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Abstract

Adaptive designs are effective mechanisms for flexibly allocating experimental resources. In clinical
trials particularly, such designs allow researchers to balance short and long term goals. Unfortunately,fully
sequential strategies require outcomes from all previous allocations prior to the next allocation. This can
prolong an experiment unduly. As a result, we seek designs for models that specifically incorporate delays.

We utilize a delay model in which patients arrive according to a Poisson process and their response
times are exponential. We examine three designs with an eye towards minimizing patient losses: a delayed
two armed bandit rule which is optimal for the model and objective of interest; a newly proposed hyperopic
rule; and a randomized play-the-winner rule. The results show that, except when the delay rate is several
orders of magnitude different than the patient arrival rate, the delayed response bandit is nearly as efficient
as the immediate response bandit. The delayed hyperopic design also performs extremely well throughout
the range of delays, despite the fact that the rate of delay isnot one of its design parameters. The delayed
randomized play-the-winner rule is far less efficient than either of the other methods.

Keywords and phrases: optimal allocation, two-arm bandit, sequential sampling,design of experiments,
clinical trial, dynamic programming, hyperopic

1 Introduction

Adaptive or sequential designs take advantage of accruing information to optimize experimental objectives.
Such designs have long been proposed as models for clinical trials. While the primary goal for a trial may
be to evaluate treatment options with the intention of improving treatment for patients who come after the
experiment, the well-being of the patients within the studyis also an important consideration. Adaptive
designs address this tradeoff far better than do classical fixed allocation designs, and a good adaptive
design requires fewer experimental resources (including patients) to achieve the same statistical goals as a
fixed design.

Unfortunately, adaptive designs often possess features that inhibit their use. In particular, the ethical
questions posed by adaptive versus fixed sample designs are controversial and complex. Certainly, there
is no ethically “correct” viewpoint. However, we favor the idea of providing investigators with flexible
options so that they can choose a statistical design appropriate to their own setting.

Another difficulty with adaptive methods is that statistical analyses of data arising from such designs
is generally more complicated than it is for fixed designs. Exact solutions, in particular, command extreme



computer resources and complex algorithms which have only recently begun to be available. We tackle
that problem here with refined parallel algorithms detailedin Hardwick et al. (1999) and Oehmke et al.
(2001).

A third concern is the fact that fully sequential designs require all earlier responses to be in hand before
allocating the next patient. Short of staged designs, whichcan diminish the impact of delayed responses,
there is little in the literature relating to this problem. Specifically, we know of no non-trivial models
incorporating delayed responses for which exactly optimaladaptive designs have been obtained.

In this paper, we seek to optimize an objective function for aproblem in which there are two popula-
tions. The responses, which may be delayed, are independentBernoulli random variables. Patient response
times follow independent exponential distributions depending on their treatment assignment. We impose
a delay structure in which patients arrive via a Poisson process. We assume that the arrival rate and the
mean response times are known.

In our examples, the objective function is to maximize expected patient successes during the exper-
iment. This expectation is taken with respect to a Bayesian model with independent beta priors on the
success probabilities of the two arms. Given this, it is reasonable to model the problem as a 2-armed ban-
dit (2AB) with delayed response. Recall that the objective of a bandit problem is to allocate resources to
different experimental “arms” in such a way that the total return from the experiment is optimized. In this
case, the return or objective corresponds to patient successes.

There has been some work done on the related problem of maximizing patient survival times in a 1-
armed bandit (1AB) model. In the 1AB there are actually two arms, but the attributes of one of them are
completely known. Eick (1988) addresses the extent to whichgeometric response delays affect standard
behavioral characteristics of the 1AB, where the survival rate of one arm is known and the goal is to
maximize total survival time by allocating patients to either the “known” or unknown therapy. Some of
these results have been extended and generalized by Wang (2000). Tantiyaswasdikul (1992) examines a
1AB with single covariate model where the response may be delayed up toM stages, with a different
known probability of incurring a delay of each lengthm, m = 1, . . . ,M .

There are a couple of other relevant scenarios in which delayed response designs have been studied
for binomial populations. In each case, the ethical goal of optimizing patient successes is a key design
consideration. Primarily, the focus has been on urn models.Particularly popular are delayed response
variations of the randomized play-the-winner rule (RPW) ofWei and Durham (1978). See Section 3 for
details. Douke (1994) and Langenberg and Srinivasan (1982)have shown interest in delayed response
versions of the well known two-stage design of Colton (1963). The newly proposed hyperopic design
described in Section 4 also utilizes two-stage concepts.

In the next section we develop models for the delayed response bandit and present the requisite dy-
namic programming equations. One natural dynamic programming approach is computationally difficult.
This is described in Appendix A. A second approach, which is more amenable to computer implemen-
tation, is outlined in Appendix B. In Sections 3 and 4 we describe a delayed RPW rule and a delayed
hyperopic rule, respectively. In Section 5 we compare the delayed versions of the three rules not only with
each other but also with the non-delayed versions of each. Inthe last section, Section 6, we discuss our
findings.

2 Models with Exponential Delay

Suppose that patients arrive according to a Poisson processwith rateλs. As they arrive, they are assigned
either to arm (treatment) 1 or 2. Patient responses are Bernoulli with success ratesπ1 and π2. Prior
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distributions on theπi are Be(ai, bi), i = 1, 2, respectively. The response time for a patient on armi is
exponential with mean1/λi, i = 1, 2. Response times are independent themselves and independent of
arrival times and of actual responses. The experiment will allocate a total ofn patients. For an armi, we
use¬ i to denote the other arm, i.e., arm3−i.

If a patient arrival occurs at timet, the patient is allocated to arm 1 or 2 based on data collectedup
until t. This includes the responses and number of patients allocated to each arm, as well as the priors.
A sufficient statistic at timet is 〈s1(t), f1(t), u1(t); s2(t), f2(t), u2(t)〉, wheresi(t), fi(t) are the number
of successes and failures on armi andui(t) is the number outstanding on armi, i = 1, 2. Because the
problem is stationary in time, we can drop thet notation. Thus an allocation policy is a function that
depends on the priors andn and maps〈s1, f1, u1; s2, f2, u2〉 to {1, 2}. Optimal solutions are policies that
are optimized for a given objective function. Since the objective here is to maximize total experimental
patient successes, this problem has the form of a two armed bandit with delay. We call this optimization
problem thedelayed 2-armed bandit, D2AB. Note, however, that our approach also applies to numerous
other objective functions.

It is well-known that such optimization problems can be solved via dynamic programming. However,
computational space and time grow exponentially in the number of arms, and the delay complicates this
further. The state space involves all possible variations of its components, as long as all are nonnegative
and their sum is no greater thann. There are thus

(
n+6

6

)
= Θ(n6) states in the D2AB. More generally,

the delayedk-arm bandit will have
(
n+3k

3k

)
states. This is in contrast to theΘ(n4) states in the standard

2AB, and the general case of
(
n+2k

2k

)
states in the standardk-arm Bernoulli bandit. In fact, the states in the

D2AB are in a natural 1-1 correspondence with the states in the standard 3AB. Here we will concentrate
on the D2AB, although with simple changes the techniques could be applied to general delayedk-arm
bandits. However, such solutions are currently not computationally practical whenk > 2 and sample sizes
are> 100.

To apply dynamic programming, one needs to know the terminalstates, i.e., those states which can be
directly evaluated without recourse to recursion. In this situation, it is those states for whichu1 = u2 = 0
ands1 + f1 + s2 + f2 = n; i.e., those states for which alln patients have been allocated and all of their
responses have been observed. For our primary example of trying to maximize successes, thevalue of
a terminal state is simplys1 + s2. Ultimately, our goal is to determine the value,V , of the initial state
〈0, 0, 0; 0, 0, 0〉.

There are various ways to tackle this problem, and finding onethat is computationally feasible is a
keystone of the solution. We consider two alternatives — onesuited to describing characteristics of the
solution and the other to solving the problem computationally. In each case we develop recursive dynamic
programming equations. Letπi(si, fi) denote the posterior probability that an observation on armi will
be a success, given thatsi successes andfi failures have been observed previously on the arm. Thus,
πi(si, fi) ∼ Be(ai+si, bi+fi) for 1 = 1, 2.

Approach I:Perhaps the most natural approach is the one in which time is marked by patient arrivals, be-
cause these are the only times when action is taken and decisions are needed. In the meantime, outstanding
responses may come in, possibly including that of the patient most recently assigned. For theui patients
with unobserved outcomes on armi, the number of newly observed successes,s′i, or failures,f ′

i , before
the next patient arrives must satisfy0 ≤ s′i, 0 ≤ f ′

i , ands′i + f ′

i ≤ ui. Thus, by the time the next patient
arrives, the system may have moved to any of

(
u1+2

2

)(
u2+2

2

)
different states.

The dynamic programming equations for this approach are presented in Appendix A. Unfortunately,
evaluating these equations requiresΘ(n10) time, and thus they are computationally infeasible except for
trivial sample sizes.
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Approach II: A second approach marks time byevents, where an event is either a subject arrival or a
response from one of the arms. Because we are using continuous time, we can assume that only one event
occurs at a time. LetP1(u1, u2), P2(u1, u2), Ps(u1, u2) represent the probability that the next event is an
observation on arm 1, an observation on arm 2, or a subject arrival, respectively. WhileP1, P2 andPs are
interrelated, they have a simple form, namely

Ps(u1, u2) =
λs

λs + u1 ·λ1 + u2 ·λ2
and Pi(u1, u2) =

ui ·λi

λs + u1 ·λ1 + u2 ·λ2
.

Let σ + ŷ denote stateσ with componenty increased by one. Then, the dynamic programming equation
is as follows.

V (σ) = P1(u1, u2) ∗
[
π1(s1, f1)·V (σ + ŝ1 − û1) + (1−π1(s1, f1))·V (σ + f̂1 − û1)

]

+P2(u1, u2) ∗
[
π2(s2, f2)·V (σ + ŝ2 − û2) + (1−π2(s2, f2))·V (σ + f̂2 − û2)

]

+Ps(u1, u2) ∗ max {V (σ + û1), V (σ + û2)}

Here, the allocation choice is handled in the last term, where if there is a subject arrival then we just
determine to which arm we allocate. Initially this simply means that the arm has one more unobserved
allocation. The advantage of this approach is that each state depends upon only 6 others, rather than the
O(n4) of Approach I, so the computations can be completed inΘ(n6) time. While still formidable, this
can be achieved for useful sample sizes, as explained in Appendix B and in Oehmke et al. (2001).

Note that when the sample size has been reached then the thirdterm of the recurrence is eliminated,
and the formulae forP1 andP2 are adjusted so thatPi(u1, u2) = uiλi/(u1λ1 + u2λ2). Similarly, whenσ
is a terminal state, i.e., when all observations have been obtained (s1 + f1 + s2 + f2 = n), thenV (σ) is
the value of the objective function being optimized. In thispaper,V (σ) = s1 + s2.

Exact evaluations of arbitrary, sub-optimal allocation designs for the present problem are possible via
slight modifications to the algorithm in Appendix B. This is accomplished by replacing themax{V (σ+
û1), V (σ+û2)} in the recurrence forV (σ) with the allocation decision that the design would make. Note
that this decision may be stochastic.

3 A Randomized Play-the-Winner Rule

One popular ad hoc adaptive rule is the randomized play the winner (RPW) rule which first appeared in
Wei and Durham (1978), and which has subsequently been utilized in a number of clinical trials. In this
urn model, there are initial balls representing the treatment options. These may be thought of as a prior
on success ratesπ1 andπ2. One starts with an urn containingαi balls of typei for i = 1, 2. Patients are
assigned to arms according to the type of ball drawn at randomfrom the urn. Sampling is with replacement,
and balls are added to the urn according to the last patient’sresponse. If the patient response is a success
on armi, thenβs balls of typei are placed in the urn. If a failure occurs, thenβf balls of type¬ i are
added to the urn. Most often,α1 = α2 andβs = βf = 1.

One advantage of urn models like RPW is the natural way in which delayed observations can be incor-
porated into the allocation process. When a delayed response eventually comes in, balls of the appropriate
type are added to the urn. Since sampling is with replacement, any delay pattern can be accommodated.
We call this design thedelayed RPW rule (DRPW).
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Much of the literature on adaptive designs that incorporatedelayed observations use the DRPW as
the allocation procedure. In Bandyopadhyay and Biswas (1996), the authors consider a slightly altered
version of this rule for a related best selection problem. Biswas (2003) utilizes regression delay structures
and examines the DRPW’s performance. Rosenberger (1999) considers the DRPW in a discussion paper
on the RPW. There, one relevant remark is that “Exact computations preclude delayed response because
of theoretical difficulties,. . .”. Exact evaluations of the DRPW appear in Hardwick et al. (2001), in which
the present exponential delay structure is imposed. Bai et al. (2002) present asymptotic results relating to
urn composition and the limiting distribution of estimators for a DRPW design.

4 Adaptive Hyperopic Designs

One way to approach delayed response problems is to utilizehyperopic designs, where a hyperopic design
is one which makes sampling decisions based on the trial length, in addition to the priors. For example,
most 1-stage and 2-stage designs are of this form, in both frequentist and Bayesian frameworks. This is
in contrast to myopic designs where optimization decisionsassume only one more observation will occur.
Note that RPW can be viewed as being myopic, while the optimalsolution of the 2AB is hyperopic.

We create anadaptive hyperopic design, H, as follows:

1. Start with a classD of (simple) hyperopic designs for immediate responses. Forexample, one might
use standard 1-stage designs, which use the best fixed samplesize rule for allocation.

2. As the experiment proceeds, at each stateσ = 〈s1,f1,u1; s2,f2,u2〉, with m remaining observations
to be assigned, determine the optimal fixed sample designDσ ∈ D for an experiment havingm +
u1 + u2 observations, subject to the condition that at leastu1 observations must be made on arm 1
andu2 must be made on arm 2.

3. If Dσ would initially allocate more new observations to armi than to arm¬ i, then H(σ) would al-
locate the next observation to armi; while if Dσ would allocate equal numbers of new observations
then H(σ) would randomize the next allocation. In some settings one might prefer to increase ran-
domization by allocating the next observation to armi with probability proportional to the number
of new observationsDσ would allocate to it.

When the objective is to maximize successes, the optimal 1-stage design allocates all observations to
the arm with the highest prior mean; that is, it makes the myopic choice. To encourage exploration, for
D we instead use a simplistic 2-stage design that is invoked ateach stateσ as the experiment proceeds:
let Wi(σ) be the value of the 2-stage immediate response design in which the first stage allocates1 + ui

observations to armi andu¬ i observations to arm¬ i. In the second stage, it allocates the remaining
n − 1 − u1 − s1 − f1 − u2 − s2 − f2 observations to the arm with the highest posterior mean. If
Wi(σ) > W¬ i(σ) then we allocate the next observation to armi, while if they are equal then we randomize
between the arms. We use DAH to denote this adaptive hyperopic design for delayed responses. Note that
if one arm has no pending observations while the other has many then DAH will tend to sample the former.

One can prove that ifD is the class of optimal 2-stage designs then the corresponding adaptive hyper-
opic design is asymptotically optimal, and that it is not asymptotically optimal for the restricted 2-stage
designs used here. However, despite the simplicity of the 2-stage hyperopic design used at each state, the
sequential updating of the information results in a nearly optimal design, even in the presence of delays,
as is shown in Section 5. RestrictingD to 2-stage designs that add only one observation to the first stage
(rather than considering all possible additions) greatly reduces the computations required at each stage,
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making it more likely to be applied in practice. Simulationscan be easily used to produce approximate
evaluations of its expected value and operating characteristics.

Exact evaluations, however, are as complex as those for the D2AB since there are stillΘ(n6) states.
Note that attaining this time is somewhat complicated. A 2-stage design for immediate responses which
allocates an initialoi observations on armi has(o1 +1)(o2 +1) outcomes at the end of the first stage.
Hence an exact evaluation of an adaptive hyperopic design which used a straightforward examination of
all possible 2-stage allocations at each state would takeΘ(n10) total time. Even by restricting to only an
examination of the 2 simplest allocations at each state, as is done here, would takeΘ(n8) time in a naive
approach. This can be reduced toΘ(n6), but the steps needed to do this are beyond the scope of this paper
and will be published elsewhere.

5 Results of Comparisons

We have carried out exact analyses of the exponential delay model for D2AB, DRPW, and DAH. In these
preliminary analyses we taken = 100, and for the DRPW takeα1 = α2 = βs = βf = 1. To simplify
comparisons, throughout we takeλs, the patient arrival rate, to be 1, and vary the response rates. Since it
is relative rates which determine the behavior, whenλ1 = λ2 = λ one could setλs = 1/λ and view the
results as fixing the response rate at 1 and varying the arrival rate.

We look first at base case and best case scenarios. For comparative purposes, we take the best fixed
in advance allocation procedure to be the base case, i.e., the optimal solution when no responses will
be available until after alln patients have been allocated. To maximize expected successes one should
allocate all patients to the treatment with the higher expected success rate. We denote the expected number
of successes in the base case by Ebase[S]. Throughout we only report expected values, not variances nor
other distributional information, because the overwhelming source of variation is the uncertainty built into
the priors.

Results for uniform priors: We initially consider uniform priors on the treatment success ratesπ1 and
π2, in which case all fixed allocations result in the same expected successes. For these priors, Ebase[S] =
n/2.

We encounter the best possible case when all responses are observed immediately (full information).
In this situation, DRPW is simply the regular RPW and the D2ABis the regular 2-armed bandit. DAH
becomes an adaptive hyperopic design which does not seem to have been previously analyzed, and in
future work we will examine adaptive hyperopic designs for various optimization problems. Recall that the
regular 2-armed bandit optimizes the problem of allocatingto maximize total successes. Letting Eopt[S]
represent expected successes in the best case (i.e., those obtained by the regular 2-armed bandit), for our
example we have Eopt[S] = 64.9. Using the difference Eopt[S]−Ebase[S] as a scale for improvement, we
can think of the values on this scale, (0, 14.9), as representing the “extra” successes over the best fixed
allocation of100 observations. We take R(δ) = (Eδ[S]−Ebase[S]) / (Eopt[S]−Ebase[S]) to be therelative
improvement over the base case for any allocation ruleδ. Note that R(δ) also depends onn and the prior
parameters.

For fixed priors, arrival rate, and response rates, one can show that asn → ∞, R(D2AB)→ 1, R(DAH)
→ CDAH, and R(DRPW)→ CDRPW, whereCDAH andCDRPW are constants less than one. However,
this asymptotic behavior gives little information about the values for practical sample sizes, and hence one
needs to determine their behavior computationally. As willbe seen, the asymptotic suboptimality of DAH
is particularly misleading.
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Figure 1: Expected successes for D2AB, DRPW, and DAH,λs = 1, λ1 = λ2

Tables 1, 2 and 3 contain the expected successes for the D2AB,DRPW, and DAH rules, respectively.
Patient response rates,λ1 andλ2, vary over a grid of values between10−5 and101 and the patient arrival
rate,λs, is fixed at 1. Note that, for all rules, whenλ1 = λ2 = 10−5, E[S]≈ 50. Whenλ1 = λ2 ≥ 10 all
of the rules achieve a number of successes nearly identical to the number they achieve in the immediate
response situation. Under these conditions, the D2AB rule achieves E[S]=64.9, and the DAH rule achieves
E[S]=64.7. Note that for the DRPW, E[S] = 57.9, which gives anR of 0.53. With the immediate response
RPW, we can expect to gain only 7.9 successes as compared to the 14.9 obtained by the optimal 2AB and
the 14.7 for the hyperopic design.

Moving away from the extreme points, consider the case whenλ1 = λ2 = 10−1, one order of mag-
nitude smaller thanλs. All of the rules can be seen to be quite robust to such delays,even though asymp-
totically there are, on average, nearly 10 patients allocated but unobserved. It is only whenboth response
rates are at least three orders of magnitude below the arrival rate that results begin to degrade seriously.
Whenλ1 = λ2 = 10−3, for example, the relative improvement over the base case ofthe D2AB and the
DAH is only 0.40, and for the DRPW it is a dismal 0.17. It is alsointeresting to note that even when
the response rate is only 1/100th the arrival rate, the D2AB and the DAH do better than the RPW with
immediate responses. Figure 1 illustrates the relative performance of the rules when the arrival rate is one
and the response rates vary between10−5 and105.

One conspicuous feature of this figure is the fact that the DAHis nearly as good as the D2AB through-
out the entire range. This is particularly interesting because the D2AB has the delay as one of its design
parameters while the DAH does not. Hence one can view the graph as comparing the expected values of a
family of bandit designs, one per delay, to the operational characteristics of a single hyperopic design.

When we consider scenarios in which only one treatment arm supplies information to the system, we
see interesting behavior. For example, whenλ1 = λs = 1 butλ2 = 10−5, the relative improvement is 0.76
for the D2AB, 0.71 for the DAH, and 0.47 for the DRPW. The D2AB is now clearly superior to the DAH
and the DRPW. However, the DRPW is interesting here since itsR-value is 89% of that for the undelayed
RPW value. Thus, since the RPW rule starts out so poorly, it has relatively less to lose. Note that with the
D2AB one only loses 24% of the optimal solution while excluding half the information.
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λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.1
10−4 51.2 51.2
10−3 55.4 55.4 55.8
10−2 59.3 59.4 59.9 61.5
10−1 60.9 61.0 61.6 63.1 64.1
100 61.3 61.3 61.9 63.5 64.5 64.8
101 61.3 61.3 62.0 63.5 64.6 64.8 64.9

Table 1: D2AB: E[S] as (λ1, λ2) vary,n = 100, λs = 1, uniform priors

λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.0
10−4 50.2 50.4
10−3 51.6 51.7 52.6
10−2 54.8 54.8 54.9 55.7
10−1 56.5 56.5 56.5 56.7 57.3
100 56.9 56.9 56.9 57.1 57.6 57.8
101 57.0 57.0 57.0 57.2 57.6 57.8 57.9

Table 2: DRPW: E[S] as (λ1, λ2) vary,n = 100, λs = 1, uniform priors

λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.1
10−4 50.7 51.2
10−3 53.8 54.1 55.8
10−2 58.4 58.5 59.4 61.5
10−1 60.3 60.4 61.2 62.9 64.0
100 60.6 60.7 61.6 63.3 64.4 64.7
101 60.6 60.8 61.7 63.3 64.4 64.7 64.7

Table 3: DAH: E[S] as (λ1, λ2) vary,n = 100, λs = 1, uniform priors
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λ1 λ2

↓ 10−5 10−4 10−3 10−2 10−1 100 101

10−5 50.0 50.0 50.2 53.4 55.3 55.7 55.7
10−4 50.5 50.5 50.6 53.5 55.3 55.7 55.7
10−3 52.6 52.7 52.9 54.4 56.1 56.5 56.5
10−2 55.4 55.5 55.8 56.8 57.9 58.2 58.3
10−1 56.7 56.7 57.1 58.2 59.1 59.3 59.3
100 56.9 57.0 57.3 58.5 59.4 59.6 59.6
101 56.9 57.0 57.3 58.5 59.4 59.6 59.7

Table 4: D2AB: E[S] as (λ1, λ2) vary,n = 100, λs = 1
Prior distributions are Be(1,1) and Be(1,1.5).

λ Be(1,1) Be(1,4) Be(4,1)
10−0 0.993 0.994 0.988
10−1 0.952 0.946 0.929
10−2 0.774 0.712 0.701
10−3 0.393 0.304 0.309
10−4 0.081 0.056 0.055

Table 5: Relative Efficiency for D2AB,n = 100, λ = λ1 = λ2, λs = 1
Both arms have the same prior distribution.

Some results for alternative priors: We include a couple of examples of how the performance of the
D2AB changes when non-uniform priors are used. First we consider a case in which the priors for the
two arms differ. In Table 4, prior distributions onπ1 andπ2 are Be(1,1) and Be(1,1.5), giving arms 1 and
2 prior means of 0.5 and 0.4, respectively. Note first that Eopt[S] = 59.6 which is down from 64.9 in the
uniform case. This is a natural result of having one mean smaller than before. More interesting perhaps is
the asymmetry in the tabulated values. The total expected successes are reduced more when the response
rates for the inferior arm (as opposed to the better arm) are slow coming in.

In Table 5 we show the behavior of the D2AB as the response ratevaries from rapid to extremely
slow. Both arms have the same priors. Note that, while all priors exhibit the same basic behavior, there
are noticeable differences in how well the D2AB does when theresponse rate is extremely slow, i.e., when
there are very few observations during the trial.

Other differences show up when the non-delayed 2AB is compared to the omniscient design which
always allocates to the better arm. For n=100 and Be(1,1) priors, the non-delayed 2AB attains 0.89 of the
improvement that the omniscient design gets, for Be(1,4) itattains 0.80, and for Be(4,1) it attains 0.84.
Combining this information with the fact that the values in Table 5 are relative to the non-delayed 2AB,
not to the omniscient design, one sees that the D2AB does significantly better with uniform priors than
with the others.

One way to view this problem independently from the allocation rules is to examine the expected num-
ber of allocated but unobserved patients when a new patient allocation decision must be made. Figure 2
displays this information for various delay rates relativeto a patient arrival rate ofλs = 1. In this figure,
it is assumed thatλ1 = λ2 = λ, and there are separate curves forλ = 10−3, 10−2, 10−1 and 1. As noted,
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Figure 2: Expected number of unobserved patients when new patient arrives.
Curve label isλ = λ1 = λ2.

when the response delay rate is 1, at any point in time one expects only a single observation to be delayed,
and the impact on performance is minimal. Once approximately 20 patients have been allocated, there is
a consistent lag of about ten patients whenλ = 0.1. Connecting this value to the results in Tables 1, 2,
and 3, one finds that a loss of roughly 10% of the total information at the time of allocation of the last
patient (and a significantly higher loss rate for earlier decisions), corresponds to a loss of only about 5%
in terms of the improvement available from each rule.

When the response rate is about 100 times slower than the arrival rate, asymptotically there will be
approximately 100 unobserved patients at any point in time.Fortunately, for a sample size of100, one is
quite far from this asymptotic behavior, and approximately37% of the responses have been observed by
the time the last allocation decision must be made. This allows the D2AB to achieve 77% of the relative
improvement possible.

6 Discussion

Because there has been so little research addressing optimal adaptive designs with delayed responses, or
addressing exact evaluations of general designs with delayed responses, there are numerous outstanding
problems in the area. One might argue that exactly optimal designs aren’t necessary in practice, especially
if good ad hoc options are available. However, without a basis of comparison it is difficult to know how
good ad hoc options are, since asymptotic analyses give onlyvague information about their behavior for
practical sample sizes. Examining the properties of optimal designs can also lead to the development
and selection of superior sub-optimal alternatives. In Section 4, for example, we propose ad hoc rules
that come far closer to achieving optimal performance than does the DRPW rule, which is the rule most
often suggested for delayed response scenarios. Still, to progress further much work needs to be done,
particularly with regard to practical characteristics of these designs.

Two important concerns are a design’s robustness and the ability to apply it flexibly. Due to space
constraints such analyses could not be undertaken here, butprevious analyses for fully sequential designs
lead one to suspect that the D2AB optimized for one set of parameters and then evaluated with respect to
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a second set will be nearly as efficient as the D2AB optimized for the second set. In future work we will
examine the robustness and operating characteristics of the D2AB and DAH.

One way to address the model assumptions to improve robustness might be to use prior distributions
on the response rate parameters. Also, it would also be extremely helpful to know the impact of the as-
sumption of exponential response times. Unfortunately, optimizing and evaluating different arrival and
response delay models can involve significantly different recursive equations, and the computational re-
quirements can vary dramatically. For example, if responsedelays and arrivals occur at a constant rate,
then the appropriate state space would be the successes and failures observed, coupled with the listing, in
order, of the allocations not yet observed. This model hasΘ(n42d) states, whered is the response delay
expressed in terms of the arrival rate. For small to modestd, such as thed = 2 used in Rosenberger (1999),
constant delay models can be optimized exactly, and arbitrary designs can be evaluated exactly, although
we have not undertaken such an evaluation. For larged, however, this is currently infeasible. Certainly
one can test the data’s goodness of fit to the exponential model after the experiment, but this is not very
helpful if the data fit it poorly. However, there is reason to believe that a variety of response time models
would benefit from application of the optimal design for the exponential model. The resulting designs may
not be optimal, but they will likely be very good.

Recall that one goal of this research is to develop exactly optimal, or nearly optimal, delayed response
designs that allow for the use ofany objective function, not just the bandit objective of maximizing reward
(successes). The dynamic programming algorithm so developed in Appendix B, and its implementation
on serial and parallel computers, has this capability; and in future work we will examine the performance
of optimal designs for other objectives.

The adaptive hyperopic design approach is also extremely general, applicable to arbitrary objectives,
and there are many variations possible for both immediate and delayed responses. An adaptive hyperopic
design based on an asymptotically optimal family of designsis also asymptotically optimal, and will likely
have extremely good performance throughout the range of sample sizes. This is an area we are exploring,
especially as regards 2-stage designs.

Finally, to summarize our findings, we have developed various designs for a clinical trial model with
Bernoulli observations, exponentially delayed response times, and Poisson patient arrival rates. Regarding
optimal designs, we examined two approaches to tackling theproblem and discussed the computational
difficulties associated with each, showing that one of them is amenable to implementation. We found that
under fairly broad circumstances, in a delayed setting, using the optimal delayed response design gives re-
sults nearly as good as those for the immediate response setting when the optimal design is used. We also
found that the most commonly proposed ad hoc rule for such problems, the DRPW rule, performed signif-
icantly less well than the optimal delayed design, while a new ad hoc strategy, the DAH rule, performed
extremely well.
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A Appendix: Equations for Approach I

For the patient arrival based approach, at each stateσ = 〈s1, f1, u1; s2, f2, u2〉 there only two options,
namely allocating the new patient to arm 1 or arm 2. If we allocate the patient to armi, we can think of
this as initially increasingui by one. By the time the next patient arrives, some number of past patients
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allocated to arms 1 and 2 will have had their responses. Our goal is to pick the better of the two options.
Thus we are led to the following equation:

V (σ) = max

{
cu1∑

j1=0

u2∑

j2=0

j1∑

s′
1
=0

j2∑

s′
2
=0

t(j1, û1, j2, u2) q1(s
′

1 | j1) q2(s
′

2 | j2) ·

V (〈s1+s′1, f1+j1−s′1, û1−j1; s2+s′2, f2+j2−s′2, u2−j2〉) ,

u1∑

j1=0

cu2∑

j2=0

j1∑

s′
1
=0

j2∑

s′
2
=0

t(j1, u1, j2, û2) q1(s
′

1 | j1) q2(s
′

2 | j2) ·

V (〈s1+s′1, f1+j1−s′1, u1−j1; s2+s′2, f2+j2−s′2, û2−j2〉)

}

The valuet(j1, u1, j2, u2) represents the probability that exactlyji of theui outstanding responses occur
from armi prior to the next patient arrival,ji = 0, . . . , ui, andqi(s | j) is the probability that exactlys of
the j responses on armi are successes,s = 0, . . . , j, i = 1, 2, given the priors and observations to date.
Thus,

t(j1, u1, j2, u2) = P
(
max{Zλ1(j1), Zλ2(j2)} < Zλs

< min{Zλ1(j1+1), Zλ1(j2+1)}
)

whereZλs
∼ exp(1/λs), Zλi

∼ exp(1/λi) andZ(j) represents thejth order statistic.
While thet, q1, andq2 values can be computed once and stored, there is still the difficulty that deter-

mining V (σ) depends onO(n4) other states. Since there areΘ(n6) states, a straightforward approach to
solving all of the recurrences will grow asΘ(n10). While it might be possible to reduce this some, it will
likely remain infeasible for useful values ofn.

B Appendix: Computations for Approach II

Due to its high dimensional nature, programming the recurrence in Approach II can be somewhat chal-
lenging. The state space is 6-dimensional, so the most straightforward implementation would use an array
of sizen6. By using the well-known techniques (see Hardwick and Stout, 1998), of doing calculations
level by level and overwriting old values this array space can be reduced ton5, and by utilizing the con-
straint thats1 + f1 + u1 + s2 + f2 + u2 ≤ n and mapping to a 1-dimensional array, this can be further
reduced to

(
n+5

5

)
≈ n5/5!. For sample sizes of size 100, however, this is still near thelimit of standard

computers. Here we will merely sketch some of the programming considerations, especially those aspects
that differentiate the D2AB from fully sequential bandits.

As noted above, to reduce the memory needed one should do calculations level by level, starting at the
terminal states and proceeding towards the beginning, ending whenV (0, 0, 0; 0, 0, 0) has been determined.
While the state space for the delayed 2-armed bandit is in 1-1correspondence with that for the fully
sequential 3-armed bandit, the recurrence for the D2AB is slightly more complex, which complicates the
level by level approach. The D2AB recurrence is of the form

V (σ) = f
(
V (σ+ŝ1−û1), V (σ+f̂1−û1), V (σ+û1), V (σ+ŝ2−û2), V (σ+f̂2−û2), V (σ+û2)

)
(1)

while in the standard 3AB the recurrence is of the form

V ′(σ) = f ′

(
V ′(σ+ŝ1), V

′(σ+f̂1), V
′(σ+ŝ2), V

′(σ+f̂2), V
′(σ+ŝ3), V

′(σ+f̂3)
)

.
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The most critical difference is that in the D2AB, theu1 andu2 indices are both incremented and decre-
mented. For the standard 3AB, the level is merely the sum of the components, and it is easy to see that
each state depends only on the states of level one greater. While this definition of level will not work for
the D2AB, by defining the level of a state to be2(s1 +f1 + s2 +f2)+u1 +u2, one sees that in equation 1,
the value of a state at levelℓ depends only on states at levelℓ + 1. Thus the level by level approach can be
used, from level2n down to level 0.

Unfortunately, this definition of level slightly complicates the programming. For a levelℓ > n, one
can have nonnegative values ofs1, f1, u1, s2, f2, andu2 which map to levelℓ, but do not correspond to a
valid state because they have a sum that exceedsn. Therefore one must check both lower bounds, as well
as upper bounds, on the loops. This problem also complicatesthe indexing when the state space is mapped
into a 1-dimensional array. Overall, the details are considerably messier than for fully sequential bandits,
but the same basic approaches can be used. Figure 3 provides asketch of a serial algorithm for the D2AB.

Note that one can provide exact analyses of arbitrary designs, whether created for delayed responses or
not, by merely replacing the “max{V (σ+û1), V (σ+û2)}” component in the recursive calculation ofV (σ)
with the choice that the design would make. Further, one can optimize or evaluate with respect to arbitrary
objectives, not just total successes, by replacing “V (σ)=number of successes inσ” with the appropriate
value of the new objective function atσ.

The parallel program for the D2AB starts with the serial program and then divides the work among
the processors. Them loop cannot be parallelized, but the loops within it can be. One must also add
communication among the processors so that each processor has theV values it needs from the previous
m + 1 iteration to determine itsV values for the currentm iteration. See Hardwick et al. (1999) and
for a more detailed discussion of the parallelization process. Also, see Oehmke et al. (2001) for more
detailed timing analyses and optimizations to improve serial and parallel performance. Problems as large
asn = 200 have been solved using modest parallel computers, ones thatare widely available.
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{ŝi, f̂i: one success, failure on arm i }
{si, fi, ui: number of successes, failures, unobserved on arm i }
{πi: posterior probability of success on arm i }
{n: sample size }
{m: level }
{V (σ): position in 1-dimensional array of value of state σ }
{Vi: expected value if observation occurs on arm i }

forall states σ with level(σ)=2n {i.e. for all terminal states}
V (σ)=number of successes in σ

for m = 2n − 1 downto 0 {compute for all states of level m}
for s2 = 0 to m/2

for f2 = 0 to (m/2) − s2

for s1 = 0 to (m/2) − s2 − f2

for f1 = max(0,m − n) to (m/2) − s2 − f2 − s1

for u2 = 0 to m − 2(s2 − f2 − s1 − f1)
u1 = m − 2(s2 − f2 − s1 − f1) − u2

σ = 〈s1, f1, u1; s2, f2, u2〉
V1 = π1(s1, f1)V (σ+ŝ1−û1) + (1−π1(s1, f1))V (σ+f̂1−û1)
V2 = π2(s2, f2)V (σ+ŝ2−û2) + (1−π2(s2, f2))V (σ+f̂2−û2)
if s1 + f1 + u1 + s1 + f2 + u2 < n then {more subjects possible}

V (σ)=
λs max{V (σ+û1), V (σ+û2)} + u1λ1V1 + u2λ2V2

λs + u1λ1 + u2λ2

else

V (σ)=
u1λ1V1 + u2λ2V2

u1λ1 + u2λ2

Figure 3: Outline of serial program for delayed 2-armed bandit
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