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Abstract

Optimal designs are presented for experiments in which Bagip carried out in stages. There are two Bernoulli
populations and it is assumed that the outcomes of the pregiage are available before the sampling design for the
next stage is determined. At each stage, the design spebifiesimber of observations to be taken and the relative
proportion to be sampled from each population. Of particuiterest are 2- and 3-stage designs.

To illustrate that the designs can be used for experiments&ful sample sizes, they are applied to estimation
and optimization problems. Results indicate that, for fgis of moderate size, published asymptotic analyses do
not always represent the true behavior of the optimal stegs,sand efficiency may be lost if the analytical results
are used instead of the true optimal allocation.

The exactly optimal few stage designs discussed here aezaged computationally, and the examples presented
indicate the ease with which this approach can be used te gobblems that present analytical difficulties. The
algorithms described are flexible and provide for the adeurapresentation of important characteristics of the
problem.

Keywords: sequential analysis, dynamic programming, algorithmigjcal trials, two-stage, three-stage, experi-
mental design, group allocation, adaptive, sampling, bapduct of means
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1 Introduction

It is well known that adaptive sampling or allocation, in aidecisions are made based on accruing data, is more
efficient than fixed sample allocation, in which all decisi@re made in advance. Allocating adaptively can reduce
costs or time, or improve the results for a given sample $tmly sequential adaptive designs, in which one adjusts
after each observation, are the most powerful. Howevey, #ne rarely used, due to concerns over their design,
analysis, and implementation.

While advances in computing hardware and algorithms makaster to optimize and analyze certain fully
sequential designs, and while portable computers make thera accessible, there are still difficulties with im-
plementation. Experimental responses may be too slow fesmud requiring full updates prior to each allocation.
Further there may be set-up costs that dissuade individloahtions.

One way to address such concerns is to incorporate a redtfmtm of sequential allocation, in which decisions
are made in stages. The most common of these is a 2-stagenegprin which an initial decision is made to
observe specified numbers from the various populations;ttzm] once the results have been obtained, to make a
second and final decision as to how to sample in the last siéfghin each stage, updates are not required so the
impact of response delays is minimal.

Both 2- and 3-stage designs have received extensive aralyrieatment, and the results typically indicate that
the designs are first- and second-order asymptoticallyngbtiespectively. In particular there is a considerableybod
of literature on 2- and 3-stage designs for obtaining fixestigion confidence intervals and for minimizing risk
functions when observational costs are incurred. (Seexlnmple Ghosh (1975) and Ghurye and Robbins (1954).)
A review of these types of sequential few-stage designsogiged in Ghosh, Mukhopadhyay and Sen (1997).



Despite the volume of this work, however, there doesn’t appe be work in which attempts have been made
to fully optimizefew-stage designs. In particular, two features that weneltovary freely in the designs described
here are the stage lengths and the proportions allocateddach population within each stage. Both sets of design
parameters (lengths and proportions) can be critical toeffieiency of a design. With regard to selecting stage
lengths as a function of total sample size or total expechedpte size, we have found that published analyses are
guite vague except in limiting cases which may not be releirapractice. With regard to how to allocate within
each stage, previously published few-stage designs ai@ltlypcharacterized by having equal allocation in the first
stage. We make no such restriction and provide examplesraliing that this assumption has the potential to be
arbitrarily damaging.

Figure 1 illustrates the manner is which a 3-stage desigrhimig
flow. The two shades within the rectangles (the “stagesesgnt the
different proportions sampled from each population witthia stage. /
So, in the first stage of Figure 1 we see that approxima§6‘fyof the
observations are froi®; and the rest are fror®,. In the second stage
there are two rectangles which represent a couple of the mayy one
could sample in the next stage. Note in particular that oomngle is \

shorter than the other, representing a shorter stage size.
The goals of this paper, which extend the work in Hardwick and
Stout (1995), are

e to provide efficient algorithms for determining optimal few

stage designs, ) ) )
Figure 1: Schematic of a 3-Stage Design

¢ to motivate the use of such algorithms via a number of exasnple

¢ to show how easily the base algorithm can be adjusted to éandl
new design variations, and

e to compare the exact computational results with the amalytesults that have appeared in the literature.

Definitions used in describing the algorithms are presemte®ection 2 and the base algorithms are introduced in
Section 3 and Appendix A.

In Section 4 we illustrate the range of our algorithms by wimgl them to several sample problems. We give
optimal solutions for four separate examples and compareesults with the previously best results that appearing
in the literature.

Among results of interest, we found that, for some of the |gnols examined, asymptotic results do not appear
to provide useful guidelines in practice. On the other hame,found that some ad hoc approaches performed
remarkably well compared to optimal designs. Perhaps oenmderest is the ease with which one can optimize
variations as long as the new problem fits roughly within theuation model framework utilized here. Many
problems that might be extremely difficult or impossible tiwgess analytically may be simple to optimize fully
with only minor alterations to the base algorithms desctibere. This benefit may encourage designers to utilize
models which more accurately reflect the important factorhé experiment, rather than choosing models which
are analytically tractable.

Many of our examples can be computed by programs more effiitian one would expect from the worst-case
scenarios used in the base algorithms. We address this iendppB. We also show how to incorporate new
constraints such as fixed stage sizes.

Finally, in Section 5, we discuss some extensions of thikwod efforts to extrapolate exact optimizations for
moderate sample sizes to predict nearly optimal allocationsample sizes larger than can be fully optimized.



2 Definitions

With the exception of Sections 4.2 and Appendix B, we £ : number of stages
assume that the total sample size of the experiment
fixed. This assumption is used merely to simplify descrip-
tions and comparisons, and, as Section 4.2 shows, one cap. +. . successes and failures &, i = 1,2

modify our algorithms to handle cases where the sample

size is random but bounded. There are two independens;, f; : vectors denoting 1 success or failure By
Bernoulli populations; andP,. We use a Bayesian ap- hencels;| = |fi| =1

proach, in which the success parameters of the two pop-
ulations have independent distributions. (In all of our ex- ©
amples these distributions are beta, but our work applies t0,, (s, o: v) : probability of s successes amongob-
general distributions.) Thus, atany given pointone cande-  gepyations orP;, starting at state

termine the probability that the next observation on a given

population will be a success. Suppose that at some point?; (v) : value of starting-stage experiment,

in time we have observeg successes anf} failures on 1 <t <k, at statev and proceeding optimally
P;. Then the vectotsy, f1, s2, f2) is a sufficient statistic, (R§(v) is the objective function)

and forms a natural index for the state space describing the . .
experiment. States, denoteckasvill be treated as vectors Ry(o1, 02;v) : value of startingt-stage experiment
so that one can add observations in a natural manner. at statev_, assigning; observations t@;, and

We are interested ik-stage designs in whick is proceeding optimally.
small. In a 1-stage design, the only decision required iSLjZ- . number of observations d; in stage;.
the number of observations to sample frémn as all re-
maining observations are sampled frém If £ > 1,one  L; : number of observations in staggi.e.,
determines how many observations to take fr®mand Lj = Lj1 + Ljs.

Ps in stage 1. These are denotedlas and L1, respec-
tively, and the total number of observations in stage 1 is
denoted byL,, whereL; = Li; + L12. Once the initial
observations have been obtained, one is left with a 1)-stage experiment of size — L, where the priors have
been updated to include the initial observations. Withoas lof generality, we require that each stage have at least
one observation, sk < n. Our algorithms are correct for all suéhandn, but our analyses assumex n since

that is the case of interest. If, for examples= n, then the problem is fully sequential and simpler approscos|d

be used.

There is an objective functioR;;(v) that is the value of each final staidi.e., states for whichw| := s; + f1 +
s2 + f2 = n), and the goal is to minimize the expected valuggjf Thevalue of allocationA is the sum, over all
final states, of Rj(v) times the probability ofd reachingv. An optimal k-stage allocatioris ak-stage allocation
that achieves the minimum value amongialitage allocations. The only restriction on the objectivection is the
requirement that it can be determined by knowing only thd ftete reached and the prior distributions.

To describe the time and space requirements of algorithresyse “generalized O-notation” from computer
science, in which O and o have the same meanings as in sttistie; and in which we say a functigiin) =
©(g(n)) if there exist positive constants, D, N such thatCg(n) < f(n) < Dg(n) for alln > N. Notation used
in the remainder of the paper are displayed in Figure 2.

n : sample sizep > k

; : humber of new observations assigned to

Figure 2: Notation

3 Optimal Few-Stage Allocation

The starting point for our algorithms is the simple versiaveg in Figure 3. It proceeds in a typical dynamic
programming fashion, from the end of the experiment towdsdseginning. In a fully sequential allocation, dynamic
programming usually proceeds by analyzing all states with- n, then all states wittw| = n — 1, and so on until



one reaches state, 0, 0, 0). {Evaluate last (kth) stage

A similar scheme is used here, but there is an additionator all states) with k — 1 < |v| <n —1,
implicit part of the state space, namely, the number of stage  Rj(v) = min  Ri(01,09;v)
so far. The number of stages, as opposed to the number of ob- o1toz=n—v|
servations, is not part of the sufficient statistics, butésuial ~ {Evaluate middle stagés
part of the dynamic programming. It controls the outermoSigrt — 2tok — 1

loop level, ranging from the last stage towards the first. For all states) with k — ¢ < [v| < n — ¢,
The equations in the loops determine the best continuation R (v) = min Ry(01,02;0)
at any stage and state by taking the minimum over all possible 1<o1+o2<n—|v|—t+1

options. In other words, o
{Evaluate initial stage

R} (v) = min{R; (o1, 02;v) : 01, 02 legal}. R;(0) = Ry.(01,02;0)

min
1<o1+02<n—k+1
“Legal” values are determined by the constraints that these
t stages remaining, each of which must have at least one ob-
servation, thafv| observations have already occurred, and that
there will be a total of, observations. Thus, the legal values»gfandos, are those such that

Figure 3: Simple Few-stage Algorithm

1<og+oa<n—|v|—t+1 ift>1 and oy+oa=n—|v| ift=1

For each stage, one proceeds through the entire rangees.stédwever, the evaluation at each state is more complex
than in the fully sequential case. In fully sequential desjghere are only two options that need to be evaluated
(sample either fromP; or P,), and each of these involves only two successor states., ©hescan evaluate each
state in©(1) time, and complete the design®(n*) time (since there ar®(n?) states).

For the few-stage problem, however, there are many optibeach stage. In the general case, one must decide
the number of observations allocatedRp amdP,, creatingO(n?) options. Further, to evaluat@;(o;, 02;v) one
must considet)(n?) outcomes:

o1 02

Ri(o1,00;0) = > Y pi(sh,0130) pa(sh, 02:v) - Ry (v + (sh,01—5], sh, 00— ),

I—0 o —
57=055,=0

wherep; (s, 0;v) is the probability of observing successes amongobservations orP;, if one started at state.
Thus, if straightforward implementations are used, it $akén?) time to evaluateR; (o1, 09;v); O(n?) time to
evaluateR, (v) for each state; and®(n®) time to evaluate the entire stage over@il*) states. Thus the total time
for all stages, using a straightforward implementation yfamic programming as in Figure 3, would ©¢kn?®).
The space required would Ie(n?), since all of the results of each stage are needed to confpiEéceding one.

In these analyses, and throughout the paper, there is aicimgdsumption that one can compute all of the
valuesp; (s}, 0;;v) in time no more than the number of states involved, usingespacmore than the number of
states involved. Similar assumptions are made concerhtetminal cost functiodf(v).

In Appendix A it is shown that the number of calculations cardbamatically reduced. Utilizing that work gives
the following:

Theorem 3.1 The optimalk-stage allocation for an experiment efobservations from 2 Bernoulli populations can
be determined in

e O(n?) time andO(1) space, ifk = 1,
e O(n) time andO(n?) space, ifk = 2,

e O(kn®) time andO(n?) space, ifk > 3. 0



The above is the worst case scenario that will work for any-$é&xge problem. Often, there are features of the
problem that allow us to design a more efficient algorithmfalst, all of the examples that we consider in Section 4
have characteristics that allowed for faster algorithnrmsAppendix B, we discuss ways to improve upon this base
result when special design constraints are encountered.

4 Examples and Applications

The few-stage optimization algorithm is applicable to aewidnge of problems. We have chosen the particular ex-
amples in this section because they are ones for which @yonptotic or approximate analyses provide a framework
for comparison.

4.1 2-Stage Bandit

We begin with a 2-stagéwo-armed bandiexample, a problem with a large legacy of associated litezat In

a bandit problem the goal is to maximize the total reward inbthwhen sampling sequentially from among the
different available populations or “arms”. A Bernoulli ldihis one in which the outcomes from the populations are
distributed as Bernoulli random variables which can be gihwof as having outcomes “success” or “failure”. In this
case, one seeks to determine how to sample from the diffararg so as to maximize the total number of successes.
(Thus the in” of Section 3 should be aniax”.) A two-armed Bernoulli bandit can be a model for a two thmgra
clinical trial in which one is strongly motivated to cure aamy of the subjects in the experiment as possible.

A heuristic for optimizing such a problem is to sample at lesmgne from each population, but to identify the
better of the two as quickly as possible and then to sampla ftexclusively. This brings us to early concep-
tualizations of 2-stage designs for clinical trials suchtasse proposed by Colton (1965). Colton suggested that
observations be taken in pairs during the first stage andathabservations in the second stage be sampled from
the population that was apparently superior after the fiegjes At issue was the length of the first stage size,
which depends not only on the total sample sizequt also, for Bayesian designs, on the prior distributid®anner
(1970) addresses optimal first stage lengths for the Bayesise. He analytically determined that, when uniform
priors are assumed, the optimal first stage size is appraogiyng2n + 4 — 2. Computationally, he ascertained that,
for arbitrary beta priors, the optimal first stage asymp#ily grows as the square rootof Note that the scenarios
considered in both Colton (1965) and Canner (1970) are netliandit set-ups since equal allocation in the first
stage is mandatory. The restriction greatly simplifies thelysis and computation, but causes a loss of efficiency.

A stagedl-armedbandit version of this problem was later approached by Gtaghd Witmer (1988). For the
1-armed bandit, the success rate for one of the two popofaimassumed known. While this assumption greatly
restricts the applicability of the result, the solution igngficantly simpler. In 1996, Cheng reported on a 2-stage
two-armed Bayesian Bernoulli bandit in which the appayeb#tter population is sampled from exclusively in the
second stage (unless there are ties). She provides an uppst for the number to sample frofy andP, during
the first stage when a total efobservations are to be taken and the prior distributionbeitz.

Here, we fully optimize the problem examined by Cheng (199&)te that, due to the simplified second stage,
the time required to compute this optimal 2-stage allocatiod its value is reduced fro®(n°) in Theorem 3.1 to
O(n*). Figure 4 provides a comparison of first stage sizes deteqiriiy

e the upper bound given in Cheng (1996);

¢ the optimal 2-stage design constrained to using equalalocin the first stage, i.e., the case solved in Canner
(1970);

¢ the fully optimized version computed using the algorithrasdaibed in Section 3.

The data in the figure arise from using beta prior parametgrs Be(2,1) andps ~ Be(1.5,1.5), which is the
configuration used in Section 3 of Cheng (1996). Figure 4titates that the stage sizes obtained from the bounds
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Figure 4: Stage 1 Length for 2-Stage Bandit Figure 5: Relative Efficiency of Sub-Optimal Rules

in Cheng (1996) suggest a first stage size that is consigelaigler than is needed. In fact, it is interesting to note
that L, the number used in stage one when sampling optimally, te qubit smaller thark., the number assigned
merely toP; of stage one by the upper bound rule. The optimal equal dltwcarocedure, however, selects first
stage sizes that are very similar to those called for by thienaprule. The results in Figure 4 are typical of those
obtained using a variety of different prior parameter canfigions. In Figure 5, the relative efficiencies of the
values of the upper bound and optimal equal allocation mieshown. The efficiencies are taken relative to the the
optimal 2-stage strategy for this problem. Note that theltesre better when using optimal equal allocation than
when using the upper bound rule. Note also how well the optagaal allocation procedure performs compared to
the fully optimal strategy for this problem. The best equication strategy was computationally determined by
Canner in 1970. Thus, for all practical purposes, an extedielution to versions of this problem were given nearly
30 years ago. Even so, one couldn’t ascertain this withouhbahe fully optimal procedure.

Another point to consider is that, while the calculation®itain optimal stage sizes for the present problem is
quite trivial, good analytic solutions for the problem atil being sought a generation later. For example, Cheng,
Su and Berry (1998) give a bound that improves on the one im@(E996).

4.2 2-Stage Bandit with Cost and Random Total Sample Size

In this section, we address extensions of the example indde¢tl in which we allow the total sample size,to
be a random variable, and we add a eoper observation for the first stage. This illustrates the tlaat variations
such as optional stopping are not difficult to incorporate the basic few-stage algorithms in Section 3.

When a basic two-stage procedure is applied in a cliniciihggthe first stage is thought to represent a controlled
clinical trial. The end result the first stage affects theiglen as to which of the two treatments is superior and is to
be used in the second stage. Whether the second stage iscbbfirendom length, it affects the total length of the
trial, and there are important questions that involve taabth. In particular, there has been considerable digmuss
in the literature addressing the tradeoff relationshipveen the length of a clinical trial and the patient horizoe. (i
all patients who will need treatment). (See Anscombe (1988jitage (1985), Bather (1985), Colton (1965), and
Simon (1977).) For example, it has been pointed out thatdta sample size of a trial could/should incorporate
rough estimates of the patient horizon, the rate of intridocof new therapies, the magnitude of the anticipated
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improvement in the ongoing trial and so forth.
Clearly, there are numerous ways to model the such concedtha model chosen here is simply an illustration.
First suppose that an investigator believes that if thethesapy has a low success rate, then new therapies are likely
to be proposed at a faster rate than they would be if the préserapy is already quite good. One can model
this simply by assuming that the patient horizon is an ingiregpfunction of the success probability of the superior
treatment.
Let the total length of the trial, range between
two specified values; < n», and define the patient 2-AB with Cost: Length 1 of 2-Stage vs. Cost
horizon to ben(p*) = ny +p*(n2 —n1), wherep* de- n,=100 & n,=500
notes the posterior estimate of the treatment declared
superior. (Note that this imposes a debatable upper o0
bound on the horizon for this problem.) Then, the re- | . T Bl Bl
ward function to be optimized is A 4 Be(L1);Be(1D)

E[pi-Lii+p2-Lig—c-Li+p*-(n(p*)—L1)], (1)
where p* = p*(L1) = max{pi(L11),p2(L12)},
andp;(L1;) denotes the posterior estimateygf i =
1,2 based onl; observations. Note that the reward . 4

function is quadratic irp*. The expectation in (1) is . . .
taken with respect to the Bayesian model in whigh 0
and p, are independent random variables and, con- \ \ \ \ \ \
ditional on this, the experimental observations are
Bernoulli random variables with success ratgsor

po. Although even this simple model may pose inter- _ o
esting analytical challenges, it is quite straightforward19ure 6: 2-Stage 2-Armed Bandit with Cost per Observa-

to optimize computationally. tion and Variable Sample Size

We tested this model for several parameter con-
figurations. In Figure 6, one sees the exponential-like yléeal{, the length of the first stage, as the cost per
observation in the first stage increases from 0 to 5. Figureogigies a comparison of this behavior for two prior
parameter configurations givenn = 100 andny = 500 in each case. Using uniform priors, we find tiatvaries
from 4 to 38. There is a corresponding (unshown) variatiorEim|, the expected total sample size, which varies
from 349 to 363. In the second case, we take the priors Bdié, 1) and Be(1,4). Here, the range ak, is larger,

2 < L1 < 60, and the range of the sample size varies from 300 to 310. Imdagtes, most of the drop in sample
size occurs when the cost per observation is betwesrd 1.

These results were for a specific model, but many other madelbe optimized with similar ease. In particular,
the program used to determine the above results is suitabknfy model in which the expected patient horizon is
determined by the endpoint of the initial stage. One canedsity add costs and variable patient horizons to designs
with more stages.

20

Length of Stage 1

Cost per Observation

4.3 2-and 3-Stage Nonlinear Estimation

In Sections 4.1 and 4.2, we discussed a 2-stage model in weckllocations within the second stage have a trivial
form, i.e., all observations in the second stage are taken & single population. Here we evaluate a 2-stage design
that takes better advantage of the few-stage algorithmguarEi3 to adjust the allocation proportions in the second
stage as well as in the first.

The problem we consider is that of minimizing the mean sgua&meor when estimating the product of the
success probabilities of two independent Bernoulli pajuta. Here again, the success probabilities are modeled
as independent beta random variables. This problem hagafiphs in systems reliability and also in estimating



area. Note that in nonlinear problems of this nature, itjpsdglly the case that when sampling equally from the two
populations one loses considerable efficiency. If, howewee samples differentially, using merely an optimal 1-
stage design, then the efficiency can be substantiallyasestand will continue to increase as the number of stages
grows. Several good allocation strategies for versione®@product of means problem have been discussed by Page
(1985, 1990, 1995). Also, for the more general problem afredtng any polynomial function of two means, a
variety of allocation rules, including the best fixed alltioa rule, are compared with the optimal fully sequential
strategy in Hardwick and Stout (1996).

While 2-stage sampling rules are not evaluated in Hardwiak &tout (1996), asymptotic solutions for the 2-
stage product of means problem have been proposed in Ndi#@)1Rekab (1992) and Zheng, Seila and Sriram
(1995). In this section, we discuss how the optimal 2-stagequlure relates to the asymptotics suggested by these
authors.

Rekab (1992) proposes that the length of the first stagebe such that

lim & =0and lim L; = oo.
n—oo n n—o00

This suggestion concurs with the literature on 2-stagegdssbut is of scant use in determining an optimal or
necessarily good, for any specificn. Further, it does not predict the order of growth.

More specific asymptotic guidelines were suggested in N(880) and Zheng, Seila and Sriram (1995). In
both articles, the authors take a frequentist approacho®uaiformulation is Bayesian, so exact comparisons are not
appropriate. However, for moderatethe design in which both prior distributions are taken taubdorm provides
an acceptable basis for comparison.

Noble indicates that the rate of growth of the first stage insta®e design for this problem should ®é,/n)

with upper and lower bounds given by
n n
W/ <Ly </
do109 — L < 20109 2)

for o; = p;(1 — p;), © = 1,2. Applying these bounds, we find, for example, that whea 100,

5, then(10 < Ly < 14)

.25, then(12 < L; < 16)
if P1 =DpP2 =
.9, then(16 < L; < 24).

Later, Zheng, Seila and Sriram (1995) provided an approkamadhat suggests thdt; = 2n“ for « in the range
(.5,(1 —In(2)/1In(n)), i.e.,2/n < Ly < n.

In Figure 7, the optimal size first stage length for the umifarase is plotted for sample sizes ranging from 10
through 1000. These stage lengths closely follow thellig,(L;) = —0.016 + 0.817 log;,(n). For this range of
sample sizes, then, the optimal stage size growsdike’%'7).

These optimal solutions were first reported in Hardwick arui§1995). However, independently, Zheng, Seila
and Sriram (1995), used simulation to search for a valuetbht minimized their approximated mean-squared error.
They concluded that a good value fois 0.8 — (In2/(21nn), i.e., thatL; = /2n°8. Forn = 100, this gives a first
stage length of.; = 56.

In the uniform case, we find that the optimal first stage siZe is- 42, a value significantly larger than Noble’s
approximations and somewhat less than that of Zheng, Sull&dram. Note, however, that Noble’s final estimator
does not use information from the first stage, which paytiaticounts for his suggestion of shorter first stages.

In Figure 8 we have plotted the efficiency of the optimal 1-ad 3-stage designs for this problem as a function
of the total sample size;. We know of no published guidelines for the selection of stages for three stage
allocation. In Figure 8, efficiency is measured relativehi optimal fully sequential design. One can see that even
the optimal 1-stage design (also known aslibst fixed desigris not terribly inefficient. It's also of interest to note
how extremely efficient both the 2- and 3-stage designs ahe. difference in efficiency between the two designs
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Figure 7: Comparison of Optimal vs. Predicted Growthigure 8: Efficiency of Optimal 1-, 2-, & 3-Stage Proce-
of Ly in 2-Stage Experiment dures Relative to Fully Sequential

is minimal provided that one uses reasonable prior paramsptifications fop; andps. As we see in the next
section, there do, however, exist situations in which ogtigistage designs fare much worse than optimal 3-stage
designs.

Finally, Figure 9 shows the length of the optimal secondestegya result of the outcome of the first stage, where
the total sample size is 100 and uniform priors are used. thatehe optimal second stage does not have a constant
length, and has non-monotonic behavior.

2nd Stage Length of 3-Stage Design
Uniform Priors; n=100

77/
<7/

Figure 9: Product of Means, 1st Stage Allocation is 15 fohgaapulation



4.4 3-Stage Estimation with Ethical Cost

As noted, the literature on multi-stage designs is not riih wetailed examples of 3-stage allocation procedures.
Typically there are critical design features left unspedifi With the present example, we review the issues most
often addressed in the classical literature on 3-staggesind relate them to the capabilities of the algorithms
described in Section 3.

The focus here is on an estimation problem from Woodroofe ladiwick (1991), in which one seeks to
minimize the risk of estimating the difference in two popida means using a weighted squared error loss plus a
cost per failure. The specific function to be minimized is

n*(p1 —p2 — (p1 — p2))? +n1(1 — p1) +na(1 — pa),

wherep; is a consistent estimator @f, i = 1,2, andn; is the number of observations @7. Problems of this
nature arise, for example, in clinical trials with ethicakts or in destructive industrial testing. In Woodroofe and
Hardwick (1991) the observations in the two populationsramenally distributed. However, the analytic arguments
are essentially the same for the binomial case. This ari@éinterest because it is among the very few that provide
guidelines for the stage sizes of an asymptotically optigatage design. Thus we have a basis for comparison.
Note also that the approach to the estimation problem in Wimdd and Hardwick (1991) is quasi-Bayesian. While
the sequential designs are generated via a Bayesian detligioretic approach, the allocation rules themselves, as
well as the estimators, are independent of the prior digiohs used in the analysis of the integrated risk function
as long as the priors fall within a fairly broad general class

We next describe the allocation procedures used in Wooeraofl Hardwick (1991). Let;(n;p1,p2) be the
sample size fronP; that minimizes the risk function whenis to be the total sample size apgdandp- are known.
That is, if p; andp, were known, then the optimal 1-stage design would be to @#oc] (n; p1,p2) to P;, and
n — nj(n;p1, p2) to Pa. Next, letp;(m) be the maximum likelihood estimator fpf whenm observations have
been taken fronP;, i = 1, 2.

These allocation procedures make use of two positive insggienced,; (n) andLs(n), n > 5, which specify
the lengths of stage 1 and 3, respectively, for a sample $izeloetting Lo(n) = n — Ly1(n) — Ls(n) be the length
of the second stage, these sequences can be arbitrary assltmgy satisfy

Li(n)+ L3(n) <n; Li(n),Ls3(n) areeven;  lim La(n) =1; lim Vi) Ls(n)

n—oo  n n—00 nlogn

=00 3)

To simplify notation, we writel; = L;(n), i = 1,2,3. Recall thatL;; is the number sampled during Stageom
P;.
The sampling goes as follows:
Stage 1:SampleX! from each population (sb1; = Li1s = &t).
Stage 2:SampleLs; more fromP; and L,s more fromPs, where

Li; + Ly; = min {n — L1p — L3, max{L11, nj(L1 + Lo; fﬁ(Ln),f’E(Lu)}} 4)

andLoy =n — Ly — Ly — Loy.
Stage 3:SampleLs; more fromP; and L3, more fromPs, where

L11 + Lot + L3; =min {n — Ly2 + Log, max{Lyy + Loy, ni(n; p1(L11 + Lo1),p2(Li2 + L22)}} (5)

andLsy =n— Ly — Ly — L3q.

We refer to the Bernoulli version of the 3-stage procedusstibed in Woodroofe and Hardwick (1991) as WH
procedures. The WH procedures use a fairly standard teohiig determining allocations. The concept applies to

10



both few-stage and fully sequential designs in which opitilnstage allocations can be derived as long as certain
parameters are specified. (See for example Melfi and Pag8)(8#@ Robbins, Simons and Starr (1967).) The
idea is simply to determine the optimal 1-stage allocatisingiestimators of the unknown parameters, updating the
estimators before each new allocation decision is madeerGlve decision about the best allocation to be used for
the entire experiment, one subtracts the allocations #nat hlready occurred to determine the allocation(s) now to
be made. If the estimators are consistent, this sequemtiaégs is generally good enough to guarantee asymptotic
optimality.

Of interest here are the performance differences betweephtedures and fully optimized 3-stage procedures.
Note first of all that WH procedures require equal allocafiorthe first stage. This can substantially reduce the
efficiency of a design when there is a large discrepancy leiwiee population success rates. Next, note that WH
procedures are actually a class of procedures, and that aseahoose a member of the class by selecting the
stage sizes for the experiment in advance. The only infoomate have to help us do this is provided in (3), and
this means that the efficiency of these procedures can vamy lfreing highly efficient to being not very good. To
gain a better understanding of how these designs vary inipeagve developed an algorithm to optimize the WH
procedures and to evaluate them for arbitrary stage sizas itgput by the user.

In general, we found that optimal WH procedures perform vegll compared with optimal 3-stage procedures.
Still, without the algorithm that provides an optimal WH pealure, one may have difficulty determining appropriate
stage sizes using only the information in (3). Furthermone would not be able to assess the efficiency of any WH
procedure if one could not determine the fully optimal 3starocedure.

As an example, consider a case in which there is
significant disparity between the prior estimates of the

population success probabilitiegs andp,. Figure 10 Design Type L, | E(L2) | E(L3) | Efficiency
displays the stage sizes of four different designs for the Optimal 3-Stage| 33 4 13| 0.9994
case in whichn = 50 and the beta prior parameters are] Optimal WH 6 40 4| 0.9990
p1 ~ Be(1,10) andpy ~ Be(10,1). The last column | Optimal 2-Stage| 38 12 — 1 0.997
of Figure 10 gives the efficiency, of each design taken [\WH using guesd 34 4 12 0.790

relative to an optimal fully sequential design. As ex-
pected, the fully optimal 3-stage procedure is virtually
fully efficient with e = 0.9994. The optimal WH pro- Figure 10: Efficiency of Desighs Compared to Fully Se-
cedure, which specifies very different stage sizes, is alsguential Designp, ~ Be(1,10); py ~ Be(10,1) and
extremely good witle = 0.9990. Note, however that if 7 = 90

we use a WH procedure guided by, say, the stage sizes
used in the optimal 3-stage procedure, we obtain an ef-

ficiency of onlye = 0.790. As it happens, even a good 2-stage procedure outperformsi gpndtedure based

on guessing the stage sizes using only (3). In particularofftimal 2-stage procedure for this problem is 0.997
efficient.

Despite the results from the previous example, WH procedgemerally seem to be quite robust with respect
to departures from the optimal WH stage sizes. This sugdleatgshe way the allocations are adapted within the
second and third stages may be more important than the atagd lengths themselves. Another point of interest
is that WH procedures don't depend on information in therpdistributions. In one sense this is positive because
it allows for the intended frequentist interpretationstod tlata. It also suggests robustness if one takes a Bayesian
interpretation. Recall, however, that this type of builtrbbustness leads only to asymptotic optimality. As we
saw in the previous example, where the priors were discteplam lack of inclusion of prior information in the
determination of the sampling strategy had the potentiakt@musly reduce design efficiency. On the other hand, if
the priors forp; andp, are approximately the same, then most WH procedures wilidgigyhefficient since equal
allocation itself is nearly optimal.

To provide some insight as to how big optimal stage sizediemroblem are, Figure 11 givés (n), E [La(n)]
andE [L3(n)] for sample sizes ranging between 10 and 100. Uniform priggsused. Note that, as was seen in
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Figure 11: Optimal Stage Sizes in 3-Stage Experiment, Wmifériors

Section 4.3, the optimal Stage 1 sizes are generally lahgar those suggested in the literature, whereas for the
problem in Section 4.1, we found that optimal Stage 1 size® fe& smaller than suggested in the literature. There
doesn'’t appear to be a general rule, and this emphasizes#tktta be able to calculate optimal stage sizes for
various different procedures.

5 Final Remarks

We have shown that it is possible to fully optimize few-stajecation designs for useful sample sizes. Further,
the results of these optimizations indicate that asymptpiidelines may be quite misleading for reasonable sample
sizes, and may not even predict true growth rates. Thesks,eshich we found unexpectedly, are not likely to have
been uncovered without the ability to perform exact cakiohe for sample sizes of interest.

The few-stage algorithms developed here can be applied tdeavariety of problems, with flexible optimization
goals, stopping rules, etc. Additional points being pudsmelude sensitivity analysis of few-stage rules, hargllin
multiple populations, modeling censoring, allowing nmuiki endpoints, allowing additional constraints, and incor
porating covariates.

As part of an ongoing project, we are using the algorithmemikiere, combined with graphical approaches,
to visualize aspects of the optimal rules. We hope to acheeletter understanding of the structure of few-stage
optimal rules; and, more generally, to gain insight intostrecture of good adaptive rules. There are both practical
and statistical reasons for this effort. Investigatorsadten uncomfortable utilizing adaptive allocation scherfar
which they have no intuition, such as those described herteatle optimized by a computer. Users have a better
understanding of, and greater affinity for, simple fixed @dkion schemes. However, if a user could explore an
adaptive design and gain a better understanding of theidesig makes, then they might gain enough confidence
to utilize the design.

As for the statistical aspects, we believe that explorirgpége rules for moderate sample sizes can help suggest
analyses and designs for much larger sizes. Thus, we hopesfarergistic interplay between analysis, computation,
and visualization. For example, for the product of meandlpra, plots of the efficiency of a 2-stage rule as
a function of L1; and L, show that this is usually, although not always, a unimodalase (Beta priors with
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parameters less than 1, for example, can cause it to be nodkitn In cases where one could prove a priori that it
is unimodal, one could drastically reduce the number ofutations needed for the optimal first stage, and hence
could optimize far larger problems.

As another example, the data in Figures 7 and 11 suggestigxpbwth rates that are consistent through a wide
range of sample sizes. This leads one to consider apprapphiiblems with large sample sizes by extrapolating
the optimal allocations computed for moderate sample sigahaps coupled with hill-climbing approaches, as in
preceding paragraph, to improve the initial extrapolatidbhus explicit constructions, rather than vague guidsline
are obtained for producing near-optimal allocation scheriée are presently pursuing this approach. Extrapolation
techniques can compliment analytical approaches to gittertiasight and guidance for large problems.
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A Basic Algorithm

The algorithm shown in 3 is relatively straightforward, beduires excessive time and space. Its requirements make
it impractical for useful sample sizes, so to achieve exptitrozations and evaluations one needs to rearrange the
calculations to eliminate redundancy and maximize reuspace.

A.1 Time/Space Reductions

To reduce the time per stage, one reuses calculations amersggtes. To do so, note that at any state
foro; > 1: Ry(01,02;v) = p1(1,1;v) - Rg(01—1,02;v+s1) + p1(0, 1;v) - Ry(01—1, 025 v+11),

forog > 1: Ri(01,09;v) = pa(1, 1;v) - Re(01,02—1;v+s2) + p2(0, 1;v) - Ri(01,00—1;v+1).

Thus, if one computes and storRg(o;, o2; v) for all oy, 02, andv, there is a natural way to reduce the calculation
time to©(n") per stage. First, compute the values for all statesth |v| = n, then compute them for all states with
lv] = n — 1, and so on. Since there aggn’) options to be evaluated, this time is optimal unless one eterchine
that not all options need be evaluated.

However, if one proceeds in this way, the space requirenvenisid also bed (n%), and even the common trick
of writing values for|v| = m on top of the values originally stored fos| = m + 1 would only reduce the space
to ©(n%). To reduce space t©(n*), the calculation order can be rearranged to that given inrEig2. Using
this order, one need only store arrays corresponding;1e), R:(o1,0;-) for a fixed value ofo;, and R;(01, 02; -)
for fixed values ofo; ando,. Ry(01,0;-) is written on top ofR; (01 —1,0;-), and R;(o1, 09; -) is written on top of
Rt(ol, 02—1; )

Note that one must also keep track of the values;aéindos for which the minimumgR; (v) is obtained. This
requires a constant amount of storage per state, and herera® (n*) space per stage.
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A2 Final and Initial Stages {determine optimal decisions for stagje

The final stage is simpler than the general case, sinder all statess withk —1+1 < |v| <n—t—1,
the stage length is fixed and the problem of determin- initialize R} (v) = 0o

ing the optimal final allocation from a given state iSfor |l t_endink — ¢+ 1,...,n — ¢+ 1

the well-known optimal fixed-allocation problemwith  for o, — 0to t_end — k + ¢

a fixed sample size. This can often be algebraically  for all statesy with |v| = st_end — o

simplified to take only9(1) time per state, 08 (n*) if 01 # 0 then
overall, a point which is pursued in Appendix B. For computeR;(o1,0;v) usingR; (o1 —1,0;-)
those cases where no algebraic simplification is possi- R} (v) = min{ R} (v), R¢(01,0;v)}
ble, the ordering in Figure 12 can be used to keep the else{o; = 0}
time atO®(n?). R:(0,0,v) = R;_{(v)

The initial stage is also simpler than the mid- foroo =1tot.end —k+1t—o;
stages since evaluation is required only at state for all states withv| = t_end — 01 — 09
(0,0,0,0). Thus the straightforward implementation computeRy (o1, 02;v) UsingR;(01,02—1;+)
takes only®(n*) time. If there is only a single stage, R} (v) = min{ R} (v), R;(01,02;v)}
then there are onl@(n) options, needing (n?) total

time Figure 12: Improved Mid-stage Evaluation Order

Using these reductions gives the results in Theo-
rem 3.1. All of the results follow directly from the
above algorithms and observations, with the possible aiaepf the space analysis fér > 3. In the preceding
comments, it may have seemed that an array of@ize') was needed for each intermediate stage. However, since
each stage is evaluated using only the results from the diregstage, one never needs more than 2 such arrays at
any one time. Hence one can alternate back and forth betweesrtays, so that the space does not increasehwith

While the space required to determine the optimal desigs doecontinue to grow fok > 3, additional space
may be needed to store the decisions of the optimal desighatd can be implemented or some post analysis can
be performed. It is a common occurrence in dynamic programgrtfiat storing the decisions increases the space,
because they cannot be written on top of each other. One rsaynasthat one needs to store only one decision per
state, which would imply that onl(n?*) space is needed, but fér> 4, there is the possibility that a given state
could be reached at the end of more than one stage, and hemewaid need to know how to optimally proceed
for each different stage. While this does not normally ocewg have not been able to rule out the possibility, and
hence the space may increasettkn*). One can easily utilize disk storage for the decisions,esthey are not
referenced in the algorithm.

B Algorithmic Refinements

The base algorithm in Section 3 is quite general, and assnmepecial properties of the objective function nor of
the prior distributions. The algorithm also allows for ardiy allocation within thek-stage constraint. However,

in many situations significant simplifications are possilaled these may dramatically reduce the time or space
required. Some of these are explored in this section. TheAppendix B.3, we give an example of a design
restriction that complicates rather than simplifies th@atgm’s complexity.

B.1 Analytical 1-stage Determination

One common simplification arises when extra informationvigilable about the optimal 1-stage allocation. For
example, for a specific allocation, it may be possible towitallly determine its value, instead of explicitly summin
over all of the possible outcomes. Even better, one may hetatdnalytically determine the value and form of the
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optimal 1-stage design, instead of trying all possiblecatmns. Another special scenario is when it is known that
the last stage must sample from a single arm: if the value eafetermined analytically then it is a special case of
the above, while otherwise there are further improvemeossiple. All of these simplify the optimization of 1- and
2-stage designs, although there is no improvement for desifj3 or more stages.

We assume that each of these analytic calculations can bputechin a fixed amount of time, independent
of n. Incorporating such simplifications into the final stagecakdtions of the base algorithm yields the following
reductions. For three or more stages no reductions occur.

Theorem B.1 The optimal-stage allocation for an experiment @fobservations of two Bernoulli populations can
be determined in

O(1) time andO(1) space, it =1 and ©O(n*) time andO(1) space, ifk = 2.

if the optimal final stage allocation is given by an analytkpeession.
If the value of any specific final allocation is given by an gtialexpression, but it is not known how to analyti-
cally select the best, then the optimal allocation can bemeined in

O(n) time andO(1) space, it =1 and ©O(n%) time andO(1) space, ifk = 2.

If it is known that the final stage must sample from a singleutatjon, but it is not known how to analytically
evaluate the final stage, then the optimal allocation candteminined in

O(n) time andO(1) space, it =1 and ©O(n?) time andO(n?) space, ifk = 2.

Proof: The time and space changes from Theorem 3.1 are dquatghdéforward fork = 1. Fork = 2, in the first
case one merely needs to evaluateeHlh?) possible allocations for the first stage, takingn?) time per allocation
to evaluate allD(n?) possible outcomes. In the second case it will take an &x{rg) time per outcome. In both
cases, no special efforts are needed to reuse calculasioms, extra space is needed to store intermediate results.
For the third case, witlk = 2, for each leveln one can determine the value of the final stage allocatingall t
population 1, and the value of allocating all to populatigrir@m these values for leveh + 1. These can then be
used to determine all first stage allocations of size O
Note that such simplifications were utilized in the caldolas for the examples in Sections 4.1, 4.2 and 4.3.
In Sections 4.1 and 4.2, the necessary calculations are gmiightforward. For the problem in Section 4.3, the
relevant algebraic manipulations are in Hardwick and Stb996).

B.2 Stages of Bounded Length

Another significant improvement is possible when it can baven that fewer alternatives need to be evaluated
because the length of a stage is bounded. For example, ikitden that the last stage must start by th&
observation, withm < n, then the earlier stages need only be investigated up thraygather than up through.

An example of an a priori bound on stage length appears indpe¢tl. The explicit bounds provided in Cheng
(1996) and Cheng, Su and Berry (1998) show that the first sthg@-stage design is of leng&(,/n). Thus there
are only©(n) options for the first stage, each having oflyn) outcomes. Since the final stage can be determined
analytically, the time to optimize a 2-stage design is reduo only© (n?).

The program used for Section 4.1 also incorporated a seeamthiue for reducing the first stage size, based
on curtailment. An upper bountl; on the per-observation outcome of the second stage wasietitay integrating
the maximum ofp; andp- over the joint distribution of the two populations, and ampepboundB; on the per-
observation outcome of the first stage is the larger of thegrar means. Note thaBy, > B;. First stage options
were evaluated fof.; = 1,2, ... Each time a better total valué was found, it was used to create a smaller upper
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boundm for the first stage. This is based on the observation/ithatust satisfym - By + (n —m) - By > V. The
largerV is, the smallern can be.

Curtailment techniques were also used in Section 4.2. esetproblems, the bounds on the first stage dramati-
cally increased the range affor which the problem can be fully optimized.

B.3 Fixed Stage Sizes

There are t\/\{o different.ways in which designs With{lnitialize R array
fixed stagg sizes can arise. Ir.l one case the stageIS|z|(_e§r all states) with [v| = n,
are specified in advance, while in the other the sizes determineR) (v)
are not specified.

If the stage lengths have been fixed, then the opiEvaluate staggs
timization problem is simplified. For example, if a 2- €@l evall,n)
stage allocation has a specified first stage lergth
then there are only9(L,) first-stage options to be
evaluated, and onl®(L3) possible starts for the sec-
pnd stage. If the Iast. stage can be optimized analyt- R,,(0) = weighted sum o, _,(v),
ically, then the total time can be reduced@gL3). for [v] = t_last
Slml|§r reductlon§ occur fok-stage allocations with else{t < k!
specified stage sizes. for all v with k—t < Jv| < ¢_last

For a generalk-stage allocation with specified determineR; (v) as in Figure 12,
stage sizes, using the techniques of Section 3, each  ysingR: | (-) for states of size_last.
state can be involved in the computation of at most
n different options. Fok > 3 this reduces the total
time to©(n®). Comparing this to the values in Theo-
rem 3.1, one sees that not only has a facton been Figure 13: Optimal Fixed Stage Allocation
eliminated, but so has the factor lof

When the stage sizes are fixed, but their size is not
specified in advance, the local optimality principles thaderlie the dynamic programming algorithms in Section 3
do not apply. It appears that the only way to obtain the oftstege sizes is to try all possible sizes, and for each
choice determine the optimal allocation within each stage.

There arg(," ) choices of stage sizes, which would seem to imply that

e ((k:) -n5> =0 (k- 1))

time is required (using the previous result about fixed sties). This can be reduced to

e <<1£2> -n5> =0 (n"+?/(k - 2)!)

as follows. The main induction step, as in Section 3, is overstages, and is again done in reverse order. Suppose
that specific stage lengths have been chosen for stagéds . . k, and thatR; _,  , (v) denotes the value of starting
staget at statev and proceeding optimally, given these stage lengths. Therdamps through each possible stage
length for stage. For each value, one computg$_, (v) and recursively repeats the process for stagé. When

the process reaches the second stage, this is now the stghdtage problem, solvable #(n%) time. Note that

the 2-stage problem can be viewed as the same process, hdhest stage only evaluaté®, (0). This algorithm

is outlined in Figure 13. It is presented recursively, but ba converted to a non-recursive implementation in a
straightforward manner.

{determineR;(v) for k—t < |v| < t_last}
procedure evat, t_last)
ift =~k

for s_last = k—tton—k+t+1
call evalt+1, s_last)
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The primary difference between this algorithm and the on8antion 3 is that here, stageepeatedly calls
staget — 1 within a loop, rather than calling it only once. This caudes multiplicative effect ol(k,’_‘2) in the time
analysis. It may appear that because one must return to stdtjév) needs to be saved, which would mean the
space requirements would increasedtgn*). However, by looping through the stage lengths in increpsider,
then stage — 1 can use the initial part of the array and not overwrite pogifrom stage that are needed for later
iterations. Thus the space requirements renggin®).

In summary, one has the following:

Theorem B.2 The optimalk-stage allocation for an experiment efobservations from 2 Bernoulli populations, in
which the stage sizes must be fixed, can be determined in

e O(n?) time andO(1) space, ifk = 1,
e O(n3) time andO(n?) space, ifk = 2,
e O(nd) time andO(n?) space, ifk > 3,
if the stage sizes have been fixed in advance, and in
e O(n?) time andO(1) space, ifk = 1,
e O(n%) time andO(n?) space, ifk = 2,
o O(nf3/(k — 2)!) time andO(n*) space, ik > 3

if the stage sizes must be determined.
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