination, adjusting the packet sizes at each step as in
DISTRIBUTE 1, but not subdividing into smaller wavelets.

Analysis of DISTRIBUTE 2

Since the bandwidth fromC1 to C2 is d−1 times the bandwidth from 0 toC1, andr < d−1, for
m sufficiently large each wave can be sent on fromC1 before the next wave arrives. The reasonm
must be sufficiently large is that the breaking into waveletsintroduces additionalβ terms, but since
r is less thand−1 there is a slight bit of extra bandwidth, which can mask the extra start-up for
sufficiently largem. As in DISTRIBUTE 1, it can be shown that, for suffiently largem, all wavelets
reach their destination by the time the last wave reachesC1. Therefore the total time is determined

13

by the time it takes node 0 to send allk waves, which is

(2d−1)τ

d
m + kβ ≈ (2d−1)τ

d
m +

d

log2 d
β .

This algorithm shows that one cannot obtain a lower bound by simply adding the bandwidth
lower bound, which determines the optimal coefficient ofm, to the start-up lower bound which
shows that at leastdβ time is needed to move any message across the hypercube. In general one
can only take the maximum of these two components as a lower bound, since operations can be
overlapped.

6 Completing Hypercube Algorithms

Completinga hypercube operation refers to taking an operation centered around one node and then
simultaneously performing it on all of the nodes. This produces highly symmetrical communication
patterns which utilize all of the available bandwidth.

The simplest way to complete an operation is just to run2d single-node operations concurrently.
In terms of algorithms, this amounts to using the same numberof stages as the single-node version.
During each stage of the complete algorithm, however, each node does all the work necessary
for the corresponding stage in all of the single node algorithms. Link conflicts are resolved by
batching. That is, grouping together all of the separate packets thathave to be sent along a particular
link during the same stage and sending them as one big packet.This also reduces communication
overhead (i.e.,β terms) considerably.

The best single-node algorithms to complete are usually thesimplest versions which still take
advantage of the concurrent link capability. Sophisticated techniques such as pipelining and link
balancing aren’t necessary because the complete operations are so symmetric. The first operation to
be completed will be the broadcast. This pattern is useful for various matrix operations as well as
vector multiplication.

Algorithm: COMPLETE BROADCAST

Complete BROADCAST 2. There ared stages, numbered0, 1, . . . , d−1, and during stagek, each
node does its share of the work for the corresponding stage ofBROADCAST 2 for all

(d
k

)

nodes
which are distancek from it.

Analysis of COMPLETE BROADCAST

During stagek of BROADCAST 2, the total amount of data being sent out is2kdm/d = 2km, so the
corresponding amount being sent out in COMPLETE BROADCAST is 2d2km. Due to the overall
symmetry of COMPLETE BROADCAST, this outgoing data will be evenly divided among all2dd
links of the hypercube, so each link ends up sending a packet of size2km/d. Therefore, the time for
the algorithm is

d−1
∑

k=0

(

τ
2km

d
+ β

)

=
(2d−1)τ

d
m + dβ .

For purposes of comparison, [11] produced an “optimal” complete broadcast (which they referred
to as a “total exchange”) with a running time of

(2d+d2)τ

d
m + dβ.

14

The next operation to be completed will be the o.c. send. A complete o.c. send, henceforth
referred to as aninversion is another fundamental communication pattern useful for reversing the
order of data which is stored by node i.d. and for transposingmatrices (to be discussed later).

Algorithm: INVERSION (Complete Opposite Corner Send)

Complete O.C. SEND 2 in exactly the same manner as BROADCAST 2was in COMPLETE
BROADCAST.

Analysis of INVERSION

During each stage of O.C. SEND 2, a total ofd packets of sizem/d were being sent over separate
links. Now there are2dd such packets, but there are also that many links and the symmetry of the
algorithm guarantees that no more than one packet will be sent along the same link during a stage.
Thus, the time for INVERSION is identical to O.C. SEND 2:

d

(

τ
m

d
+ β

)

= τm + dβ .

Now consider the ultimate communication pattern, thecomplete exchange. This is when every
node wants to send (as well as receive) a different message to(from) each of the other nodes. In other
words, it’s the same thing as completing the distributing orcollecting operations. The complete
exchange turns out to be useful for matrix transpositions aswell as random communication patterns
(both to be discussed later). In [11], complete exchange wascalled multigather/scatter.

Algorithm: COMPLETE EXCHANGE

Just complete DISTRIBUTE in the same manner that O.C. SEND 1 was completed to produce
INVERSION. There are stilld stages, numbered0, 1, . . . , d−1.

Analysis of COMPLETE EXCHANGE

As in INVERSION’s analysis, all that has to be determined is the amount of data each node has
to pass along each stage. Basically, every node starts out with (2d−1)m items which have to be
sent out to the other nodes. During stagek, it starts sending messages to the

(d
k

)

nodes which are
distancek away. No messages reach their proper destinations until thelast stage, which means that
a total of

2d
k
∑

j=0

(

d

j

)

messages are being worked on during stagek. Due to the symmetric pattern of the sends, each of
the2dd links thus sends a packet of size

k
∑

j=0

(d
j

)

d
m =

k
∑

j=0

(d−1
j

)

d−j
m,

so the algorithm needs time

d−1
∑

k=0



τ
k
∑

j=0

(d−1
j

)

d−j
m + β



 =
d−1
∑

j=0

d−1
∑

k=j

(d−1
j

)

d− j
τm + dβ

15

=
d−1
∑

j=0

(

d−1

j

)

τm + dβ

= 2d−1τm + dβ ,

compared to the
2d−1dτm + dβ

needed by [11]’s corresponding algorithm.

Finally, sometimes a situation arises where each node wantsto send to one other node as well
as receive from just one node. This will be termed apermuted send, although in some ways it is
analogous to a complete arbitrary send. An obvious example is an inversion. Another one is when
each node wants to send to the next higher-numbered node (mod2d), which can be thought of as a
rotation.

There are2d! such permutations, so determining the most efficient algorithm for each one seems
neither possible nor practical, though recently some papers have appeared analyzing specific per-
mutations [8, 10]. For arbitrary permutatations, however,a deterministic analogue of Valiant’s ran-
domized routing [12, 13] can be employed. It consists of two complete exchanges: one to disperse
all the data evenly throughout the cube and another to collect it all up at the appropriate destinations.
We explicitly use the fact that all nodes know the permutation being performed so that destination
information need not be sent with the data.

Algorithm: PERMUTED SEND

Each node breaks up itsm items into2d packets ofm/2d items apiece. These packets are distributed
throughout the cube via a complete exchange so that each nodehas one packet from every node in
the cube. Since the communication pattern is a permutation,this also means that each node has a
different packet to send to every other node in the cube. As a result, another complete exchange can
be used to route all of the packets to their correct destinations.

Analysis of PERMUTED SEND

There are two complete exchanges, each involving message lengths ofm/2d items, so the time
needed for PERMUTED SEND is

2

(

2d−1τ
m

2d
+ dβ

)

= τm + 2dβ .

7 Matrix Transposition

Transposing a matrix in a hypercube is an interesting communication problem which can make
good use of some of the algorithms developed so far. It has been previously considered in [9, 11],
but faster algorithms will be developed here. Suppose you want to transpose anN × N matrix M
stored in ad-dimensional hypercube, with each node containingN2/2d entries. It is necessary to
specify exactly howM is stored, where the usual ways are either by rows(columns) or as square
submatrices. Storage by rows is the easier of the two, so it will be considered first.

16

7.1 Storage by Rows(Columns)

There are many ways of storing by rows(columns), where we assume thatN is evenly divisible by
2d. For example, the rows may be stored by partitioning the rowsinto blocks ofN/2d consecutive
rows, where the assignment of blocks to nodes may or may not use a Gray code. Or it may be that a
striped pattern is used, partitioning the rows into sets of rows2d apart, again with variations possible
on how the sets are mapped onto the nodes. However, no matter what method is used to assign rows
to nodes (as long as the assignment evenly distributes the data), to perform transposition each node
must send exactlyN2/22d entries to each other node. In other words, a complete exchange has to
be performed with a message length ofN2/22d. This takes time

2d−1τ
N2

22d
+ dβ =

τ

2d+1
N2 + dβ ,

as compared to
dτ

2d+1
N2 + dβ

needed by [11].

7.2 Storage by Submatrices

When stored as submatrices, it is convenient to assume thatd is even, sayd = 2c, and thatN
is evenly divisible by2c. Assume thatM has been partitioned into submatricesMx,y, x, y ∈
{0, 1, . . . , 2c−1}, whereMx,y is formed by the intersection of rows

xN/2c + 1 through (x+1)N/2c

with columns

yN/2c + 1 through (y+1)N/2c.

Let G denote any permutation of{0, . . . , 2c−1}, and assume thatMx,y is stored in nodeG(x)2c +
G(y). Typical choices forG include the identity, in which case this is known asrow-major ordering,
or a Gray code, in which case adjacent submatrices are storedin adjacent nodes. No matter what
G is used, transposition reduces to the problem of nodea2c + b exchanging its entries with node
b2c + a, for all a, b ∈ {0, 1, . . . , 2c−1}. We provide an algorithm for this operation.

First observe that this is a permuted send with message length N2/2d. Hence, it can be accom-
plished by using PERMUTED SEND in time

τ
N2

2d
+ 2dβ = 2

(

τ

2d+1
N2 + dβ

)

.

This is twice as long as whenM is stored by rows, yet on average, each item moves only half asfar.
Consequently, it would not be unreasonable to expect there to be an algorithm which works in half
the time.

In fact, such an algorithm does exist, but describing and analyzing it requires examining the bit
patterns of the node i.d.’s. Consider nodea2c + b, wherea, b ∈ {0, 1, . . . , 2c−1}. In their base
two representations,a andb differ by say,k bits, and agree on the otherc−k. Now letSa,b denote
the set of all nodes whose firstc bits of their i.d.’s differ from their lastc bits in exactly the samek
positions thata andb do.

Observe thatSa,b contains2k nodes. By themselves, they do not form a proper subcube, but
something close to one. The distance between any two nodes ofSa,b is always even, and if there

17

��
��
A ��

��
B

��
��
C

��
��
D

�
�

�
�

�
�

�
�
�

@
@

@
@

@
@

@
@
@ �

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@
@

physical link

logical link

Figure 3: Logical and Physical Links Between two Nodes

were links between the nodes that are distance two apart, then Sa,b plus these new connections
would form ak-dimensional hypercube.

With these thoughts in mind, define alogical link between two hypercube nodesA andB, which
are distance two apart, to be the four physical links which connectA andB along the two possible
paths of length 2 (see Figure 3). LetC andD denote theintermediate nodesconnectingA andB.
A logically connected (l.c.)subcube can then be defined to be a subset of nodes whose logical links
connect them together in a hypercube network.

That said,Sa,b is a l.c. subcube. Furthermore, its intermediate node i.d.’s have the property that
their firstc bits differ from their lastc bits in preciselyk−1 positions. Finally, from the definition
of Sa,b, every node in the hypercube belongs to exactly one such l.c.subcube. Combining these last
two statements, it becomes apparent that no two such subcubes can share the same physical link.
As a consequence, algorithms can be run concurrently on all of the these l.c. subcubes without the
possibility of link conflict.

Returning to the original problem, nodea2c + b can exchange data with nodeb2c + a by simply
performing an o.c. exchange inSa,b. In fact, every node inSa,b can exchange data with their cor-
responding node for the transposition by performing an inversion inSa,b. This brings up the need
then for an inversion algorithm for l.c. subcubes.

Inversion in a logically connected subcube

Sending data along a logical link is equivalent to doing an o.c. send in a 2-dimensional hypercube.
Hence, a standard send would take time

τ

2
m + 2

√

βτ

2
m1/2 + β

to perform, so a l.c. inversion could be accomplished by performing a regular INVERSION using
these logical sends. For ak-dimensional l.c. subcube, this would require time

k





τ

2

m

k
+ 2

√

βτ

2

(

m

k

)1/2

+ β



 =
τ

2
m + 2

√

kβτ

2
m1/2 + kβ.

18

As long as the number of packets sent out along each physical link in a logical send is at least two,
however, then there is no point in waiting for all of the incoming packets to arrive before starting to
pass them along. That is, after all, the whole idea behind pipelining.

Algorithm: L.C. INVERSION

Perform a regular INVERSION along the logical links of the l.c. subcube, making sure to pipeline
the stages together and breaking the data up into at least four packets so that incoming packets start
arriving no later than when the last of the outgoing packets are being sent out.

Analysis of L.C. INVERSION

Let p denote the number of packets to be sent out along each outgoing physical link (note thatp has
to be at least 2). Then the packet size for each send ism/2kp. With pipelining then, it takes a total
of kp sends for each node to pass along its data, with the intermediate nodes being one send behind
the regular nodes. Therefore,kp + 1 send stages are needed, so the algorithm runs in time

(kp + 1)

(

τ

2kp
m + β

)

,

which is minimized when

p =
1

k

√

τ

2β
m1/2.

This produces a final time of

τ

2
m + 2

√

βτ

2
m1/2 + β .

Observe that this time is the same time as needed by INVERSIONfor a 2-dimensional cube. Also,
it is independent ofk so long asm is large enough to insurep ≥ 2.

Algorithm: MATRIX TRANSPOSITION (stored by submatrices)

With L.C. INVERSION, transposingM becomes trivial. Just perform it on every l.c. subcube ofM.

Analysis of MATRIX TRANSPOSITION

Since the l.c. inversions can all be done concurrently without overlap, and all take the same amount
of time, the transposition is completed in time

τ

2

N2

2d
+ 2

√

βτ

2

(

N2

2d

)1/2

+ β =
τ

2d+1
N2 + 2

√

βτ

2d+1
N + β ,

which is nearly the same time needed whenM was stored by rows. This is approximately half of the

τ

2d
N2 + (d−1)τ

time required by [9], where it is assumed thatβ is zero.

19

8 Histogramming

The same techniques used previously can be applied to the problem of histogramming. We consider
a simple variant in in which there arem different “bins”, each node starts with a value for each of
the bins, and the goal is to find the sum of the values for each bin. The sum for binsim/2d through
(i+1)m/2d − 1 will be in nodei. (If it is desired that all nodes contain all sums, then a complete
broadcast can be used at the end.) We assume that each value and sum is of unit length.

Algorithm: HISTOGRAM

First consider the algorithm where the data is exchanged onedimension at a time, using recursive
halving to decrease the number of subtotals in each node. During the first stage, nodes in the bottom
half of the subcube send up their values for the second half ofthe bins to their neighbors in the
upper half, which are concurrently sending down their values for the first half of the bins. Each
node adds the values received to its own, and recursively continues on to the next stage. The final
HISTOGRAM algorithm is just the symmetrized version of thissimple algorithm.

Analysis of HISTOGRAM

For the unsymmetric algorithm, stagek, 1 ≤ k ≤ d, takes(τ/2k)m + β time, so for the symmetric
algorithm it takes(τ/d2k)m + β time. The total time is

(1−2−d)τ

d
m + dβ .

9 Optimality of the Algorithms

As was mentioned earlier, the coefficients of the high-orderterms are the least possible. In all cases,
a proof can be given based on a simple counting argument. The easiest such approach is

• pick a subsetS of links,

• show that the total message load that must be sent overS is at least some amounta, and

• conclude that at least one link sends at leasta/|S| and thus, takes at least

aτ

|S|m + β

time doing so.

For example, in BROADCAST, O.C. SEND, ARBITRARY SEND, DISTRIBUTE, and HISTOGRAM,
let S be thed outgoing links of node 0. Thena is m, m, m, (2d−1)m, and(1−2−d)m, respectively.
In the case of COMPLETE BROADCAST, pickS to be thed incoming links to node 0 and seta to
(2d−1)m, since node 0 receives a different message from each other broadcast. For INVERSION
and COMPLETE EXCHANGE, considerS to be the2d links connecting nodes0, 1, . . . , 2d−1−1
in the “lower” subcubeL with nodes2d−1, 2d−1+1, . . . , 2d−1 in the “upper” subcubeU. Thena is
2dm and2d2d−1m, respectively, since every node inL sends one and2d−1 messages, respectively,
to the nodes inU (and vice versa). PERMUTED SEND is optimal since it is slowerthan the spe-
cial case INVERSION by only an additivedβ. Finally, for MATRIX TRANSPOSITION, when the

20

matrix is stored by rows or columns the problem is just complete exchange, which was shown to be
optimal. When the data is stored as submatrices, letS be alld 2d links. Thena is dN2/2 since the
total distance traveled by all messages, each of sizeN2/2d, is d 2d−1.

The lower bound for the permutationreflection, where every node inL exchanges with its cor-
responding neighbor inU, has the same high-order term as does inversion (by the same argument).
This occurs despite the fact that reflection is a fixed-point free permuation with the smallest total
message distance, while inversion has the greatest total message distance. Given this, and the fact
that PERMUTED SEND shows that all permutations can be routedwith this highest-order term, one
might guess that all fixed-point free permutations require the same highest-order term. (If permuta-
tions with fixed points are considered, then the identity canbe completed in zero time.) However,
it has been shown that some fixed-point free permutations canbe routed with a highest-order term
smaller than that of reflection [10], and therefore PERMUTEDSEND is only worst-case optimal
among fixed-point free permutations.

Beyond the highest-order term, we believe that some of the algorithms herein are absolutely
optimal. Unfortunately, we have generally been unable prove this because of the difficulty in finding
good lower bounds which go beyond the highest-order term. Such bounds must incorporate both
bandwidth considerations and an accounting of start-up times, but, as was noted in Section 5, one
cannot simply add these components together to obtain a correct lower bound.

We can, however, prove absolute optimality for DISTRIBUTE 2for anyd, if m is sufficiently
large. Notice that at least one of node 0’s neighbors must receive at least(2d − 1)m/d items, and
all except perhapsm of these items need to be forwarded. Therefore it suffices to show that if a
node 0 is connected to a node 1, which in turn is connected tod−1 additional nodes, and if node
0 starts withm items destined for node 0, and(2d − 1)m/d −m items destined for the additional
nodes, then the time needed is at least the time taken by DISTRIBUTE 2. We assume that we have
complete freedom in deciding which additional node to deliver a specific item to.

Without increasing the time, we can alter any algorithm so that the items destined for node 1 are
the last items sent from node 0. Suppose the first packet to arrive at node 1 has sizep, and the second
packet has sizeq, and both are destined for the additional nodes. Ifp < (d − 1)q, then the items
cannot finish arriving at the additional nodes until time(pτ + β)+ (qτ + β)+ (qτ/(d−1)+ β). By
moving some of the items from the second message to the first, creating new messages with lengths
p′ andq′, wherep′ = (d−1)q′ andp′ + q′ = p+ q, the messages can finish arriving at the additional
nodes at time(p′τ + β) + (q′τ + β) + (q′τ/(d−1) + β). Sinceq′ < q, this is faster. A similar
argument applies ifp > (d−1)q, and therefore without increasing the time, we can assume that the
first packet isd−1 times as long as the second.

This argument can be applied inductively, showing that we may assume that each packet sent
from node 0 is(d−1) as long as the following one. (Temporarily ignore the fact that this argument
does not apply to the last packets, since some of the items in them are not forwarded). Suppose
node 0 sendsk packets, with sizesx(d−1)k−1, x(d−1)k−2, . . . , x, wherex is such that the sum of
the message sizes is(2d − 1)m/d. The time for node 1 to receive these messages and send on the
items destined for the additional nodes is at least

(2d − 1)τ

d
m + kβ +

(x−m)τ

d−1
+ β,

where the last two terms are included only ifx > m. For fixedd, τ , andβ, and sufficiently large
m, this is minimized whenk = ⌈logd−1[1 + (d−2)(2d−1)/d]⌉, which gives the time taken by
DISTRIBUTE 2. To be correct, this argument must be modified todeal with the sizes of the last
packets, since the argument showing each packet must bed−1 times as long as the following one
assumed that all items were destined for the additional nodes. An analysis by cases shows that the
same time bound holds.

21

10 Conclusion

We have shown that link-bound hypercubes can make effectiveuse of all of their communication
links to perform some common communication-intensive tasks. Since a lower bound for some of
these tasks is the time needed to send out the data from an originating node, such tasks would take
longer on more restricted machines in which nodes cannot useall of their communication links at
one time. Thus our algorithms provide support for the beliefthat it is useful to build machines where
all communication links can be used simultaneously.

By systematically applying a few techniques such as pipelining, symmetrizing, and complet-
ing, we were able to develop a collection of algorithms giving efficient solutions to a wide range
of problems. We concentrated on communication problems that are rather fundamental, and have
not tried to develop all of their uses. However, we note that several additional matrix manipulation
problems can be solved by our algorithms. For example, if a matrix is stored by rows or columns,
then switching between blocked and striped storage, or rotating by a quarter-turn, are all examples
of complete exchange. If a matrix is stored via submatrices,and theG function used in the assign-
ment is either the identity or a reflexive Gray code, then rotation via quarter-turns or half-turns can
be accomplished by algorithms closely related to MATRIX TRANSPOSITION. Since the initial
announcement of our results in [14] and the submission of this paper, additional papers have ap-
peared which pursue the use of such techniques for matrix problems [6, 8, 9]. These papers include
experimental results on Intel and Thinking Machines hypercubes, showing that our techniques do
indeed result in faster message transmission.

Though our algorithms are deterministic, this paper has ties to Valiant’s work on randomized
routing [12, 13]. He showed that indivisible unit-length messages in a link-bound hypercube could
be routed inΘ(d) expected time, no matter what the permutation, by routing each message to a
random intermediate destination and then on to its originaldestination. For long divisible messages
and a known permutation (so that header information need notbe attached), PERMUTED SEND
eliminates the random destination by sending a portion of the message to every processor. Further,
in [12] he used four “bad” examples to empirically show the usefulness of randomization. One
of these is equivalent to matrix transposition for a matrix stored as submatrices, and the worst
one was inversion. MATRIX TRANSPOSITION and INVERSION showthat there are efficient
deterministic routing schemes for these permutations.

Finally, despite the intense interest in hypercube communication [1, 2, 5, 6, 7, 8, 9, 10, 11, 12,
13], still little is known about optimal hypercube performance on communication-intensive tasks
such as sorting, routing, data balancing, database operations, and image warping. For example, it
is not known if ad-dimensional hypercube, starting with one item per node, can sort the items in
Θ(d) worst-case time. Additional open questions include extending analyses to processor-bound
and DMA-bound hypercubes, and to problems where the communication pattern is not known in
advance and/or the message lengths are not uniform.

22

References

[1] Baru, C. K., and Frieder, O. Implementing relational database operations in a cube-connected
multicomputer system.Proc. 3rd Int’l. Conf. on Data Engineering, 1987.

[2] Cybenko, G. Dynamic load balancing for distributed memory multiprocessors. Tufts Univ.
Dept. of Computer Science Tech. Report 87-1, Jan. 1987.

[3] Gustafson, J. L., Hawkinson, S., and Scott, K. The architecture of a homogeneous vector super-
computer.Proc. 1986 Int’l. Conf. on Parallel Proc., IEEE, 1986, pp. 649-652.

[4] Hayes, J., Mudge,T., Stout, Q. F., Coley, S., and Palmer,J. A microprocessor-based hypercube
supercomputer.IEEE Micro 6 (1986), pp. 6-17.

[5] Ho, C.-T., and Johnsson, S. L. Distributed routing algorithms for broadcasting and personalized
communications in hypercubes.Proc. 1986 Int’l. Conf. on Parallel Proc., IEEE, 1986, pp. 640-
648.

[6] Ho, C.-T., and Johnsson, S. L. Algorithms for matrix transposition on booleann-cube config-
ured ensemble architectures,Proc. 1987 Int’l. Conf. on Parallel Proc., IEEE, 1987, pp. 621-629.

[7] Ho, C.-T., and Johnsson, S. L. Optimal algorithms for stable dimension permutations on boolean
cubes,Proc. 3rd Conf. on Hypercube Concurrent Computers and Applic., ACM, 1988, pp. 725-
736.

[8] Ho, C.-T., and Johnsson, S. L. Expressing boolean cube matrix algorithms in shared memory
primitives.Proc. 3rd Conf. on Hypercube Concurrent Computers and Applic., ACM, 1988, pp.
1599-1609.

[9] Johnsson, S. L. Communication efficient basic linear algebra computations on hypercube archi-
tectures.J. Parallel and Distributed Computing4 (1987), pp. 133-172.

[10] Livingston, M. and Stout, Q. F. Good permutations for hypercube communication, in prepara-
tion.

[11] Saad, Y. and Schultz, M. H. Data communications in hypercubes, Yale Univ. Dept. of Com-
puter Science Research Report YALEU/DCS/RR-428, 1985.

[12] Valiant, L. G. Experiments with a parallel communication scheme,Proc. 18th Allerton Conf.
on Communication, Control, and Computing, 1980, pp. 802-811.

[13] Valiant, L. G. A scheme for parallel communication.SIAM J. Computing11 (1982), pp. 350-
361.

[14] Wagar, B., and Stout, Q. F. Passing messages in link-bound hypercubes.Hypercube Multipro-
cessors 1987, SIAM, pp. 251-257.

23

