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Abstract

Adaptive designs are effective mechanisms for flexiblycatog experimental resources. In clinical
trials particularly, such designs allow researchers tarzé short and long term goals. Unfortunatélity
sequential strategies require outcomes from all previdasadions prior to the next allocation. This can
prolong an experiment unduly. As a result, we seek desigmadalels that specifically incorporate delays.

We utilize a delay model in which patients arrive accordiogatPoisson process and their response
times are exponential. We examine three designs with arogygds minimizing patient losses: a delayed
two armed bandit rule which is optimal for the model and ofdjecof interest; a newly proposed hyperopic
rule; and a randomized play-the-winner rule. The resultsvstmat, except when the delay rate is several
orders of magnitude different than the patient arrival,réite delayed response bandit is nearly as efficient
as the immediate response bandit. The delayed hyperopgndaso performs extremely well throughout
the range of delays, despite the fact that the rate of delagtisne of its design parameters. The delayed
randomized play-the-winner rule is far less efficient thinez of the other methods.

Keywords and phrases. optimal allocation, two-arm bandit, sequential samplhgsign of experiments,
clinical trial, dynamic programming, hyperopic

1 Introduction

Adaptive or sequential designs take advantage of accranfogmation to optimize experimental objectives.
Such designs have long been proposed as models for cliriedal tVhile the primary goal for a trial may
be to evaluate treatment options with the intention of imprg treatment for patients who come after the
experiment, the well-being of the patients within the stiglglso an important consideration. Adaptive
designs address this tradeoff far better than do classicad fllocation designs, and a good adaptive
design requires fewer experimental resources (includaigpts) to achieve the same statistical goals as a
fixed design.

Unfortunately, adaptive designs often possess featuagsrhibit their use. In particular, the ethical
guestions posed by adaptive versus fixed sample designsmrewersial and complex. Certainly, there
is no ethically “correct” viewpoint. However, we favor theéeia of providing investigators with flexible
options so that they can choose a statistical design apatejo their own setting.

Another difficulty with adaptive methods is that statistiaaalyses of data arising from such designs
is generally more complicated than it is for fixed designsadEsolutions, in particular, command extreme



computer resources and complex algorithms which have @dgntly begun to be available. We tackle
that problem here with refined parallel algorithms detaileéiardwick et al. (1999) and Oehmke et al.
(2001).

A third concern is the fact that fully sequential designauiszjall earlier responses to be in hand before
allocating the next patient. Short of staged designs, wbahdiminish the impact of delayed responses,
there is little in the literature relating to this problempegifically, we know of no non-trivial models
incorporating delayed responses for which exactly optmdalptive designs have been obtained.

In this paper, we seek to optimize an objective function fpr@blem in which there are two popula-
tions. The responses, which may be delayed, are indepeBdemulli random variables. Patient response
times follow independent exponential distributions defieg on their treatment assignment. We impose
a delay structure in which patients arrive via a Poissongs®c We assume that the arrival rate and the
mean response times are known.

In our examples, the objective function is to maximize expeg@atient successes during the exper-
iment. This expectation is taken with respect to a Bayesiadahwith independent beta priors on the
success probabilities of the two arms. Given this, it isoaable to model the problem as a 2-armed ban-
dit (2AB) with delayed response. Recall that the objectiva bandit problem is to allocate resources to
different experimental “arms” in such a way that the totaline from the experiment is optimized. In this
case, the return or objective corresponds to patient sseses

There has been some work done on the related problem of nmmgmpatient survival times in a 1-
armed bandit (LAB) model. In the 1AB there are actually twmsrbut the attributes of one of them are
completely known. Eick (1988) addresses the extent to whedmetric response delays affect standard
behavioral characteristics of the 1AB, where the surviedé rof one arm is known and the goal is to
maximize total survival time by allocating patients to eitlthe “known” or unknown therapy. Some of
these results have been extended and generalized by Wab@).(2Zantiyaswasdikul (1992) examines a
1AB with single covariate model where the response may bayddl up toM stages, with a different
known probability of incurring a delay of each length m = 1,..., M.

There are a couple of other relevant scenarios in which ddlagsponse designs have been studied
for binomial populations. In each case, the ethical goalmiinaizing patient successes is a key design
consideration. Primarily, the focus has been on urn modetsticularly popular are delayed response
variations of the randomized play-the-winner rule (RPW\i and Durham (1978). See Section 3 for
details. Douke (1994) and Langenberg and Srinivasan (1882 shown interest in delayed response
versions of the well known two-stage design of Colton (196Bhe newly proposed hyperopic design
described in Section 4 also utilizes two-stage concepts.

In the next section we develop models for the delayed regpbaasdit and present the requisite dy-
namic programming equations. One natural dynamic progliagapproach is computationally difficult.
This is described in Appendix A. A second approach, which gseramenable to computer implemen-
tation, is outlined in Appendix B. In Sections 3 and 4 we diggca delayed RPW rule and a delayed
hyperopic rule, respectively. In Section 5 we compare thaydel versions of the three rules not only with
each other but also with the non-delayed versions of eacktheast section, Section 6, we discuss our
findings.

2 Modelswith Exponential Delay

Suppose that patients arrive according to a Poisson pradtssate \;. As they arrive, they are assigned
either to arm (treatment) 1 or 2. Patient responses are BHirmoth success rateg; and m. Prior



distributions on ther; are Beg;,b;), i = 1,2, respectively. The response time for a patient on arm
exponential with mean/)\;, i = 1,2. Response times are independent themselves and indepafden
arrival times and of actual responses. The experiment Wakate a total of, patients. For an arry we
use—1 to denote the other arm, i.e., afn-«.

If a patient arrival occurs at timg the patient is allocated to arm 1 or 2 based on data collagied
until £. This includes the responses and number of patients atiddateach arm, as well as the priors.
A sufficient statistic at time is (s (t), f1(t), u1(t); sa(t), f2(t), ua(t)), wheres;(t), fi(t) are the number
of successes and failures on afrandw;(t) is the number outstanding on arini = 1,2. Because the
problem is stationary in time, we can drop thaotation. Thus an allocation policy is a function that
depends on the priors amdand mapssi, f1, u1; s2, f2, u2) to {1,2}. Optimal solutions are policies that
are optimized for a given objective function. Since the otije here is to maximize total experimental
patient successes, this problem has the form of a two armadithaith delay. We call this optimization
problem thedelayed 2-armed bandit, D2AB. Note, however, that our approach also applies to moose
other objective functions.

It is well-known that such optimization problems can be edlvia dynamic programming. However,
computational space and time grow exponentially in the remalb arms, and the delay complicates this
further. The state space involves all possible variatidriss&omponents, as long as all are nonnegative
and their sum is no greater than There are thui"gﬁ) = O(nf) states in the D2AB. More generally,

the delayed:-arm bandit will have(™$") states. This is in contrast to ti@&n*) states in the standard

2AB, and the general case ﬁf;fk) states in the standakdarm Bernoulli bandit. In fact, the states in the
D2AB are in a natural 1-1 correspondence with the statesarsténdard 3AB. Here we will concentrate
on the D2AB, although with simple changes the technique$dcbe applied to general delayédarm
bandits. However, such solutions are currently not contjmutally practical wherk > 2 and sample sizes
are> 100.

To apply dynamic programming, one needs to know the ternsiadés, i.e., those states which can be
directly evaluated without recourse to recursion. In thisagion, it is those states for whiehh = us = 0
ands; + fi1 + so + fo = n; i.e., those states for which all patients have been allocated and all of their
responses have been observed. For our primary exampleirng tiy maximize successes, thaue of
a terminal state is simply; + so. Ultimately, our goal is to determine the valué, of the initial state
(0,0,0;0,0,0).

There are various ways to tackle this problem, and findingthatis computationally feasible is a
keystone of the solution. We consider two alternatives — snted to describing characteristics of the
solution and the other to solving the problem computatignéh each case we develop recursive dynamic
programming equations. Let(s;, f;) denote the posterior probability that an observation on awill
be a success, given that successes anf} failures have been observed previously on the arm. Thus,
7TZ'(SZ', fl) ~ Be(ai+si, b2+f2) forl = 1,2.

Approach I:Perhaps the most natural approach is the one in which timaiked by patient arrivals, be-
cause these are the only times when action is taken andateceie needed. In the meantime, outstanding
responses may come in, possibly including that of the patist recently assigned. For the patients
with unobserved outcomes on avmthe number of newly observed successésor failures, f/, before
the next patient arrives must satisfy< s, 0 < f/, ands, + f/ < u;. Thus, by the time the next patient
arrives, the system may have moved to any'ef *) (“%*) different states.

The dynamic programming equations for this approach argepted in Appendix A. Unfortunately,
evaluating these equations requife@§:') time, and thus they are computationally infeasible except f
trivial sample sizes.



Approach II: A second approach marks time leyents, where an event is either a subject arrival or a

response from one of the arms. Because we are using congitinog, we can assume that only one event

occurs at a time. LeP; (u1, u2), Pa(u1,us2), Ps(u1,us) represent the probability that the next event is an

observation on arm 1, an observation on arm 2, or a subjaéeakunespectively. WhileP;, P, and P, are

interrelated, they have a simple form, namely
As

ul)\z
Py ) = d B ) = :
(1, u2) As + up-A1 + us- A a (w1, uz) As + up-A1 + us- A

Let o + y denote stater with component, increased by one. Then, the dynamic programming equation
is as follows.

V(o) = Pi(ur,uz)* [Wl(sl,fl)'v(ff +5 —w) + (=mi(s1,£1)-V(e + fu —ﬁ)]
+Po(uy, uz) * [W2(32,f2)'v(0 + 5 —w) + (1-ma(s2, f2)) V(o + fo - @)}
+Ps(u1,ug) *x max {V (o +uy), V(o +uz)}

Here, the allocation choice is handled in the last term, whithere is a subject arrival then we just
determine to which arm we allocate. Initially this simply ams that the arm has one more unobserved
allocation. The advantage of this approach is that each d&ggiends upon only 6 others, rather than the
O(n*) of Approach I, so the computations can be complete@ (n%) time. While still formidable, this
can be achieved for useful sample sizes, as explained inr&ipp8 and in Oehmke et al. (2001).

Note that when the sample size has been reached then theetmrdf the recurrence is eliminated,
and the formulae foP, and P, are adjusted so tha®; (u1, uz) = u;A;/(u1 A1 + u2A2). Similarly, wheno
is a terminal state, i.e., when all observations have betir@d ¢; + f; + s2 + fo = n), thenV (o) is
the value of the objective function being optimized. In théper,V (o) = s1 + so.

Exact evaluations of arbitrary, sub-optimal allocatiosigas for the present problem are possible via
slight modifications to the algorithm in Appendix B. This iscamplished by replacing theax{V (o +
uy),V(o+uz)} in the recurrence fov (o) with the allocation decision that the design would make.eNot
that this decision may be stochastic.

3 A Randomized Play-the-Winner Rule

One popular ad hoc adaptive rule is the randomized play theevi(RPW) rule which first appeared in
Wei and Durham (1978), and which has subsequently beemadtiin a number of clinical trials. In this
urn model, there are initial balls representing the treatnoptions. These may be thought of as a prior
on success rates; andm,. One starts with an urn containing balls of type: for i = 1,2. Patients are
assigned to arms according to the type of ball drawn at rarfdemmthe urn. Sampling is with replacement,
and balls are added to the urn according to the last patierdfsonse. If the patient response is a success
on armi, then g, balls of type: are placed in the urn. If a failure occurs, thépballs of type—i are
added to the urn. Most often,; = o andj3, = 3y = 1.

One advantage of urn models like RPW is the natural way inkvtiélayed observations can be incor-
porated into the allocation process. When a delayed respamtually comes in, balls of the appropriate
type are added to the urn. Since sampling is with replacena@gtdelay pattern can be accommodated.
We call this design thdelayed RPW rule (DRPW).



Much of the literature on adaptive designs that incorpodati@ayed observations use the DRPW as
the allocation procedure. In Bandyopadhyay and Biswasg) 98e authors consider a slightly altered
version of this rule for a related best selection problenswiis (2003) utilizes regression delay structures
and examines the DRPW’s performance. Rosenberger (1988)dars the DRPW in a discussion paper
on the RPW. There, one relevant remark is that “Exact conipatapreclude delayed response because
of theoretical difficulties, . .”. Exact evaluations of the DRPW appear in Hardwick et al0@0in which
the present exponential delay structure is imposed. Bdi €@02) present asymptotic results relating to
urn composition and the limiting distribution of estimatdor a DRPW design.

4 Adaptive Hyperopic Designs

One way to approach delayed response problems is to utifiopic designs, where a hyperopic design
is one which makes sampling decisions based on the triatHengaddition to the priors. For example,
most 1-stage and 2-stage designs are of this form, in botjudrgist and Bayesian frameworks. This is
in contrast to myopic designs where optimization decisessime only one more observation will occur.
Note that RPW can be viewed as being myopic, while the optsokition of the 2AB is hyperopic.

We create amdaptive hyperopic design, H, as follows:

1. Start with a clas® of (simple) hyperopic designs for immediate responsesekample, one might
use standard 1-stage designs, which use the best fixed ssizgpleile for allocation.

2. As the experiment proceeds, at each state (sq, f1,u1; 2, f2,u2), with m remaining observations
to be assigned, determine the optimal fixed sample deBjgre D for an experiment havingn +
uy + ug observations, subject to the condition that at leasbbservations must be made on arm 1
anduy, must be made on arm 2.

3. If D, would initially allocate more new observations to aitihan to arm-, then Hg) would al-
locate the next observation to aifwhile if D, would allocate equal numbers of new observations
then HE) would randomize the next allocation. In some settings oighhyprefer to increase ran-
domization by allocating the next observation to armith probability proportional to the number
of new observation®, would allocate to it.

When the objective is to maximize successes, the optimidesdesign allocates all observations to
the arm with the highest prior mean; that is, it makes the rityopoice. To encourage exploration, for
D we instead use a simplistic 2-stage design that is invoke@et stater as the experiment proceeds:
let W; (o) be the value of the 2-stage immediate response design irhwimcfirst stage allocatds+ u;
observations to armi and u—; observations to arm-i. In the second stage, it allocates the remaining
n—1—wu —s — f1 —us — so — fo Observations to the arm with the highest posterior mean. If
Wi(o) > W- (o) then we allocate the next observation to dravhile if they are equal then we randomize
between the arms. We use DAH to denote this adaptive hypedasign for delayed responses. Note that
if one arm has no pending observations while the other hay than DAH will tend to sample the former.

One can prove that D is the class of optimal 2-stage designs then the correspgratiaptive hyper-
opic design is asymptotically optimal, and that it is notrapyotically optimal for the restricted 2-stage
designs used here. However, despite the simplicity of teage hyperopic design used at each state, the
sequential updating of the information results in a neapinoal design, even in the presence of delays,
as is shown in Section 5. Restrictiiyto 2-stage designs that add only one observation to the tagés
(rather than considering all possible additions) greatiyuces the computations required at each stage,
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making it more likely to be applied in practice. Simulatiaren be easily used to produce approximate
evaluations of its expected value and operating charatiteyi

Exact evaluations, however, are as complex as those for 24BBince there are stilb(n°) states.
Note that attaining this time is somewhat complicated. Aays design for immediate responses which
allocates an initiab; observations on armhas(o; +1)(02 +1) outcomes at the end of the first stage.
Hence an exact evaluation of an adaptive hyperopic desigchwised a straightforward examination of
all possible 2-stage allocations at each state would @&ke?) total time. Even by restricting to only an
examination of the 2 simplest allocations at each states dsrie here, would také(n®) time in a naive
approach. This can be reducedagn®), but the steps needed to do this are beyond the scope of {hés pa
and will be published elsewhere.

5 Resultsof Comparisons

We have carried out exact analyses of the exponential detalehfior D2AB, DRPW, and DAH. In these
preliminary analyses we take = 100, and for the DRPW take; = ap = 3s = [y = 1. To simplify
comparisons, throughout we take, the patient arrival rate, to be 1, and vary the responss.r&i@ace it
is relative rates which determine the behavior, when= A2 = X one could sef\; = 1/)\ and view the
results as fixing the response rate at 1 and varying the braitea

We look first at base case and best case scenarios. For caivpararposes, we take the best fixed
in advance allocation procedure to be the base case, ieegptimal solution when no responses will
be available until after alh patients have been allocated. To maximize expected s@scese should
allocate all patients to the treatment with the higher etguésuccess rate. We denote the expected number
of successes in the base case ky,£S]. Throughout we only report expected values, not vaeanwor
other distributional information, because the overwhalrsource of variation is the uncertainty built into
the priors.

Resultsfor uniform priors. We initially consider uniform priors on the treatment sigxeatesr; and
o, in Which case all fixed allocations result in the same exggksticcesses. For these priorg,HS] =
n/2.

We encounter the best possible case when all responsessaveth immediately (full information).
In this situation, DRPW is simply the regular RPW and the D2i&Bhe regular 2-armed bandit. DAH
becomes an adaptive hyperopic design which does not seemawvéolieen previously analyzed, and in
future work we will examine adaptive hyperopic designs farous optimization problems. Recall that the
regular 2-armed bandit optimizes the problem of allocatmgiaximize total successes. Letting,FS]
represent expected successes in the best case (i.e., titageed by the regular 2-armed bandit), for our
example we have E;[S] = 64.9. Using the difference J[S] — Ey.s¢[S] as a scale for improvement, we
can think of the values on this scale, (0, 14.9), as repreggttie “extra” successes over the best fixed
allocation of100 observations. We take B(= (Es[S] — Epase[S]) / (Eopt[S] — Evase[S]) to be therelative
improvement over the base case for any allocation réildNote that R§) also depends on and the prior
parameters.

For fixed priors, arrival rate, and response rates, one aam gfat as: — oo, R(D2AB) — 1, R(DAH)
— Cpan, and R(DRPW)— Cprpw, WhereCpapg andCprpw are constants less than one. However,
this asymptotic behavior gives little information about tralues for practical sample sizes, and hence one
needs to determine their behavior computationally. Asbglseen, the asymptotic suboptimality of DAH
is particularly misleading.
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Figure 1: Expected successes for D2AB, DRPW, and DAH:= 1, A\{ = Ao

Tables 1, 2 and 3 contain the expected successes for the I2RBW, and DAH rules, respectively.
Patient response rates, and\,, vary over a grid of values betweé@f—> and10' and the patient arrival
rate, )\, is fixed at 1. Note that, for all rules, whexy = A\, = 107°, E[S]~ 50. When\; = )\, > 10 all
of the rules achieve a number of successes nearly identidhetnumber they achieve in the immediate
response situation. Under these conditions, the D2AB rhieaes E[S]=64.9, and the DAH rule achieves
E[S]=64.7. Note that for the DRPW, E[S] = 57.9, which givesRaaf 0.53. With the immediate response
RPW, we can expect to gain only 7.9 successes as comparezi 1d.thobtained by the optimal 2AB and
the 14.7 for the hyperopic design.

Moving away from the extreme points, consider the case whes A\, = 10~!, one order of mag-
nitude smaller than;. All of the rules can be seen to be quite robust to such detaes) though asymp-
totically there are, on average, nearly 10 patients alkmtaut unobserved. It is only whdoth response
rates are at least three orders of magnitude below the laratethat results begin to degrade seriously.
When\; = A\, = 1073, for example, the relative improvement over the base casieedD2AB and the
DAH is only 0.40, and for the DRPW it is a dismal 0.17. It is alateresting to note that even when
the response rate is only 1/10ahe arrival rate, the D2AB and the DAH do better than the RP\t} wi
immediate responses. Figure 1 illustrates the relativiopaance of the rules when the arrival rate is one
and the response rates vary betwen> and10°.

One conspicuous feature of this figure is the fact that the BAhéarly as good as the D2AB through-
out the entire range. This is particularly interesting luseathe D2AB has the delay as one of its design
parameters while the DAH does not. Hence one can view thengrajgomparing the expected values of a
family of bandit designs, one per delay, to the operatiohalacteristics of a single hyperopic design.

When we consider scenarios in which only one treatment appligs information to the system, we
see interesting behavior. For example, when= A\, = 1 but Ay = 1075, the relative improvement is 0.76
for the D2AB, 0.71 for the DAH, and 0.47 for the DRPW. The D2/ABniow clearly superior to the DAH
and the DRPW. However, the DRPW is interesting here sindg-italue is 89% of that for the undelayed
RPW value. Thus, since the RPW rule starts out so poorlysitrékatively less to lose. Note that with the
D2AB one only loses 24% of the optimal solution while exchglhalf the information.
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| |10 107* 107=* 1072 10! 10° 10!
107° | 50.1

107*]51.2 512

1073 | 55.4 554 558

1072 159.3 594 599 615

107! | 60.9 61.0 616 631 64.1

10° | 613 613 619 635 645 648
108 | 61.3 61.3 620 635 646 64.8 64
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Table 1: D2AB: E[S] as X1, A2) vary,n = 100, A\s = 1, uniform priors

A Ao

| |107% 107* 10=* 1072 10! 10° 10!
10~° | 50.0

107* | 50.2 50.4

1073 | 51.6 517 52.6

1072 | 54.8 548 549 557

10°' | 56,5 56.5 56.5 56.7 57.3

10° | 569 569 569 571 576 57.8
10' | 570 570 570 572 576 57.8 57

.9

Table 2: DRPW: E[S] asXi, A2) vary,n = 100, As = 1, uniform priors

A Ao

! |107% 107* 107* 1072 10~!' 10° 10!
107° | 50.1

107* | 50.7 51.2

1073 | 53.8 54.1 5538

1072|584 585 594 615

107! | 60.3 60.4 612 629 64.0

10° | 60.6 607 616 633 644 64.7
10" | 60.6 60.8 617 63.3 644 647 64

v

Table 3: DAH: E[S] as X1, \o) vary,n = 100, A; = 1, uniform priors



A Ao

| |107% 107* 10=* 1072 10! 10° 10!
10~° | 50.0 50.0 50.2 534 553 557 55
107* | 505 505 50.6 535 553 557 55
1073 | 52.6 52.7 529 544 56.1 56.5 56|
1072|554 555 558 56.8 579 582 58
107! | 56.7 56.7 57.1 582 59.1 59.3 59
10° | 569 570 573 585 594 596 59
10" |56.9 570 573 585 594 59.6 59
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Table 4: D2AB: E[S]asXi, A2) vary,n = 100, A\; = 1
Prior distributions are Be(1,1) and Be(1,1.5).

N | Be(1,1) Be(1,4) Be(d1
100 0.993 0994 0.988
1071 | 0952 0946  0.929
1072 | 0774 0712 0.701
1073 | 0.393 0.304 0.309
1074 | 0.081 0.056 0.055

Table 5: Relative Efficiency for D2AB; = 100, A = Ay = A9, As =1
Both arms have the same prior distribution.

Someresults for alternative priors. We include a couple of examples of how the performance of the
D2AB changes when non-uniform priors are used. First weidens case in which the priors for the
two arms differ. In Table 4, prior distributions en andw, are Be(1,1) and Be(1,1.5), giving arms 1 and
2 prior means of 0.5 and 0.4, respectively. Note first that[E] = 59.6 which is down from 64.9 in the
uniform case. This is a natural result of having one meanlenthlan before. More interesting perhaps is
the asymmetry in the tabulated values. The total expectecksses are reduced more when the response
rates for the inferior arm (as opposed to the better arm)laveming in.

In Table 5 we show the behavior of the D2AB as the responseveates from rapid to extremely
slow. Both arms have the same priors. Note that, while afirprexhibit the same basic behavior, there
are noticeable differences in how well the D2AB does wherrésponse rate is extremely slow, i.e., when
there are very few observations during the trial.

Other differences show up when the non-delayed 2AB is coetbtry the omniscient design which
always allocates to the better arm. For n=100 and Be(1,&jgrihe non-delayed 2AB attains 0.89 of the
improvement that the omniscient design gets, for Be(1,4)t#ins 0.80, and for Be(4,1) it attains 0.84.
Combining this information with the fact that the values eble 5 are relative to the non-delayed 2AB,
not to the omniscient design, one sees that the D2AB doeffisaimly better with uniform priors than
with the others.

One way to view this problem independently from the allaatiules is to examine the expected num-
ber of allocated but unobserved patients when a new patiecation decision must be made. Figure 2
displays this information for various delay rates relatoex patient arrival rate of; = 1. In this figure,
it is assumed that; = A\, = ), and there are separate curvesXoe 1073, 1072, 10~ ! and 1. As noted,
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Figure 2: Expected number of unobserved patients when ngenparrives.
Curve label is\ = A\{ = \q.

when the response delay rate is 1, at any point in time onecexpely a single observation to be delayed,
and the impact on performance is minimal. Once approxim&e@Ipatients have been allocated, there is
a consistent lag of about ten patients wher= 0.1. Connecting this value to the results in Tables 1, 2,
and 3, one finds that a loss of roughly 10% of the total inforomaat the time of allocation of the last
patient (and a significantly higher loss rate for earlieriglens), corresponds to a loss of only about 5%
in terms of the improvement available from each rule.

When the response rate is about 100 times slower than thalaraite, asymptotically there will be
approximately 100 unobserved patients at any point in tifggtunately, for a sample size d60, one is
quite far from this asymptotic behavior, and approximaft&li$s of the responses have been observed by
the time the last allocation decision must be made. Thisvalline D2AB to achieve 77% of the relative
improvement possible.

6 Discussion

Because there has been so little research addressing bptayative designs with delayed responses, or
addressing exact evaluations of general designs with eeélegsponses, there are numerous outstanding
problems in the area. One might argue that exactly optinmgigds aren’t necessary in practice, especially
if good ad hoc options are available. However, without asasicomparison it is difficult to know how
good ad hoc options are, since asymptotic analyses givevagiye information about their behavior for
practical sample sizes. Examining the properties of optiesigns can also lead to the development
and selection of superior sub-optimal alternatives. IntiSect, for example, we propose ad hoc rules
that come far closer to achieving optimal performance th@a@sdhe DRPW rule, which is the rule most
often suggested for delayed response scenarios. Stilkogress further much work needs to be done,
particularly with regard to practical characteristics lufde designs.

Two important concerns are a design’s robustness and they dbiapply it flexibly. Due to space
constraints such analyses could not be undertaken herpréxibus analyses for fully sequential designs
lead one to suspect that the D2AB optimized for one set ofrpatars and then evaluated with respect to
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a second set will be nearly as efficient as the D2AB optimizedHe second set. In future work we will
examine the robustness and operating characteristice @2AB and DAH.

One way to address the model assumptions to improve rolasstnght be to use prior distributions
on the response rate parameters. Also, it would also bemastyehelpful to know the impact of the as-
sumption of exponential response times. Unfortunatelyinoping and evaluating different arrival and
response delay models can involve significantly differeursive equations, and the computational re-
guirements can vary dramatically. For example, if respatedays and arrivals occur at a constant rate,
then the appropriate state space would be the successeailanesfobserved, coupled with the listing, in
order, of the allocations not yet observed. This model®as'2?) states, wherd is the response delay
expressed in terms of the arrival rate. For small to modiesiich as thd = 2 used in Rosenberger (1999),
constant delay models can be optimized exactly, and arpitlesigns can be evaluated exactly, although
we have not undertaken such an evaluation. For ldrdgewever, this is currently infeasible. Certainly
one can test the data’'s goodness of fit to the exponential Inaftée the experiment, but this is not very
helpful if the data fit it poorly. However, there is reason ®i¢ve that a variety of response time models
would benefit from application of the optimal design for tkp@nential model. The resulting designs may
not be optimal, but they will likely be very good.

Recall that one goal of this research is to develop exactiynah, or nearly optimal, delayed response
designs that allow for the use affly objective function, not just the bandit objective of maxiing reward
(successes). The dynamic programming algorithm so desélopAppendix B, and its implementation
on serial and parallel computers, has this capability; arfdture work we will examine the performance
of optimal designs for other objectives.

The adaptive hyperopic design approach is also extremeigrge applicable to arbitrary objectives,
and there are many variations possible for both immediadedafayed responses. An adaptive hyperopic
design based on an asymptotically optimal family of desigadso asymptotically optimal, and will likely
have extremely good performance throughout the range gblessizes. This is an area we are exploring,
especially as regards 2-stage designs.

Finally, to summarize our findings, we have developed varaesigns for a clinical trial model with
Bernoulli observations, exponentially delayed respoimed, and Poisson patient arrival rates. Regarding
optimal designs, we examined two approaches to tacklingptbkelem and discussed the computational
difficulties associated with each, showing that one of thermenable to implementation. We found that
under fairly broad circumstances, in a delayed settingigusie optimal delayed response design gives re-
sults nearly as good as those for the immediate respongggsstien the optimal design is used. We also
found that the most commonly proposed ad hoc rule for suchigms, the DRPW rule, performed signif-
icantly less well than the optimal delayed design, while & ad hoc strategy, the DAH rule, performed
extremely well.
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A Appendix: Equationsfor Approach |
For the patient arrival based approach, at each state (s, f1,u1; s2, f2, ue) there only two options,

namely allocating the new patient to arm 1 or arm 2. If we @teche patient to arr) we can think of
this as initially increasing:; by one. By the time the next patient arrives, some number sif patients
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allocated to arms 1 and 2 will have had their responses. Qalrigito pick the better of the two options.
Thus we are led to the following equation:

uz  J1 J2
V(o) = max { Z Z Z Z (1, @1, J2, u2) @1 (st | 1) ga(sy | j2) -

J1=0j2=05/=0 s5=0
V ((s1+81, fit+i1—s1,u1—j1; s2+ b, fatja—s5, us—Ja)) ,

wr  uz  J1 J2

DDt u do ) au(sh | 1) qa(sh | g2) -

J1=0 j2=0 s/=0 s/=0

V((s1+81, fit+i1—s1,u1—j1; sa+h, fatja—s5, uz—ja)) }

The valuet(j1, u1, j2, uz) represents the probability that exacjlyof the u; outstanding responses occur
from armg prior to the next patient arrivaj; = 0, ..., u;, andg;(s | j) is the probability that exactly of
the j responses on ariare successes,= 0,...,7, ¢ = 1,2, given the priors and observations to date.
Thus,

t(j1, 1, J2, u2) = P (max{Zy, jy), Za, (o)} < 2, < min{ 2y, +1), Zo, (ja+1)})

whereZy, ~ exp(1/X), Zx, ~ exp(1/\;) andZ(;) represents thg/" order statistic.

While thet, ¢1, andg, values can be computed once and stored, there is still theudtiy that deter-
mining V(o) depends oD (n?) other states. Since there a&%n®) states, a straightforward approach to
solving all of the recurrences will grow &(n'?). While it might be possible to reduce this some, it will
likely remain infeasible for useful values of

B Appendix: Computationsfor Approach I|

Due to its high dimensional nature, programming the reawedn Approach Il can be somewhat chal-
lenging. The state space is 6-dimensional, so the mosgtfaiward implementation would use an array
of sizenS. By using the well-known techniques (see Hardwick and S$tb@98), of doing calculations
level by level and overwriting old values this array space lsa reduced t@, and by utilizing the con-
straint thats; + f1 + u1 + s2 + f2 + uo < n and mapping to a 1-dimensional array, this can be further
reduced to("f’) ~ n’/5!. For sample sizes of size 100, however, this is still neatithi¢ of standard
computers. Here we will merely sketch some of the progrargroonsiderations, especially those aspects
that differentiate the D2AB from fully sequential bandits.

As noted above, to reduce the memory needed one should ddatelns level by level, starting at the
terminal states and proceeding towards the beginningngndient’ (0, 0, 0; 0,0, 0) has been determined.
While the state space for the delayed 2-armed bandit is inc@rlespondence with that for the fully
sequential 3-armed bandit, the recurrence for the D2ABgsiy more complex, which complicates the
level by level approach. The D2AB recurrence is of the form

V(o) = f (Vo+8i—0), V(o+Fi=@), Vio+ir), V(o+5-13), V(o+ fo—0), V(o+13) ) (1)
while in the standard 3AB the recurrence is of the form

V(o) = £ (V(0+50),V(0+1). V(0+8). V/(0+ Fo) . V/(0+5). V' (0 + fa) ).
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The most critical difference is that in the D2AB, thg andu, indices are both incremented and decre-
mented. For the standard 3AB, the level is merely the sumettdmponents, and it is easy to see that
each state depends only on the states of level one greatdle thk definition of level will not work for
the D2AB, by defining the level of a state to B + f1 + s2 + f2) + u1 + ug, ONe sees that in equation 1,
the value of a state at levédepends only on states at level 1. Thus the level by level approach can be
used, from leven down to level O.

Unfortunately, this definition of level slightly complics the programming. For a levél> n, one
can have nonnegative valuessf fi, u1, s2, f2, andus which map to level, but do not correspond to a
valid state because they have a sum that exceedferefore one must check both lower bounds, as well
as upper bounds, on the loops. This problem also complittaédadexing when the state space is mapped
into a 1-dimensional array. Overall, the details are carsidly messier than for fully sequential bandits,
but the same basic approaches can be used. Figure 3 prowiletch of a serial algorithm for the D2AB.

Note that one can provide exact analyses of arbitrary deswgnether created for delayed responses or
not, by merely replacing thentax{V (o+u1), V(o+usz)}” component in the recursive calculationéfo)
with the choice that the design would make. Further, one pim@e or evaluate with respect to arbitrary
objectives, not just total successes, by replacivigo)=number of successes &f with the appropriate
value of the new objective function at

The parallel program for the D2AB starts with the serial pemg and then divides the work among
the processors. The: loop cannot be parallelized, but the loops within it can bane@ust also add
communication among the processors so that each processtndl” values it needs from the previous
m + 1 iteration to determine it$/ values for the currentn iteration. See Hardwick et al. (1999) and
for a more detailed discussion of the parallelization pssceAlso, see Oehmke et al. (2001) for more
detailed timing analyses and optimizations to improveasamd parallel performance. Problems as large
asn = 200 have been solved using modest parallel computers, onearthatidely available.
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{5;, fi one success, failure on arm i }

{si, fi, u;: number of successes, failures, unobserved on arm i }
{m;: posterior probability of success on arm i }

{n: sample size }

{m: level }

{V(o): position in 1-dimensional array of value of state ¢ }

{V;: expected value if observation occurs on armi }

forall states o with level(o)=2n {i.e. for all terminal states}
V(o)=number of successes in o

for m = 2n — 1 downto 0 {compute for all states of level m}
for so =0tom/2
for fo =0to (m/2) — s9
fors; =0to (m/2) — SS9 — f2
for fi = max(0,m —n) to (m/2) — sy — fo — s1
fOI’u2:0t0m—2(52—f2—81—f1)

up =m —2(sg — fo— 81— f1) —u
o = (s1, f1,u1; 52, f2, u2) R
Vi = mi(s1, f1)V (048 —1) + (1= (s1, 1))V (0 4+ F— 1)
Vo = ma(se, f2)V(o+52—u3) + (1—ma(s2, f2))V(c+ fa—u2)
if s1 4+ f1+ w1+ s1+ fo+ ue < nthen {more subjects possible}

_ Asmax{V(o+u), V(o +ua)} + uihi Vi + usAa Vo
As + UT AL + ug Ao

V(o)

_ur A Vi +ugAa Vs
O’ p—
ul)\l + UQ)\Q

Figure 3: Outline of serial program for delayed 2-armed litand
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