This paper appears ih of Parallel and Distributed Computint0 (1990), pp. 167-181.

Intensive Hypercube Communication:
Prearranged Communication in Link-Bound Machités

Quentin F. Stout and Bruce Wagar

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Ml 48109-2121 USA

September 7, 1988

A preliminary condensed version of this paper appeared assiRg messages in link-bound hyper-
cubes” Hypercube Mutiprocessors 198V, Heath, ed., pp. 251-257.

2This research was partially supported by National SciermenBation grant DCR-8507851 and an In-
centives for Excellence award from Digital Equipment Corp.

Abstract

Hypercube algorithms are developed for a variety of comgation-intensive tasks such as trans-
posing a matrix, histogramming, one node sending a (longsage to another, broadcasting a
message from one node to all others, each node broadcasthegsage to all others, and nodes
exchanging messages via a fixed permutation. The algorithraxichanging via a fixed permuta-
tion can be viewed as a deterministic analogue of Valiart'elomized routing. The algorithms
are for link-bound hypercubes in which local processingetimignored, communication time pre-
dominates, message headers are not needed because aknogebe task being performed, and
all nodes can use all communication links simultaneoushlroligh systematic use of techniques
such as pipelining, batching, variable packet sizes, syniimay, and completing, for all problems
algorithms are obtained which achieve a time with an optimngthest-order term.

1 Introduction

This paper gives efficient hypercube algorithms for a varécommunication-intensive tasks. The
emphasis is on problems where the communication pattern\{thich nodes are sending informa-
tion and where it is going) is known in advance by all processand all messages are of the same
size. This situation is common in SIMD (Single Instructiomultiple Data) or SCMD (Single Code
Multiple Data) applications such as matrix multiplicationinversion, some database operations,
solving PDEs on a regular grid, image manipulation, ancogistmming. By systematic use of a
few basic techniques, algorithms are developed which gréfmiantly faster than the simplest or
most common ones, and faster than those published preyio@slir algorithms show that these
techniques are quite powerful, and also show that it is adgmous to be able to use all communi-
cation links simultaneously when communication becomestiteimeck.

1.1 Definition of a Hypercube

A d-dimensional hypercubsomputer is a distributed-memory multiprocessor commistif 2¢ sep-
arate processing elements (mde3, linked together in al-dimensional binary cube network (see
Figure 1). Each node is given a uniquébit identification number (henceforth referred to as the
node i.d) and two nodes linked if and only if their node i.d.'s diffaréxactly one bit position. Two
nodes in a hypercube are said todsgacentor neighboringif they share a link.

Hypercube networks have some useful properties such aa@tlogic communication diameter
and a totally symmetric layout. Because the number of lirdesnqwde grows only linearly with the
dimension, reasonably-sized hypercubes (of say, dimeridlcor 12) can be practically built with
current technology. NCUBE, Intel, Floating Point Systesusietek, and Thinking Machines have
already introduced hypercube computers on the commereigten

1.2 The Link-Bound Model

This paper uses a model of hypercubes in which communicétiom is assumed to predominate,
and local processing time by the nodes can be ignored. Wenemeested in problems where ex-
tensive communication is required because very long messag being sent, and where all nodes
are available to participate in the task and know the comaatioin task being performed. This
latter point helps reduce the communication time by ingutirat messages do not need to include
header information such as message destination, messagepacket sequence number, etc. Fur-
ther, we assume that each node can utilize all of its commatinit links simultaneously, where the
links between neighboring nodes can be used in both direcamultaneously. Thus, a node in
ad-dimensional hypercube may be handlZymessages simultaneously, receivihgnd sending

d. This property we callink-bound as opposed to other possibilities such as processor-b@und
which each node can do only one operation at a time) or DMAatdin which there is an upper
bound on the number of messages which can go in and out of aataiee time). While no hy-
percube can currently use all of its communication linksudieneously, several manufacturers are
trying to attain such ability. The NCUBE machines appasentime the closest [4], and the FPS
T-Series machines have nodes capable of 4 bi-directiomairamications at the same time [3]. The
link-bound model has been studied in [1, 5, 6, 7, 8, 9, 10, 2113].

1.3 Message-Passing Problems

Throughout the paper, various hypercube communicatiotenpat will be looked at. Each will
involve sending messages between some known combinatitie olodes. These messages will be
the same lengtim, but their contents may vary between different pairs of camicating nodes. It

d=0 d=1 d=2 d=3

Figure 1: Some Hypercubes for Smaill

will be assumed that messages may be broken down into paatkaaty time, while existing packets
may be either recombined or broken down still further, ineori facilitate sending, so long as the
ultimate destination eventually receives the entire nagmessage. Another key assumption is that
a node receiving a packet must finish receiving it before drig @ontents can be utilized. This is
sometimes called thetore-and-forwardbr packet-switchednodel, as opposed to a circuit-switched
model. All existing hypercubes use store-and-forward.

We assume that it takesn + (time for a node to send a packet of lengthto a neighbor,
where

e 7 represents the transfer rate and
e (3 the time for start-up and termination.

In real systems it is generally the case thiat- 7, and hence it is important to include the effect of
start-up costs. Also note that the total internal 1/0O banidlwbf the computer i8%dr. In general;
andg are treated as constants and the algorithms are analyzada®hs ofd andm. Asin [5, 6,

7, 8, 11], we ignore the effects of rounding or truncatingrtk@rmore, because special cases arise
for various relative values of the parameters, the exantditas will be given only forn sufficiently
large. Because we are most interested in processing lonsages the term containing the highest
power ofm will be called thehighest-ordeterm.

Some of the problems studied in this paper, such as broaugasimessage from one node
to all others, have been previously considered by [5, 9, These papers use a similar model to
the link-bound model, but give slightly slower algorithms. particular, [11] considered a model
where communication between nodes can only take place oeetidn at a time, so where this
made a difference, the times of their algorithms have beédeti by two so that they can be fairly
compared with ours. For most of the problems, several dlgos are developed, the last being the
fastest (and most sophisticated). In all problems, simgleraents show that the best versions of
our algorithms have optimal high-order terms. In some casebelieve that our algorithms are
completely optimal, but are unable to prove this becauseuguments can bound terms involving
T, m, andd, or terms involvings andd, but not sums of terms of different types.

1.4 Notation

Several of the patterns considered here are oriented aansdode. For such patterns, it will be
assumed without loss of generality that node 0 is the spacié¢. The set of all nodes (or their
corresponding i.d.'s, depending on context) which areadiztk from node O will be denoted by
Ci. Note that because of the symmetry of the hypercube, anyitdgowritten for node O can be

2

converted to an identical algorithm for nodec {1,2,...,2%—1} by exclusive-ORing all node
i.d.’s referenced in the node 0 algorithm with

Some of the algorithms utilize somewhat subtle messagampsthemes, for which the follow-
ing notation will be useful. Let

Dr(n)

denote the node i.d. formed by taking the bit-wise excluéN® of n and2*. I.e., it is justn with
the kth bit flipped. For example, il = 5, then®;(01001) = 01011 and®3(01001) = 00001.
Observe then that the neighbors of nedare nodesby(n), $1(n), ..., ®q4-1(n). Let

<(n)

denote the left circular-shift (rotation) of tliebit representation of by i bits, where € {0,1,.. .,
d—1} andn € {0,1,...,2¢—1}. For example, ifd = 5, theniv(mOOl) = 00101. For each
n € {1,2,...,29—-1}, let W, denote the set of all bit positions in the binary represéniadf n
which are 1. That islV,, is the unique set of integers such that

n= Z 2v.

’LUEWn

Likewise, letZ,, = {0,1,...,d—1} \ W,, denote the corresponding set of 0-bit positions:of
Define[,,: Z, — W, as follows:

min W, if z > maxW,

n(z) = . .
min{w € W,, : w > z} otherwise

for eachz € Z,,. l.e., [, (2) is the bit position of the first 1 (in left circular order) aftein n. For

example, wher = 5, then [01001(1) =3and (01001 (4) =0.

2 Sending the Same Message From One Node to All Others

One of the fundamental hypercube communication patteroadcastingin which one node has
to send the same message to all the other nodes in the hypeuk problem has been previously
examined in [5, 11], but our algorithms are somewhat fasiterinteresting to note that the NCUBE
machine has special hardware instructions to allow a nodertoltaneously broadcast to all of its
neighbors, though the current operating system does nat ok of these instructions.

Assume node 0 is to do the broadcasting. The most common righstorward way to broad-
cast in a hypercube is recursive doubling.

Algorithm: BROADCAST 1 (Recursive Doubling)

There arel stages, numberedl 1, . .., d—1. During stagék, noded, 1, ..., 2°—1 send the message
to nodesdy(0), (1), ..., @k (28 —1), respectively (and concurrently).

Analysis of BROADCAST 1

Each of the stages takes: + [time, so the whole algorithm requires time

dem+9) = [dm - dd).

BROADCAST 1 works on only one dimension at a time and thus fail take advantage of
the concurrent read/write channels of the link-bound hyyiee. To alleviate this, it is necessary to
symmetrizehe algorithm. That is, break up the problem idteubproblems and run them simulta-
neously along separate dimensions.

Algorithm: BROADCAST 2

Symmetrize BROADCAST 1. l.e., break up the message dnpacketsFy, P, ..., P;_1, each of
sizemyd. During stagek, nodes—(0), «>(1), ..., <>(2¥—1) sendP; to NodesB ;1) mod a(<>(0)),

Btk mod d(=(1)), - - -, B(irk) mod a(<=(2" 1)), respectively, for eachin {0,1,...,d—1}.

Notice that packef reaches each processor at the same stage as the singleip&READ-
CAST 1, and in general at the end of stageach packet has been broadcast fedimensional
subcube. The modular packet routing guarantees that negsocis trying to send two packets
along the same link at the same time.

Analysis of BROADCAST 2
The same as for BROADCAST 1, only now each stage takestimed) + /3 for a total time of

d(T%-i-ﬁ) = .

Although much improved from the previous version, BROADOASstill suffers from the fact
that a large percentage of the links are idle most of the timefact, half of the links araever
used (those which are directed towards 0). A better algaritfould be one in which each link is
always busy sending data to a node which has not yet seenig.isTimpossible to fully achieve,
but it provides a goal to aim for. The next version attempisithasystolicfashion, for the message
travels across the hypercube in a “wave” going from @Gpeo the next, with every node actively
sending along all of its links when the “wave” hits it.

Algorithm: BROADCAST 3A

There arel+1 stages, numberdd 1, . .., d. Break up the message into packets as in BROADCAST
2. During stagek, only the nodes i€, actively send along their theif outgoing links, each node
sending exactly one packet along each such link. Every no@g receivesk distinct packets from
Cj_1 during stageé:— 1 and the remaining— k packets fromCj; during stage:+1.

More specifically, during stage, each node: € C;, starts out withP,, for everyw € W,,. For
each suchv, it sendsP,, to node®,,(n) € Cx_;. In addition, for eachr € Z,, it sendsFr, (.
to noded,(n) € Cxy1. Figure 2 shows this process fér= 3. By induction, it is easy to verify
that during stage: — 1, a noden € C; receivesP,, for everyw € W, receiving it from node
@y(n) € Cx—1, Wherev € W, is such thaf,,(v) = w. During stage:+1 noden receivesP; from
®i(n) € Cx4q for eachi ¢ W,,. Therefore, at the end of stage-1, every node irCy, has received
all of the packets.

Analysis of BROADCAST 3A
Similar to that of BROADCAST 2, only now there aile-1 stages and thus, a total time of

(d+1) (TT + 8

) d+1
d

Although slower than the previous broadcast, 3A has theiapaoperty that only nodes 6,
are sending in théth stage. This will be exploited later, but first notice tha¢ bnly purpose of
the last stage is to sen), Py, ..., P;_; from node2? —1 to nodes®o(2% —1),®1(2¢-1),...,
®a-1(2%—1), respectively.

Stage O Stage 1 Stage 2 Stage 3
Figure 2: BROADCAST 3A ford = 3

Algorithm: BROADCAST 3B

Identical to BROADCAST 3A, but the last stage is eliminatgdsending a second “wave” right
after the first. During stage 1, node O relab&gs Py, P, ..., Pj_1 asQq_1,Qo, Q1,- .., Qd—2,
respectively, and starts a second BROADCAST 3A, only thietusingl)y, @1, . . . , Qq—1 in place
of Py, Py,...,P;_q, respectively. This second broadcast is run for ahlyl stages, after which
each node irf€;_; will have received every packet (and then some).

Analysis of BROADCAST 3B

The one stage saving results in a final time of

m
d(TE—i-B) = Tm+dﬂ,
the same as for BROADCAST 2.

BROADCAST 3 can be significantly sped up through the ugamélining Basically, pipelining
consists of breaking up a problem into smaller pieces andiisgrihese out as separate “waves”,
one after another, in order to keep more of the nodes busyeaame time. It is a useful tool for
speeding up asymmetrical communication algorithms.

Algorithm: BROADCAST 4

Pipeline BROADCAST 3. That is, divide up the message mgroups, numbered, 1,...,g—1,
each of lengthm/g. Executeg — 1 separate BROADCAST 3A’s, one for each of the figst 1
groups, followed by a BROADCAST 3B for the last group. TheBewd be done concurrently,
but staggered one stage apart so that no node is working om tflmem one at a time. To be more
precise, there aré+g—1 stages, numbere@ 1,...,d+g—2. During stagek, each node irC;,
k—g+1 < j < k, executes stageof BROADCAST 3 for groupk —j.

5

Analysis of BROADCAST 4
Each of thel+¢—1 stages now takes(m/dg) + 3 time, so the whole algorithm requires time

(d+g—1)7

i m+ (d+g—1)5.

(d+g-1) (Tdﬁg + 6) =

By simple calculus, it can be shown that this time is minirdinénen

1 d=1
g = (d-)T)
12 d>2
g =
which produces a final time of
™m + 3 d=1
gm +2 %mm +(d-1)3 d>2

For purposes of comparison, the best broadcast in [5] hasrn@itime of

2m +2 57m1/2 + dp.

One last observation. BROADCAST 4 is absolutely optimallisands have to use fixed-size
packets. To see this, suppose the packet size Then each node will have to receive at leagt
of these packets and, since omlypackets can be sent out at a time from node 0, at least one such
packet will have to wai{m/ds — 1)(7s + () time for a free link before it can leave node 0. To
reach nod@“—1, this packet will then have to travéllinks, which takes time(rs + 3), for a total
minimum time of

(d+£—1) (rs+8).

But this is just what BROADCAST 4 takes when you det m/ds.

3 Sending From One Node to the Opposite Corner Node

Another important communication pattern is when some nodends to it®pposite corner (0.c.)
node2?—1—n. Obviously, this is similar to, and could be accomplisheddpgadcasting. Although
this might appear to waste time, the analysis of BROADCASTH@ws that that algorithm already
performs an optimal o.c. send, if one is limited to fixed-gueekets. Which is not to say that
variable-sized packets will help much, for at leéstl)m + (time is needed just to get all of the
data out of node:. More important, though, is to cut down all of the unnecessammunication.
Assume that node 0 wants to send to no@ie 1.

Algorithm: O.C. SEND 1

There arel stages, numbereil 1, ..., d—1. During staget, node2*—1 sends the message to node
Dr(28-1).

Analysis of O.C. SEND 1
Identical to BROADCAST 1.

iom+9) = [+ 3]

Algorithm: O.C. SEND 2

Symmetrize O.C. SEND 1. l.e., break up the data whigacketsP, P, ..., P;_1, each of size

m/d. During stagek, node<i>(2k— 1) sendsP; to Noded ; k) mod d(<i>(2’f —1)) for eachi €
{0,1,...,d—1}.

Analysis of O.C. SEND 2
Identical to BROADCAST 2:

d(T%-i-ﬁ) = .

These algorithms reduce the total communication needdteintbroadcast equivalents consid-
erably. Unfortunately, they don't save any time. In ordedtothat, it is necessary to speed up the
intermediate stages.

Algorithm: O.C. SEND 3

There ared stages, numberedl 1, ...,d—1. The packets will vary in size depending on the stage.
During stagek, only the nodes o€, will be sending, while only nodes 6 ; will be receiving.

At the start of stagé, the data starts out evenly distributed among each o(f,jheodes inCx. Each
such node then breaks up its data idtek equal-sized packets and sends a different one out along
each of itsd—k links to Ci1, at which point the message will be evenly distributed amOpg,;’'s
nodes.

Analysis of O.C. SEND 3

Stagek takes time
m T
T~ tB = m+ S,
(1) (d—F) (i)d
so the whole algorithm requires
T m+ B = 1| 7m+ds
oo L) i (14

. Kd_lT

= 7 +dpg|,
where

|

To help understand 4, note that it's first six values ane 2, 21,22 22, and22. Ford > 5,

2 2 4 6(d—5) 2 10
242 < Ky <242 o424
Ty s =2t ataasy Yaa—ne— < it au—ny
and hence,
2
K; ~ 2+ —.
d +d

The upshot of all this is that O.C. SEND 3 is faster than BROAST 3 by a factor of about
d/2. Like BROADCAST 3, O.C. SEND 3 also lends itself well to pijpéhg.

Algorithm: O.C. SEND 4

Pipeline O.C. SEND 3. l.e., break up the message ingoups of lengthm/g and executg
separate O.C. SEND 3's, one for each group. These shouldrseadmcurrently, but staggered one
stage apart. Because O.C. SEND 3'’s stages have varyindngerigere will be no synchronization
between the various stages of O.C. SEND 3 being worked onafchn ef the groups. Since O.C.
SEND 3's first stage, which takes timém/dg) + (3, is at least as long as any other of its stages,
it sets the rate at which the groups can be started. Each nitideevable to complete sending the
previous group by the time it has finished receiving the nestig.

Analysis of O.C. SEND 4

Due to the fact that there is no chance of conflict, the timeleddor this algorithm is just the time
needed to start the firgt—1 O.C. SEND 3's, as well as all of the time needed for the last dihnes
works out to be

m Kig1mm g+Kg 1—1
(g)<ng+ﬁ)+ L as Lt (g+d—1)5.
which is minimized when
1 d=1

/(Kd—l 1)7 1 '

This produces a final time of

™™+ 3 d=1

§m+2\/wmlﬂ+(d—l)ﬂ d>2

Notice that this is identical to the time for BROADCAST 4, ept that the coefficient of the:'/2
term has been reduced by a factor of approximatédy-1.

A final observation about the O.C. SEND algorithms: they ardg links in one direction (i.e.,
towards node? —1). Consequently, another o.c. send could be done from abdel to node 0
concurrently (that is, an opposite cormxchanggsince they each would use different links.

4 Sending Messages Between Two Arbitrary Nodes

One of the more interesting questions that can be askedvisn dihe full use of the link-bound
hypercube, what is the fastest possible time for one noderid o an arbitrary node distanae
away(1 < n < d)? For simplicity, assume node 0 is sending to ntle 1.

Algorithm: ARBITRARY SEND 1
Use O.C. SEND 4 on the-dimensional subcube containing nodes, ..., 2" —1.

Analysis of ARBITRARY SEND 1

™m + 3 n=1
K, 1—-1

Tm+2 Mml/z—i—(n—l)ﬁ n>2

n n

Like previous algorithms, this approach fails to make usbetremendous bandwidth available
and is slower than broadcasting for alk d.

Algorithm: ARBITRARY SEND 2
Use BROADCAST 4, deleting the lagt-2—n stages ifn < d—2. These stages were only needed
to get the message to nodes farther than distarfcem node 0.

Analysis of ARBITRARY SEND 2

There are
{ n+g—1 0<n<d-2

d+g—1 d-2<n<d

stages, which produce minimum times when

. "H 1<n<d—2
(dlﬁ V2 g<d-2<n<d
The corresponding times are then
™m + 3 d=1

+2,/%m1/2+(n+1)ﬁ 1<n<d-2
+ 2,/7@_;)577711/2 +(d-1)B 0<d-2<n<d

9

Closer inspection of BROADCAST 3 reveals that yet anothagestcan be saved whef2 <
n < d—2 and a fraction of a stage saved whert n < d/2, but these only reduce the!/2 and
0 coefficients by negligible amounts. What's needed is a wagotobine the link utilization of
BROADCAST 4 with the efficiency of O.C. SEND 4. With this in ndinit is necessary to look at
a new communication pattern, tiegtended.c. (x.0.c.) send. It is similar to a regular o.c. send,
except that the sending and receiving nodes are connectgaptsite corners of an-dimensional
subcubes, and all communication must go throuh

Algorithm: X.0.C. SEND 1

Identical to O.C. SEND 3, except two stages, numberédndn, are added to get the items into
and out ofS.

Analysis of X.0.C. SEND 1

The first and last stages each take time + 3, so the whole algorithm requires

K, 2 K,

2(rm +) + -

Algorithm: X.0.C. SEND 2

Pipeline X.0.C. SEND 1 as in O.C. SEND 4. There are stiroups ofm/g items apiece, only in
this case the-(m/g) + /3 time needed to get a group out of the sending node sets thefquaite
rest of the stages.

Analysis of X.0.C. SEND 2
Similar to O.C. SEND 2. The total time needed is

(9—1) (T% + 6) + W% + (n+2)p

+ 14 K,
_ "gn n I)Tm+(g+n+1)ﬂ,

which is minimized when

K,_
(n+ 1)Tm1/2

with a resulting time of

10

Algorithm: ARBITRARY SEND 3

Break up the data intd—n+ 1 packets,d —n of which containm/d apiece while the other has
the remainingnm/d items. Send the larger packet via an O.C. SEND 4 through theube T
containing nodes 0 an2l® — 1 as opposite corners. Send each of the othem packets via an
X.0.C. SEND 2 through a different one of then n-dimensional subcubes which both run parallel
to T and are distance 1 froi(i.e., the subcubes containing nod®&s! through2t!42n—1, 2n+2
through2"t2 427 —1,...,2¢971 through2?¢—1 42" —1).

Analysis of ARBITRARY SEND 3

Thed—n+1 separate sends use different links, so they can all be dareigently with no conflicts.
Each of the X.0.C. SEND 2’s of length/d takes time

Ty o [BT
d dn

whereas the O.C. SEND 4 of lengthn /d requires

+ (n+1)p

T (Kp—1—1)B7 ml/2
d d

Hence, the X.0.C. SEND 2’s will be slower than the O.C. SENDhémever
n+K,_1

n
which is true by inspection for < n < 4 and is false for biggen since

+(n—1)8 2<n<d
> Kn—l_la

2
2+- < K,
n

holds for alln > 4. What this all means is that the actual time for ARBITRARY SENorks out
to

™ + d=n=1

Im 2 M 124 (n+1)8 1<n<4andn<d—1

—m+21/ m'2 4+ (n—-1)3 5<n<dorn=d>?2
This compares to the
"I’L+1 1/2
+ (n+1)p n<d-1
1/2

(d—1)pr
d

I
=N

—m +2 n
needed by [11].

As was the case with O.C. SEND 4, ARBITRARY SEND 3 is only aldlignprovement over
broadcasting. More importantly, it uses only one link betw@&odes, so an arbitrary exchange is
possible between two nodes in the same amount of time by tisinignks in the other direction.

11

5 Sending Different Messages From One Node to Every Other Ned

The next communication pattern to be looked at is where ode needs to send a different message
to each of the other nodes. This operation has no standard (iamas referred to as “scatter” in
[11] and “personalized communications” in [5]), so we willicit distributing Its dual operation,
collecting where one node has to receive a message from each of thenothes, is exactly the
same operation, only run in reverse. Hence, it suffices tigdesd analyze distributing algorithms.

Both of these operations are useful in asymmetrical siinativhere one node of the hypercube
acts as a master processor and the others as its slaves. $tex distributes different data sets to
each of the slaves, which in turn perform computations omthiEhen the master collects all of the
results.

Assume without loss of generality that node 0 is the distitiigunode. The following algorithm
makes use of O.C. SEND 2, which gets executed on every sulvomb@ining node 0.

Algorithm: DISTRIBUTE 1

There ared stages, numbere@ 1,...,d—1. Each node is sent its corresponding message via a
separate O.C. SEND 2 applied to the subcube containing ihadd O as opposite corner nodes.
These2?—1 o.c. sends are run concurrently, with batching, and stagigso that the one 16, goes

first, followed by the ones t@,; 1, thenC,_», etc. Specifically, during stage the (?) nodes inC;,

0 < j < k, do their share of the work for tr'(%Jr?_k) = (kij) 0.C. SEND 2's whose destinations
are inCayj_g.

Analysis of DISTRIBUTE 1

The time for each stage depends on the maximal amount of disig ®ent out over a single link. For
stagek, C; contains(,,” .) messages of length to be sent out evenly along it§) (d— j) = (*;")d
links to C; 1. This means that each such link sends a packet of length

which is maximized wher = 0, for

(1) G

(71 (F1)
holds for alli € {0,1,...,k—1}. Consequently, the time spent by node 0 during each stage is
longer than nodes in any oth€r, so the total time for the algorithm is

S SIGIE
e S I 0 FE
= 7(2d;1)7m+d5)

The distribute algorithm in [11] had a time of

(24 —1)rm + dp

12

and [5]'s had a time strictly greater than ours. The time higdificult to represent, but has the
property that for fixed! > 1, the coefficient ofin is strictly greater thari2? —1)/d, but it tends to
(2% —1)/d asd approacheso.

Note that, as was the case with the o.c. send algorithms, RIBJTE 1 uses links in only one
direction, namely towards nod¥ — 1. Hence, a DISTRIBUTE 1 from nod2® —1 can be done
concurrently using the opposite set of links. Also, fesufficiently large (depending on the values
of 7, 3, andd), it is possible to reduce the coefficient, which represents the number of stages or
“waves” of data leaving node 0, by grouping together soménefwaves as they leave node 0 and
then breaking them apart ity . For example, using = 3, first a wave containing messages €or
andCg is sent out, takin@rm + (time to leave node 0. When this wave arrives at the nodes of
C1, the portion destined foEs is sent, takin%l.rm + (time, and then the portion destined 65
is sent, taking§7m + @ time. When the portion destined f@g reaches the nodes @, it is sent
on toCs, taking %Tm + (time. Meanwhile, the second wave of messages sent by nodetBcme
destined foIrCy, takingTm + (3 time. Messages fat; finish arriving at time§7m + 2, messages
for Cs finish at time2mm + 33, and messages far; finish at time%rm +36. If m/3 > (3, then
all messages arrive k%lrm + 2, which has improved upon the coefficient®fThis can be shown
to be absolutely optimal. This approach is extended in DISLRE 2.

Algorithm: DISTRIBUTE 2

Fix d, let k be the smallest integer such that

(d-1)F -1 _
d~—— — >92¢_ 1
d—2 - ’
let r be such that
rk—1 d
d =2“—-1.
r—1

(Sincer may be irrational, in practice one may prefer to use somenali’ such thatr < r’ <
d—1.) There will be exactly waves. Wavek will be those messages destined €qr, where each
link from node 0O carries a message of size Wavek — 1 starts from node 0 with packets of size
rm along each link, and will contain all of the messages@grand (for larged) portions of each
of the messages fdat;, where the portion is chosen to fill the packet size. Wave 2 will start
with packets of size?m, containing the rest of each of the message<foplus messages fdiy,
plus (for sufficiently largef) portions of messages far;. Each wave starts with packetdimes
larger than the following wave, and contains messagesngeisfor a set of furthe€;’s. When a
wave reaches the nodes ©f it is broken into wavelets, one for each of the destinatignn the
wave. These wavelets continue on to their destination,sidmithe packet sizes at each step as in
DISTRIBUTE 1, but not subdividing into smaller wavelets.

Analysis of DISTRIBUTE 2

Since the bandwidth fromi; to Cs is d—1 times the bandwidth from 0 t6,, andr < d—1, for

m sufficiently large each wave can be sent on frégrbefore the next wave arrives. The reason
must be sufficiently large is that the breaking into waveilt®duces additionab terms, but since
r is less thand— 1 there is a slight bit of extra bandwidth, which can mask thieaestart-up for
sufficiently largem. As in DISTRIBUTE 1, it can be shown that, for suffiently lange all wavelets
reach their destination by the time the last wave rea€hed herefore the total time is determined

13

by the time it takes node 0 to send &alWwaves, which is

(2¢—1)r d

(2d_71)7— m _|_
d logy d

7 m+ kB =

Gl.

This algorithm shows that one cannot obtain a lower bounditoply adding the bandwidth
lower bound, which determines the optimal coefficientaf to the start-up lower bound which
shows that at leasts time is needed to move any message across the hypercubendrabene
can only take the maximum of these two components as a lowgrdyince operations can be
overlapped.

6 Completing Hypercube Algorithms

Completinga hypercube operation refers to taking an operation ceheraind one node and then
simultaneously performing it on all of the nodes. This pr@eihighly symmetrical communication
patterns which utilize all of the available bandwidth.

The simplest way to complete an operation is just to2tisingle-node operations concurrently.
In terms of algorithms, this amounts to using the same numit&tages as the single-node version.
During each stage of the complete algorithm, however, eacte moes all the work necessary
for the corresponding stage in all of the single node algoré. Link conflicts are resolved by
batching That is, grouping together all of the separate packetstina to be sent along a particular
link during the same stage and sending them as one big pathkestalso reduces communication
overhead (i.e.3 terms) considerably.

The best single-node algorithms to complete are usuallgitnelest versions which still take
advantage of the concurrent link capability. Sophistidaerhniques such as pipelining and link
balancing aren't necessary because the complete operatierso symmetric. The first operation to
be completed will be the broadcast. This pattern is usefuVdoious matrix operations as well as
vector multiplication.

Algorithm: COMPLETE BROADCAST

Complete BROADCAST 2. There atkstages, numberetl 1, ...,d—1, and during stagé, each
node does its share of the work for the corresponding staggRGIADCAST 2 for all (Z) nodes
which are distancé from it.

Analysis of COMPLETE BROADCAST

During stage: of BROADCAST 2, the total amount of data being sent o@igm/d = 2*m, so the
corresponding amount being sent out in COMPLETE BROADCASX¥2*m. Due to the overall
symmetry of COMPLETE BROADCAST, this outgoing data will besaly divided among at¢d
links of the hypercube, so each link ends up sending a patkiteR”m/d. Therefore, the time for
the algorithm is

S 2km 2¢-1)r

For purposes of comparison, [11] produced an “optimal” cletepbroadcast (which they referred
to as a “total exchange”) with a running time of
(24 +d?)r

y m + df.

14

The next operation to be completed will be the o.c. send. Apeta o.c. send, henceforth
referred to as amversionis another fundamental communication pattern useful feengng the
order of data which is stored by node i.d. and for transposiatyices (to be discussed later).

Algorithm: INVERSION (Complete Opposite Corner Send)

Complete O.C. SEND 2 in exactly the same manner as BROADCAS®&Z in COMPLETE
BROADCAST.

Analysis of INVERSION

During each stage of O.C. SEND 2, a totaldpackets of sizen/d were being sent over separate
links. Now there ar@¢d such packets, but there are also that many links and the siggnofahe
algorithm guarantees that no more than one packet will beadeng the same link during a stage.
Thus, the time for INVERSION is identical to O.C. SEND 2:

d(T€;4‘B) = Iiﬁiﬁlﬂi.

Now consider the ultimate communication pattern, cbenplete exchangé his is when every
node wants to send (as well as receive) a different messéfyertg each of the other nodes. In other
words, it's the same thing as completing the distributingcaliecting operations. The complete
exchange turns out to be useful for matrix transpositiongedkas random communication patterns
(both to be discussed later). In [11], complete exchangecattsd multigather/scatter.

Algorithm: COMPLETE EXCHANGE

Just complete DISTRIBUTE in the same manner that O.C. SENCad eompleted to produce
INVERSION. There are still stages, numbered 1,...,d—1.

Analysis of COMPLETE EXCHANGE

As in INVERSION's analysis, all that has to be determinedhis amount of data each node has
to pass along each stage. Basically, every node starts thu{2¢i— 1)m items which have to be
sent out to the other nodes. During stdget starts sending messages to @ nodes which are
distancek away. No messages reach their proper destinations untéshstage, which means that

a total of
ko (d
i=0 \J

messages are being worked on during stagBue to the symmetric pattern of the sends, each of
the 244 links thus sends a packet of size

k d k (d—‘ 1
L _ J
E: d - E: d—

J=0 J=0

so the algorithm needs time

d—1 k (d;1
Z [T p m+ 3

dldldl)

ZZ Tm—i-dﬂ

JOkJ

J=0

15

d—1
= Z(d_,1>7'm+d5
=0\ J

= (297 rm 4 4B,

compared to the
241 drm + djs

needed by [11]'s corresponding algorithm.

Finally, sometimes a situation arises where each node wastsnd to one other node as well
as receive from just one node. This will be termegeamuted sendalthough in some ways it is
analogous to a complete arbitrary send. An obvious exarsge inversion. Another one is when
each node wants to send to the next higher-numbered nodeXfhoshich can be thought of as a
rotation.

There are?! such permutations, so determining the most efficient algorfor each one seems
neither possible nor practical, though recently some @apave appeared analyzing specific per-
mutations [8, 10]. For arbitrary permutatations, howesateterministic analogue of Valiant’s ran-
domized routing [12, 13] can be employed. It consists of tammplete exchanges: one to disperse
all the data evenly throughout the cube and another to ¢adtlakt up at the appropriate destinations.
We explicitly use the fact that all nodes know the permutabeing performed so that destination
information need not be sent with the data.

Algorithm: PERMUTED SEND

Each node breaks up its items into2? packets ofn/2¢ items apiece. These packets are distributed
throughout the cube via a complete exchange so that eachhasdene packet from every node in
the cube. Since the communication pattern is a permutdtigalso means that each node has a
different packet to send to every other node in the cube. Asualt; another complete exchange can
be used to route all of the packets to their correct destinati

Analysis of PERMUTED SEND

There are two complete exchanges, each involving messagehteof/2? items, so the time
needed for PERMUTED SEND is

2(21 5 +d8) = [rm+-2d3).

7 Matrix Transposition

Transposing a matrix in a hypercube is an interesting conication problem which can make
good use of some of the algorithms developed so far. It has pe=viously considered in [9, 11],
but faster algorithms will be developed here. Suppose yaut teetranspose afv x N matrix M
stored in ad-dimensional hypercube, with each node containVig2? entries. It is necessary to
specify exactly howM is stored, where the usual ways are either by rows(columnay square
submatrices. Storage by rows is the easier of the two, sdlibe/considered first.

16

7.1 Storage by Rows(Columns)

There are many ways of storing by rows(columns), where wenasghat/V is evenly divisible by
24, For example, the rows may be stored by partitioning the riatgsblocks of N/2¢ consecutive
rows, where the assignment of blocks to nodes may or may ea @ay code. Or it may be that a
striped pattern is used, partitioning the rows into set®waf2? apart, again with variations possible
on how the sets are mapped onto the nodes. However, no matenvethod is used to assign rows
to nodes (as long as the assignment evenly distributes thg taperform transposition each node
must send exactlyv?/22? entries to each other node. In other words, a complete egehaas to
be performed with a message lengthnot/22¢. This takes time

N2 T
d—1 _ 2
as compared to
dr o
st N +dp

needed by [11].

7.2 Storage by Submatrices

When stored as submatrices, it is convenient to assumeltlsaeven, sayl = 2¢, and thatV
is evenly divisible by2¢. Assume thatM has been partitioned into submatrickk, ,, =,y <
{0,1,...,2°~1}, whereM,, , is formed by the intersection of rows

xN/2°+1 through (xz+1)N/2°¢
with columns
yN/2°+1 through (y+1)N/2°.

Let G denote any permutation ¢, ...,2°—1}, and assume thad, , is stored in nod&(x)2¢ +
G(y). Typical choices for7 include the identity, in which case this is knownrae/-major ordering
or a Gray code, in which case adjacent submatrices are stosjacent nodes. No matter what
G is used, transposition reduces to the problem of nitfe+ b exchanging its entries with node
b2¢ 4 a, foralla,b € {0,1,...,2°—1}. We provide an algorithm for this operation.

First observe that this is a permuted send with messagehléng2?. Hence, it can be accom-
plished by using PERMUTED SEND in time

2
T% +2dB = 2 (#J\ﬂ + dﬂ) .

This is twice as long as whe¥l is stored by rows, yet on average, each item moves only hédiras
Consequently, it would not be unreasonable to expect tlodoe fin algorithm which works in half
the time.

In fact, such an algorithm does exist, but describing andyaimay it requires examining the bit
patterns of the node i.d.'s. Consider nat¥ + b, wherea,b € {0,1,...,2°—1}. In their base
two representations, andb differ by say,k bits, and agree on the other k. Now letS,, ;, denote
the set of all nodes whose firsbits of their i.d.’s differ from their last bits in exactly the samg
positions that: andb do.

Observe thab, contains2* nodes. By themselves, they do not form a proper subcube, but
something close to one. The distance between any two nodgg,aé always even, and if there

17

physical link

————— logical link

Figure 3: Logical and Physical Links Between two Nodes

were links between the nodes that are distance two apart,Shg plus these new connections
would form ak-dimensional hypercube.

With these thoughts in mind, definéagical link between two hypercube noddsand B, which
are distance two apart, to be the four physical links whiameatA and B along the two possible
paths of length 2 (see Figure 3). L&tand D denote thantermediate nodesonnectingA and B.

A logically connected (I.c.3ubcube can then be defined to be a subset of nodes whosé logisa
connect them together in a hypercube network.

That saidS, ; is a l.c. subcube. Furthermore, its intermediate node indve the property that
their firstc bits differ from their last bits in preciselyk — 1 positions. Finally, from the definition
of S,, every node in the hypercube belongs to exactly one sucsubzube. Combining these last
two statements, it becomes apparent that no two such subcalpeshare the same physical link.
As a consequence, algorithms can be run concurrently ori eiledhese I.c. subcubes without the
possibility of link conflict.

Returning to the original problem, nod&® + b can exchange data with noti&” 4 a by simply
performing an o.c. exchange fy ;. In fact, every node 5, ; can exchange data with their cor-
responding node for the transposition by performing anrsioe inS, ;. This brings up the need
then for an inversion algorithm for I.c. subcubes.

Inversion in a logically connected subcube

Sending data along a logical link is equivalent to doing an gend in a 2-dimensional hypercube.
Hence, a standard send would take time

T [BT 1/
2m—|—2 5 M + 6

to perform, so a l.c. inversion could be accomplished byagoering a regular INVERSION using
these logical sends. Forkadimensional I.c. subcube, this would require time

T™m [BT (m 1/2 T kBT 1/2

18

As long as the number of packets sent out along each physikahla logical send is at least two,
however, then there is no point in waiting for all of the indnmpackets to arrive before starting to
pass them along. That is, after all, the whole idea behindlipipg.

Algorithm: L.C. INVERSION

Perform a regular INVERSION along the logical links of the kubcube, making sure to pipeline
the stages together and breaking the data up into at leagpdckets so that incoming packets start
arriving no later than when the last of the outgoing packetsbaing sent out.

Analysis of L.C. INVERSION

Let p denote the number of packets to be sent out along each ogtgbysical link (note thap has

to be at least 2). Then the packet size for each send2&p. With pipelining then, it takes a total
of kp sends for each node to pass along its data, with the inteateedddes being one send behind
the regular nodes. Thereforey + 1 send stages are needed, so the algorithm runs in time

(kp+1) (;—Tpm—kﬂ) ,

which is minimized when

- 1 T 1/2
p = % 26m .
This produces a final time of
%m + 2 %mlﬂ + 01

Observe that this time is the same time as needed by INVER$O& 2-dimensional cube. Also,
it is independent ok so long asn is large enough to insune> 2.

Algorithm: MATRIX TRANSPOSITION (stored by submatrices)

With L.C. INVERSION, transposingl becomes trivial. Just perform it on every l.c. subcub#&lof

Analysis of MATRIX TRANSPOSITION

Since the I.c. inversions can all be done concurrently witlowerlap, and all take the same amount
of time, the transposition is completed in time

1/2
T N2 | BT N2 T 9 joxa
5@4‘2 7(?) +48 = QdTN + 2 WN—Fﬁ

which is nearly the same time needed wivtwas stored by rows. This is approximately half of the

;—dNZ +(d-1)7

time required by [9], where it is assumed tli&is zero.

19

8 Histogramming

The same techniques used previously can be applied to thieepr@f histogramming. We consider
a simple variant in in which there are different “bins”, each node starts with a value for each of
the bins, and the goal is to find the sum of the values for eathTie sum for bingm /2¢ through
(i4+1)m/2¢ — 1 will be in nodes. (If it is desired that all nodes contain all sums, then a detep
broadcast can be used at the end.) We assume that each vélsignaiis of unit length.

Algorithm: HISTOGRAM

First consider the algorithm where the data is exchangeddonension at a time, using recursive
halving to decrease the number of subtotals in each nodéndpiine first stage, nodes in the bottom
half of the subcube send up their values for the second hdtieobins to their neighbors in the
upper half, which are concurrently sending down their valfor the first half of the bins. Each
node adds the values received to its own, and recursivelint@s on to the next stage. The final
HISTOGRAM algorithm is just the symmetrized version of thisiple algorithm.

Analysis of HISTOGRAM

For the unsymmetric algorithm, stagel < k < d, takes(r/2¥)m + 3 time, so for the symmetric
algorithm it takeg 7 /d2*)m + 3 time. The total time is

—d
(1_27)7—m+dﬂ i

9 Optimality of the Algorithms

As was mentioned earlier, the coefficients of the high-oteens are the least possible. In all cases,
a proof can be given based on a simple counting argument. ddiest such approach is

e pick a subse§ of links,
e show that the total message load that must be sent®isat least some amouaf and

e conclude that at least one link sends at lea$$| and thus, takes at least

aT
S|

time doing so.

Forexample, in BROADCAST, O.C. SEND, ARBITRARY SEND, DISIBUTE, and HISTOGRAM,
let S be thed outgoing links of node 0. Themis m, m, m, (24—1)m, and(1-2~%)m, respectively.

In the case of COMPLETE BROADCAST, pickto be thed incoming links to node 0 and setto
(2¢—1)m, since node 0 receives a different message from each otbaddast. For INVERSION
and COMPLETE EXCHANGE, consides to be the2? links connecting nodeg, 1,...,2% 1 —1

in the “lower” subcube. with nodes2¢~—",2¢-1 41, ... ,2¢—1 in the “upper” subcub&). Thena is
2¢m and2?29-1m, respectively, since every nodelirsends one an2t'~! messages, respectively,
to the nodes inJ (and vice versa). PERMUTED SEND is optimal since it is slotem the spe-
cial case INVERSION by only an additivés. Finally, for MATRIX TRANSPOSITION, when the

20

matrix is stored by rows or columns the problem is just cotepéxchange, which was shown to be
optimal. When the data is stored as submatricesS le¢ alld 2¢ links. Thena is dN?/2 since the
total distance traveled by all messages, each of §iz@¢, is d 2¢.

The lower bound for the permutatigaflection where every node ih exchanges with its cor-
responding neighbor i, has the same high-order term as does inversion (by the sagum@ent).
This occurs despite the fact that reflection is a fixed-paieé fpermuation with the smallest total
message distance, while inversion has the greatest tosslage distance. Given this, and the fact
that PERMUTED SEND shows that all permutations can be rowtttthis highest-order term, one
might guess that all fixed-point free permutations requisedame highest-order term. (If permuta-
tions with fixed points are considered, then the identity lsarcompleted in zero time.) However,
it has been shown that some fixed-point free permutationdeanuted with a highest-order term
smaller than that of reflection [10], and therefore PERMUTE&EBND is only worst-case optimal
among fixed-point free permutations.

Beyond the highest-order term, we believe that some of therithms herein are absolutely
optimal. Unfortunately, we have generally been unable gthis because of the difficulty in finding
good lower bounds which go beyond the highest-order ternth ®ounds must incorporate both
bandwidth considerations and an accounting of start-upgjrbut, as was noted in Section 5, one
cannot simply add these components together to obtain aatdower bound.

We can, however, prove absolute optimality for DISTRIBUTERanyd, if m is sufficiently
large. Notice that at least one of node 0's neighbors musiveat least2? — 1)m/d items, and
all except perhaps: of these items need to be forwarded. Therefore it sufficehdavghat if a
node 0 is connected to a node 1, which in turn is connected-tb additional nodes, and if node
0 starts withm items destined for node 0, at@’ — 1)m/d — m items destined for the additional
nodes, then the time needed is at least the time taken by DEBTRE 2. We assume that we have
complete freedom in deciding which additional node to @el& specific item to.

Without increasing the time, we can alter any algorithm s the items destined for node 1 are
the last items sent from node 0. Suppose the first packetite atrnode 1 has size and the second
packet has size, and both are destined for the additional nodeg ¥ (d — 1)g, then the items
cannot finish arriving at the additional nodes until tifpe + 3) + (g7 +) + (¢7/(d—1) +). By
moving some of the items from the second message to the fiestjrig new messages with lengths
p’ andq’, wherep’ = (d—1)¢’ andp’ + ¢’ = p+ ¢, the messages can finish arriving at the additional
nodes at timep'r +) + (¢'T7 + 8) + (¢'7/(d—1) + 8). Sinceq’ < g, this is faster. A similar
argument applies if > (d—1)q, and therefore without increasing the time, we can assuatdfh
first packet isi—1 times as long as the second.

This argument can be applied inductively, showing that wg assume that each packet sent
from node 0 igd—1) as long as the following one. (Temporarily ignore the faet this argument
does not apply to the last packets, since some of the itentgeem &are not forwarded). Suppose
node 0 sends packets, with sizes(d—1)*~!, x(d—1)*~2, ..., z, wherex is such that the sum of
the message sizes(8? — 1)m/d. The time for node 1 to receive these messages and send on the
items destined for the additional nodes is at least

(21— 1)

7 Tm_|_kﬂ + M

1 P

where the last two terms are included only:it> m. For fixedd, v, and3, and sufficiently large
m, this is minimized wherk = [log,;_;[1 + (d—2)(2%—1)/d]], which gives the time taken by
DISTRIBUTE 2. To be correct, this argument must be modifiedaal with the sizes of the last
packets, since the argument showing each packet must-heimes as long as the following one
assumed that all items were destined for the additional :1o8le analysis by cases shows that the
same time bound holds.

21

10 Conclusion

We have shown that link-bound hypercubes can make effeatieeof all of their communication
links to perform some common communication-intensive $askince a lower bound for some of
these tasks is the time needed to send out the data from anaing node, such tasks would take
longer on more restricted machines in which nodes cannoallsé their communication links at
one time. Thus our algorithms provide support for the befief it is useful to build machines where
all communication links can be used simultaneously.

By systematically applying a few techniques such as pipglinsymmetrizing, and complet-
ing, we were able to develop a collection of algorithms givefficient solutions to a wide range
of problems. We concentrated on communication problemnisattgarather fundamental, and have
not tried to develop all of their uses. However, we note teaegal additional matrix manipulation
problems can be solved by our algorithms. For example, if &ixna stored by rows or columns,
then switching between blocked and striped storage, otimgtay a quarter-turn, are all examples
of complete exchange. If a matrix is stored via submatriaed,theGG function used in the assign-
ment is either the identity or a reflexive Gray code, thentimtavia quarter-turns or half-turns can
be accomplished by algorithms closely related to MATRIX TRZPOSITION. Since the initial
announcement of our results in [14] and the submission sfghper, additional papers have ap-
peared which pursue the use of such techniques for matrbtgnts [6, 8, 9]. These papers include
experimental results on Intel and Thinking Machines hyplees, showing that our techniques do
indeed result in faster message transmission.

Though our algorithms are deterministic, this paper hastbevaliant's work on randomized
routing [12, 13]. He showed that indivisible unit-length saages in a link-bound hypercube could
be routed inO(d) expected time, no matter what the permutation, by routirgh eaessage to a
random intermediate destination and then on to its origieatination. For long divisible messages
and a known permutation (so that header information needaatitached), PERMUTED SEND
eliminates the random destination by sending a portion eftlessage to every processor. Further,
in [12] he used four “bad” examples to empirically show thefukess of randomization. One
of these is equivalent to matrix transposition for a mattored as submatrices, and the worst
one was inversion. MATRIX TRANSPOSITION and INVERSION shd¢at there are efficient
deterministic routing schemes for these permutations.

Finally, despite the intense interest in hypercube comaoation [1, 2, 5, 6, 7, 8, 9, 10, 11, 12,
13], still little is known about optimal hypercube perfomta on communication-intensive tasks
such as sorting, routing, data balancing, database opesatand image warping. For example, it
is not known if ad-dimensional hypercube, starting with one item per node,swat the items in
©(d) worst-case time. Additional open questions include extendnalyses to processor-bound
and DMA-bound hypercubes, and to problems where the conuation pattern is not known in
advance and/or the message lengths are not uniform.

22

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Baru, C. K., and Frieder, O. Implementing relationalatstse operations in a cube-connected
multicomputer systenProc. 3rd Int'l. Conf. on Data Engineerind.987.

Cybenko, G. Dynamic load balancing for distributed meynmultiprocessors. Tufts Univ.
Dept. of Computer Science Tech. Report 87-1, Jan. 1987.

Gustafson, J. L., Hawkinson, S., and Scott, K. The aechitre of a homogeneous vector super-
computerProc. 1986 Int’'l. Conf. on Parallel Pro¢clEEE, 1986, pp. 649-652.

Hayes, J., Mudge,T., Stout, Q. F., Coley, S., and Paltek microprocessor-based hypercube
supercomputetEEE Micro 6 (1986), pp. 6-17.

Ho, C.-T., and Johnsson, S. L. Distributed routing ailifpons for broadcasting and personalized
communications in hypercubdgroc. 1986 Int’l. Conf. on Parallel Pro¢clEEE, 1986, pp. 640-
648.

Ho, C.-T., and Johnsson, S. L. Algorithms for matrix position on boolean-cube config-
ured ensemble architecturéapc. 1987 Int'l. Conf. on Parallel Pro¢clEEE, 1987, pp. 621-629.

Ho, C.-T., and Johnsson, S. L. Optimal algorithms fobkalimension permutations on boolean
cubesProc. 3rd Conf. on Hypercube Concurrent Computers and AppgiCM, 1988, pp. 725-
736.

Ho, C.-T., and Johnsson, S. L. Expressing boolean culdtexragorithms in shared memory
primitives. Proc. 3rd Conf. on Hypercube Concurrent Computers and Ap@iCM, 1988, pp.
1599-1609.

[9] Johnsson, S. L. Communication efficient basic lineaelbig computations on hypercube archi-

tecturesJ. Parallel and Distributed Computing (1987), pp. 133-172.

[10] Livingston, M. and Stout, Q. F. Good permutations fopagcube communication, in prepara-

tion.

[11] Saad, Y. and Schultz, M. H. Data communications in hgpkes, Yale Univ. Dept. of Com-

puter Science Research Report YALEU/DCS/RR-428, 1985.

[12] Valiant, L. G. Experiments with a parallel communicatischemeProc. 18th Allerton Conf.

on Communication, Control, and Computjrip80, pp. 802-811.

[13] Valiant, L. G. A scheme for parallel communicatid®lAM J. Computing.1 (1982), pp. 350-

361.

[14] Wagar, B., and Stout, Q. F. Passing messages in linkdboypercubeddypercube Multipro-

cessors 1987SIAM, pp. 251-257.

23

